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Abstract

The cost-effectiveness of next-generation sequencing (NGS) has led to the advancement of

genomic research, thereby regularly generating a large amount of raw data that often

requires efficient infrastructures such as data centers to manage the storage and transmis-

sion of such data. The generated NGS data are highly redundant and need to be efficiently

compressed to reduce the cost of storage space and transmission bandwidth. We present a

lossless, non-reference-based FASTQ compression algorithm, known as LFastqC, an

improvement over the LFQC tool, to address these issues. LFastqC is compared with sev-

eral state-of-the-art compressors, and the results indicate that LFastqC achieves better

compression ratios for important datasets such as the LS454, PacBio, and MinION. More-

over, LFastqC has a better compression and decompression speed than LFQC, which was

previously the top-performing compression algorithm for the LS454 dataset. LFastqC is

freely available at https://github.uconn.edu/sya12005/LFastqC.

Introduction

Next-generation sequencing (NGS) technologies have accelerated genomic research, thereby

producing significant amount of data at a fast pace and low cost. However, the storage technol-

ogy is evolving at a much slower pace compared with the NGS technologies, thereby posing

challenges for data storage. Data centers are often used as a solution, while incurring consider-

able costs for storage space and transmission bandwidth. The time required for data transmis-

sion over network can be reduced by compressing the highly redundant genomics data. Most

data centers use generic compressors, such as the gzip and bzip2. However, these are not ideal

solutions for compressing NGS data since both were designed for general-purposes compres-

sion and have been shown to perform inadequately when compressing genomic data. There-

fore, it is important for researchers to have an appropriate tool that is specifically developed

for NGS data compression. The NGS-generated data are stored in a FASTQ format; FASTQ

files comprise millions-to-billions of records, each of which containing the following four

lines:

• Line 1 stores a sequence identifier and begins with @.

PLOS ONE | https://doi.org/10.1371/journal.pone.0224806 November 14, 2019 1 / 10

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Al Yami S, Huang C-H (2019) LFastqC: A

lossless non-reference-based FASTQ compressor.

PLoS ONE 14(11): e0224806. https://doi.org/

10.1371/journal.pone.0224806

Editor: Ruslan Kalendar, University of Helsinki,

FINLAND

Received: March 2, 2019

Accepted: October 22, 2019

Published: November 14, 2019

Copyright: © 2019 Al Yami, Huang. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data underlying

this study is deposited to the NCBI SRA (https://

www.ncbi.nlm.nih.gov/sra) under the following

accession numbers: SRX000376, SRX000706,

SRX000712, SRX000711, SRX002925,

SRX011353, SRX181937, SRX089128,

SRX533603, SRX5822585, SRX5327410,

ERX3333090, ERX593919.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0002-0371-0847
https://github.uconn.edu/sya12005/LFastqC
https://doi.org/10.1371/journal.pone.0224806
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224806&domain=pdf&date_stamp=2019-11-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224806&domain=pdf&date_stamp=2019-11-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224806&domain=pdf&date_stamp=2019-11-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224806&domain=pdf&date_stamp=2019-11-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224806&domain=pdf&date_stamp=2019-11-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224806&domain=pdf&date_stamp=2019-11-14
https://doi.org/10.1371/journal.pone.0224806
https://doi.org/10.1371/journal.pone.0224806
http://creativecommons.org/licenses/by/4.0/
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra


• Line 2 represents the read sequence.

• Line 3 begins with the + character, optionally followed by the same sequence identifier as

Line 1.

• Line 4 represents the quality score value for the sequence in Line 2 and has the same length

as Line 2.

As indicated above, the NGS produces DNA sequences and a corresponding quality score

value for each base. This value is the probability that the corresponding base call is incorrect.

These error values are then converted into integers. The Ewing and Green algorithm [1] trans-

formed these error values into PHRED quality scores (QS) [2], which can be used to character-

ize the quality of DNA sequences. The algorithm uses the following equation to calculate QS, i.
e. Q = −10 log10p. Then, the resulting values are shortened to fit within 0–93; this range repre-

sents the values for the base score in the ASCII form. Each integer is then incremented by 33

so that all values are in the range of printable ASCII characters.

