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Background: In a randomized, controlled trial, we showed that high-intensity
rehabilitation, combining resistance training and body-weight interval
training, improves sleep efficiency in Parkinson’s disease (PD). Quantitative
sleep EEG (sleep qEEG) features, including sleep spindles, are altered in aging
and in neurodegenerative disease.
Objective: The objective of this post-hoc analysis was to determine the effects
of exercise, in comparison to a sleep hygiene, no-exercise control group, on
the quantitative characteristics of sleep spindle morphology in PD.
Methods: We conducted an exploratory post-hoc analysis of 24 PD
participants who were randomized to exercise (supervised 3 times/week for
16 weeks) versus 26 PD participants who were assigned to a sleep hygiene,
no-exercise control group. At baseline and post-intervention, all participants
completed memory testing and underwent polysomnography (PSG).
PSG-derived sleep EEG central leads (C3 and C4) were manually inspected,
with rejection of movement and electrical artifacts. Sleep spindle
events were detected based on the following parameters: (1) frequency
filter = 11–16 Hz, (2) event duration = 0.5–3 s, and (3) amplitude threshold
75% percentile. We then calculated spindle morphological features,
including density and amplitude. These characteristics were computed and
averaged over non-rapid eye movement (NREM) sleep stages N2 and N3 for
the full night and separately for the first and second halves of the recording.
Intervention effects on these features were analyzed using general linear
models with group x time interaction. Significant interaction effects were
evaluated for correlations with changes in performance in the memory
domain.
Results: A significant group x time interaction effect was observed for changes
in sleep spindle density due to exercise compared to sleep hygiene control
during N2 and N3 during the first half of the night, with a