In recent years, DNA sequence compression has been actively investigated, and many tools

have been specifically developed for this application. One example is the MFCompress [3],

which uses the finite-context model for compression. The finite-context model is a probabilistic

model that utilizes a probability distribution and estimates the probability of the next symbol

in a sequence based on the k previous symbols. MFCompress encodes the DNA sequences

using multiple competing finite-context models [4], as well as arithmetic encoding. Another

algorithm is the DNA-COMPACT, which is based on a pattern-aware contextual modeling

technique [5]. This algorithm exploits complementary contextual models and works in two

phases. In the first phase, the algorithm searches for the exact repeats and palindromes and

then represents them by a compact quadruplet. In the second phase, the algorithm introduces

the non-sequential contextual models to utilize the DNA sequence characteristics, and then a

logistic regression model is used to synthesize the predictions of these models. Another algo-

rithm is the SeqCompress [6], which is based on a statistical model and arithmetic coding and

can efficiently compress both repetitive and non-repetitive sequences.

Related work

A similar problem to DNA sequence compression is the compression of FASTQ data, which

consists of a DNA sequence of varying-length, a quality score, and an identifier. Compressing

FASTQ requires new techniques that compress each stream of FASTQ independently and effi-

ciently. Recently, several domain-specific data compressors have been developed for NGS data

compression. DSRC [7,8], for example, is a fast FASTQ data compressor designed for industry.

Quip [9] is another tool that uses a de novo assembly algorithm and was the first assembly-

based compressor. Another tool is the fqzcomp [10], which was the winner of the Sequence
Squeeze competition organized by the Pistoia Alliance. Fastqz is another compressor which

uses context modeling to reduce the data volume to maximize the compression gain [10].

LFQC [11], which was developed recently and yielded the best compression ratio on the LS454

and SOLEXA datasets. Another recently developed tool is the FaStore, which is optimized to

handle files generated by sequencing machines that generate a large number of short reads at a

low sequencing error rate [12]. SPRING is another FASTQ compressor which was developed

recently and provides high compression and decompression speed [13]. However, some of the

previous algorithms have failed to compress some datasets due to the lack of support for read-

ing variable-length read or space encoding, such as the color space encoding used in SOLiD.

This study presents the LFastqC, a lossless non-reference-based compression algorithm,

which is an extension of the LFQC but performs better when using only the quality score as a
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length reference for the sequence stream. The algorithm is discussed and evaluated in the fol-

lowing sections. The compression result is compared with results from other methods that also

adopt a lossless non-reference-based compression technique.

Materials and methods

FASTQ data compression

NGS files are stored in the FASTQ format, which typically consist of millions-to-billions of

records with four lines each. Line 1 represents the record identifier, Line 2 stores the record

nucleotide, Line 3 represents a constant “+” optionally followed by record identifier, and Line

4 represents the corresponding quality scores for the nucleotide sequences from Line 2. Each

line comprises four different alphabet sets and has its own structure; therefore, several existing

FASTQ compressors compress each line separately. The proposed algorithm follows the litera-

ture by splitting the FASTQ file into three data streams; each stream is then preprocessed inde-

pendently for compression. A regular data compressor and a special-purpose Fasta file

compressor, i.e. lpaq8 (http://mattmahoney.net/dc/#lpaq) and MFCompress (http://

bioinformatics.ua.pt/software/mfcompress), are used at the compression stages.

lpaq8 compressor

lpaq8 is a part of the PAQ series, which are lossless data-compression archivers that adopt a

context mixing algorithm. These algorithms divided the compressor into a predictor and an

arithmetic coder, and work just like prediction by partial matching (PPM). However, they are

different from PPM in two ways. First of all, context mixing algorithms predict the next sym-

bol by computing a weighted combination of probability estimates from many models on dif-

ferent contexts. Secondly, context mixing algorithms use many models, unlike PPM which

uses a single model. Context mixing algorithms yield the best performance on many bench-

marks in terms of compression ratio. These benchmarks vary in size and alphabet, rendering

lpaq8 the best option when compressing quality score and read identifiers.

MFCompress compressor

MFCompress relies on finite-context models, which is probabilistic and works by estimating

the probability of the next symbol of the source based on the frequencies of the symbols that

occurred before the current symbol. MFCompress uses multiple competing finite-context

models to compress the DNA sequences and uses a single finite-context models to compress

the file header. MFCompress compresses Fasta files efficiently in term of time and compres-

sion gain, making it suitable for compressing the DNA sequence stream in a FASTQ file.

The following subsections explain how LFastqC pre-processes each stream before sending

it to the corresponding compression tool.

Identifier compression

The main goal of the identifier field is to uniquely identify the read. The reads are identified

using an integer value, but the identifiers have more information than what is needed to iden-

tify each read. For example, the identifier field contains the instrument’s name, run identifier,

flow cell identifier, and tile coordinates. Most of this information is the same for every read.

This redundancy increases the file size, but it can also be utilized to achieve better compression

of the identifier stream.

The identifier fields can be classified as one of three types: fields with data that do not

change over the whole records, fields with the same data value over a set of consecutive
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records, and fields with integer values that are either incremented or decremented over conse-

cutive records. LFastqC takes this information into consideration when preprocessing this

stream. The algorithm first scans the identifier for one of these delimiters: a dot (.), underscore

(_), space (), hyphen (–), colon (:), equal sign (=), or slash (/). It then splits the identifiers into

fields based on these delimiters. This process leads to the creation of new files with one column

(the field column) and N rows, where N is the number of records.

The following example explains how the algorithm splits a record identifier using the fol-

lowing record identifier:

@SRR001471:1 E96DJWM01D47CS length ¼ 79

The algorithm first returns the identifier’s delimiters, which are the following in this case: a

dot (.), a space (), a space (), and then an equal sign (=). Thus, the identifier is split into five

fields:

• @SRR001471

• 1

• E96DJWM01D47CS

• length

• 79

At this point, some FASTQ compressors in the literature add a layer of compression by

compressing each field using one of the following compression techniques: delta encoding,
run length encoding, or reversing the fields (reading them from right to left) for further com-

pression. We observed that this compression layer did not improve the compression ratio

in general, but increased the running time altogether. Instead, for our algorithm feeds the

identifier fields to the lpaq8 compressor at this point, which is a standard context mixing

compression algorithm. We use lpaq8 with option “9” which yielded the best compression

ratio.

Sequence compression

The nucleotide sequences are arranged in a small string of five alphabetic characters, namely

A, C, G, T, and N. The N base contains unknown nucleotides and always has “!” as its corre-

sponding quality score, which indicates the lowest probability and is equal to zero. Some

FASTQ algorithms eliminate “N” in the record sequences or “!” in the record quality score

because they can be easily reconstructed from one another. Our algorithm does not follow this

approach as we simply use the quality score as a read-length reference.

Some other datasets use color space encoding, which means that the read sequence has

more than five characters. The color-space read sequence starts with any of A, C, G, or T, fol-

lowed by numbers 0–3, which represent the relationship between the current base and the pre-

vious one. Our algorithm supports these datasets because it uses MFCompress, a FASTA and

multi-FASTA special-purpose compressor that accepts FASTA files with more than five char-

acters. To compress the record sequences, our algorithm first converts the stream into a single

FASTA file by adding the header of the first sequence as the first line, then deleting all

sequence reads’ new lines to get a long single sequence read. LFastqC then feeds the converted

stream to MFCompress for compression. We use MFCompress with a parameter of -3 and

obtain the best compression ratio.

LFastqC: A lossless non-reference-based FASTQ compressor
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Quality score compression

Each record has a quality score, which has the same length as the record sequence. We use it as

a length reference for the sequence reconstruction since we converted the record sequence to a

single FASTA file. According to the literature, there is a correlation between any quality score

and the score at the preceding position. This correlation tends to decrease along the length of

the sequence and behaves randomly for different FASTQ files. This behavior makes it difficult

to predict the nature of the quality scores and hence achieve better compression. We found

that the best way to compress this stream is by using a context mixing algorithm, which yielded

the best compression ratio for a number of benchmarks. We feed the quality score stream as is

to the lpaq8 compressor with option “9” to achieve the best compression ratio.

When conducting experiments both MFCompress and lpaq8 are run in parallel to speed up

the process.

FASTQ data decompression

LFastqC decompresses FASTQ data using the same tools used to compress them in the first

place. First, LFastqC regenerates the identifier by decompressing the files of the identifier

stream and then merges them to create a single file. Next, lpaq8 and MFCompress decompress

both the quality score and DNA sequence in parallel. LFastqC then regenerates the compressed

FASTQ data by combining all streams together and uses the quality score file as a reference for

the length of each record.

Results and discussion

We compared our algorithm with two general-purpose compression tools, Gzip [14] and

bzip2 [15], as well as other state-of-the-art FASTQ file-compression tools, namely SPRING,

LFQC, DSRC2, fqzcomp, SeqSqueeze1 [16], and Quip. FaStore was excluded from this study

because it did not work after trying on different platforms. Moreover, a recent study showed

that FaStore was outperformed by SPRING on different datasets [13]. For each selected tool,

we used their recommended parameters to obtain the best possible compression, as shown in

Table 1.

Since our tool is a lossless reference-free algorithm, we compared it only with other tools

that compress FASTQ data in a lossless manner without using a reference genome. Lossy com-

pression tools are excluded from comparison. Also, tools adopted for comparison are used

without any extra information besides the FASTQ file. All the experiments were carried out on

a machine running UBUNTU 16.04 64-bit powered by an Intel core i7 processor with 8 GB of

Table 1. Compression tools adopted and their parameters.

Algorithm Parameters

SPRING -c -i -t 16 / -c -l -i -t 16

LFQC -

DSRC2 c -m2

Fqzcomp SOLEXA: -n2 -s7þ -b -q3

LS454: -n1 -s7þ -b -q2

SOLiD: -S -n2 -s5þ -q1

SeqSqueeze1 -h 4 1/5 -hs 5 -b 1:3 -b 1:7 -b 1:12 1/10 -bg 0.9 -s 1:2 1/5 -s 1:3 1/10 -ss 10 -sg 0.95

Quip -

Gzip -9

Bzip2 -9

https://doi.org/10.1371/journal.pone.0224806.t001
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RAM. In our comparison, we used publicly available datasets that can be downloaded from the

1,000 Genome Project. These datasets have the same data as those used in [7] as well as in [11].

In addition, three datasets used in [13] as well as four others, such as the PacBio and MinION,

are tested on, as shown in Table 2.

While selecting datasets, we ensure to include data that were used by previous tools for the

sake of a fair comparison, and to include new data for further comparisons. Our datasets

incorporate data from different technologies, have different coverages, and different read

lengths. The datasets used include three files from LS454, two from SOLiD, as well as five files

are from Illumina (three in SOLEXA format, one in GAIIx, and one in GAII format). Our

datasets also include three files from PacBio and two from MinION, both widely used. Experi-

mental results revealed the four winners in terms of compression ratio, namely LFastqC,

LFQC, SPRING and Fqzcomp, as shown in Table 3. The winning condition is for the compres-

sion tool to be able to compress as many different datatypes as possible. Individual winning

tools, however, perform better on different datasets, e.g. LFastqC on LS454, PacBio, and Min-

ION; LFQC on SOLiD dataset; SPRING on Illumina GAIIX and GAII; and Fqzcomp on the

Illumina SOLEXA dataset. Although fqzcomp performed the best on Illumina SOLEXA, the

results show instability in its performance since it cannot compress the SOLiD datasets due to

their color space encoding. Additionally, fqzcomp was not able to compress both PacBio and

MinION datasets because it was not able to recognize the file format. Moreover, Quip and

SeqSqueeze1were not able to compress both PacBio and MinION datasets except for

SRR1284073, which was compressed successfully by Quip. Also noticed was that Quip and

SPRING were not able to compress the SOLiD datasets due to the lack of color space encoding

support. Our comparison shows that SPRING performs the best when compressing files with

short read and medium to high coverage. Fastqz does not work when the read lengths vary so

we excluded it from the comparison. The comparisons also revealed the poor performance of

the general-purpose compressors when it comes to compression ratio, despite their competi-

tive performance at compression and decompression speed.

In terms of compression speed, DSRC2 and SPRING show an outstanding performance.

Both obtain the best compression speed on different datasets and outperform the other tools

in all cases except for two times where they came behind Quip in SRR554369 and SRR128

4073. Table 4 summarizes the results.

Table 2. Datasets.

Datasets Type Organism Coverage Read Length Size (Mb)

SRR001471 LS454 Homo sapiens 0.07x 188 216

SRR003177 LS454 Homo sapiens 0.27x 564 1196

SRR003186 LS454 Homo sapiens 0.21x 581 886

SRR007215 SOLiD Homo sapiens 0.07x 25 695

SRR010637 SOLiD Homo sapiens 0.14x 35 2086

SRR013951 SOLEXA Homo sapiens 0.89x 76 3190

SRR027520_1 SOLEXA Homo sapiens 1.19x 76 4808

SRR027520_2 SOLEXA Homo sapiens 1.19x 76 4808

SRR554369 GAIIx P.aeruginosa 50x 100 384

SRR327342 GAII S.cerevisiae 175x 63 2812

SRR1284073 PacBio E.coli 140x 2942 1302

SRR9046049 PacBio A. brasilense 136x 3078 2622

SRR8858470 PacBio Homo sapiens 0.67x 13964 4288

ERR3307082 MinION C.freundii 367x 4002 3632

ERR637420 MinION E. coli 118x 6232 264

https://doi.org/10.1371/journal.pone.0224806.t002
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DSRC2 and SPRING also attain the best performance in decompression speed in most

cases except for five times where the first place was claimed by either gzip or bzip2. Gzip has

the best decompression speed on SRR001471, SRR1284073, and ERR637420. On the other

hand, bzip2 has the best decompression speed on SRR9046049 and SRR8858470 as shown in

Table 5. Although both DSRC2 and SPRING have demonstrated an impressive speed, neither

was able to compress all the different types of data we have in our datasets. SPRING was not

able to compress SOLiD. On the other hand, DSRC2 does not support long reads on medium

to large sized data. DSRC2 shows an obvious trade-off between the compression ratio and

speed. DSRC2, in most cases, was not among the top four in terms of compression ratio except

in some cases when other tools failed. This has left us with only four reliable tools that were

able to compress all the files within our datasets, which are LFastqC, LFQC, gzip and bzip2.

Among these four tools, LFastqC has the best compression ratio on most of the data except for

four times when it comes second after LFQC and two times when it shares the same result

with LFQC as shown in Table 3. In those cases where LFastqC came after LFQC, we noticed

that LFQC performed better in compressing Quality Score, which is largely due to the fact that

the back-end compressor ZPAQ performs better on highly randomly generated data than the

lpaq8 used in LFastqC. In general, when compressing small to medium sized data, LFastqC

performed well both in speed and compression ratio. LFastqC has a better speed and compres-

sion ratio when compressing LS454, PacBio, and MinION than LFQC, which has the second-

best performance for these types of data. Additionally, LFastqC came second, behind SPRING,

in terms of compression ratio on GAIIx and GAII dataset. Nevertheless, LFastqC fell behind

when compressing SOLiD and SOLEXA due to the color space encoding in SOLiD dataset and

the randomness of the rate of change in correlation between scores in the quality score of

SOLEXA.

LFastqC memory usage is calculated by summing the memory usage of both compressors,

i.e. lpaq8 and MFcompress since they are running in parallel and the result of their summation

is the worst-case scenario. Lpaq8 memory usage is based on argument N, where N can be an

Table 3. Compression ratios for each tool.

Dataset Compression Ratio

LFastqC LFQC SPRING DSRC2 SeqSqueeze1 Quip FQZComp Gzip Bzip2

SRR001471 5.29 5.24 4.58 4.84 5.15 4.47 5.02 3.23 3.93

SRR003177 5.15 5.11 4.46 4.60 4.90 4.45 4.77 3.16 3.81

SRR003186 4.71 4.64 4.17 4.34 4.63 4.17 4.49 2.97 3.59

SRR007215 6.60 7.26 - 6.76 7.07 - - 4.18 5.20

SRR010637 5.30 5.59 - 5.31 5.56 - - 3.48 4.25

SRR013951 3.46 3.48 3.29 3.39 3.46 3.48 3.57 2.40 2.80

SRR027520_1 4.28 4.36 4.14 4.33 4.44 4.48 4.55 2.87 3.41

SRR027520_2 4.25 4.27 4.04 4.24 4.35 4.38 4.45 2.80 3.33

SRR554369 6.12 5.90 6.48 4.32 5.37 4.34 4.94 2.82 3.38

SRR327342 5.90 5.84 6.45 4.74 5.64 5.24 6.08 3.07 3.65

SRR1284073 3.21 3.20 3.10 - - 3.10 - 2.39 2.82

SRR9046049 3.09 3.09 2.98 - - - - 2.74 2.36

SRR8858470 3.11 3.02 2.85 - - - - 2.50 2.32

ERR3307082 2.75 2.70 2.60 - - - - 2.02 2.32

ERR637420 2.88 2.88 2.81 2.85 - - - 2.21 2.59

Table 3: Compression ratio is defined as the ratio of the original file size to the compressed file size. Best performance is indicated in bold.

https://doi.org/10.1371/journal.pone.0224806.t003
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integer from 1 to 9. Larger numbers yield a better compression. LFastqC uses lpaq8 with

N = 9. The memory usage then can be calculated as follows for both compression and decom-

pression.

6þ 3 � 29 ¼ 1542 MB

On the other hand, LFastqC uses MFcompress with option -3 which uses more memory for

better compression. MFcompress with option -3 uses around 2,433 MB for both compression

and decompression. This sums up to 4GB in total for each dataset as the worst-case scenario,

as shown in Table 6.

Table 4. Compression speed.

Dataset Compression Time

LFastqC LFQC SPRING DSRC2 SeqSqueeze1 Quip FQZComp Gzip Bzip2

SRR001471 2m00s 3m19s 0m5 0m12s 1m45s 0m17s 0m11s 0m41s 0m17s

SRR003177 10m13s 18m04s 0m22 0m31s 10m03s 0m39s 1m02s 4m35s 1m35s

SRR003186 7m15s 12m06s 0m16 0m17s 7m29s 0m29s 0m59s 3m41s 1m13s

SRR007215 6m18s 6m00s - 0m11s 2m23s - - 0m46s 1m10s

SRR010637 21m18s 18m05s - 0m41s 8m21s - - 3m30s 3m30s

SRR013951 37m20s 41m04s 0m57s 0m48s 25m30s 1m41s 3m06s 8m53s 5m27s

SRR027520_1 44m37s 68m01s 1m16s 2m03s 33m44s 2m24s 4m34s 11m17s 7m35s

SRR027520_2 46m42s 59m08s 1m23s 0m58s 34m00s 2m22s 4m31s 11m07s 7m37s

SRR554369 5m34s 6m38s 0m15s 0m23s 3m56s 0m11s 0m25s 1m12s 0m32s

SRR327342 41m40s 45m0s 2m17s 0m35s 20m31s 1m14s 2m20s 6m35s 4m33s

SRR1284073 15m11s 21m21s 1m7s - - 0m38s - 3m49s 2m7s

SRR9046049 40m21s 46m52s 2m56s - - - - 4m37s 8m10s

SRR8858470 70m49s 74m47s 3m35s - - - - 7m56s 22m9s

ERR3307082 66m35s 69m23s 3m01 - - - - 9m35s 6m53s

ERR637420 3m44s 4m56s 0m24 0m11s - - - 0m41s 0m26s

https://doi.org/10.1371/journal.pone.0224806.t004

Table 5. Decompression speed.

Dataset

Decompression Speed

LFastqC LFQC SPRING DSRC2 SeqSqueeze1 Quip FQZComp Gzip Bzip2

SRR001471 2m16s 3m20s 0m4 0m10s 1m45s 0m47s 0m13s 0m08s 0m30s

SRR003177 10m43s 14m48s 0m16 0m22s 10m03s 3m40s 1m21s 0m34s 3m00s

SRR003186 7m59s 11m40s 0m13 0m20s 7m29s 2m38s 0m58s 0m43s 2m08s

SRR007215_1 6m08s 7m14s - 0m11s 2m23s - - 0m23s 1m16s

SRR010637 20m59s 23m28s - 0m26s 8m21s - - 1m27s 4m12s

SRR013951_2 35m27s 37m27s 0m54s 0m57s 25m30s 9m39s 3m12s 2m34s 8m28s

SRR027520_1 48m27s 56m12s 1m09s 2m34s 33m44s 15m38s 5m01s 3m51s 13m57s

SRR027520_2 55m49s 56m59s 1m09s 4m01s 34m00s 16m03s 5m24s 4m13s 13m05s

SRR554369_1 5m54s 4m46s 0m5s 0m27s 5m16s 1m24s 0m26s 0m6s 0m48

SRR327342_1 40m30s 44m38s 0m33s 0m42s 32m12s 8m48s 2m49s 1m56s 5m49s

SRR1284073 16m37s 18m44s 0m31s - - 2m18s - 0m19s 2m46s

SRR9046049 35m52s 40m29s 2m45s - - - - 6m18s 1m10s

SRR8858470 62m59s 68m12s 2m36s - - - - 8m50s 2m12s

ERR3307082 56m40s 59m38s 1m30 - - - - 2m13s 9m16s

ERR637420 2m17s 4m3s 0m12 0m14s - - - 0m4s 0m34s

https://doi.org/10.1371/journal.pone.0224806.t005
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Conclusions

We have developed a specialized FASTQ compressor that achieves the best compression ratio

on the LS454, PacBio, and MinION datasets with a faster compression and decompression

speed than LFQC. LFastqC was compared against two general-purpose compressor and six

specialized FASTQ-file compressors. LFastqC outperformed all other tools in eight out of fif-

teen cases while for the other seven cases the winning spot was shared among FQZComp,

LFQC, and SPRING. To sum up, LFastqC was competitive on all datasets due to the elegant

preprocessing method and the strength of the two compressors chosen to compress different

streams, namely lpaq8 and MFCompress. As of now, LFastqC does not support color space

encoding, as well as lpaq8 performance degrades when the quality score stream presents a high

degree of randomness, so the performance of LFastqC fell behind the LFQC in some cases. In

the future, we will add a feature that supports converting the color space encoding into base

space to gain better compression ratios on the SOLiD dataset as well as working on improving

the compression ratio of quality score stream.

Author Contributions

Conceptualization: Sultan Al Yami.

Data curation: Sultan Al Yami.

Formal analysis: Sultan Al Yami.

Investigation: Sultan Al Yami.

Methodology: Sultan Al Yami.

Software: Sultan Al Yami.

Supervision: Chun-Hsi Huang.

Writing – original draft: Sultan Al Yami.

Writing – review & editing: Sultan Al Yami, Chun-Hsi Huang.

Table 6. Memory consumption.

Datasets Size (Mb) Memory Usage

SRR001471 216 4 GB

SRR003177 1196 4 GB

SRR003186 886 4 GB

SRR007215 695 4 GB

SRR010637 2086 4 GB

SRR013951 3190 4 GB

SRR027520_1 4808 4 GB

SRR027520_2 4808 4 GB

SRR554369 384 4 GB

SRR327342 2812 4 GB

SRR1284073 1302 4 GB

SRR9046049 2622 4 GB

SRR8858470 4288 4 GB

ERR3307082 3632 4 GB

ERR637420 264 4 GB

https://doi.org/10.1371/journal.pone.0224806.t006
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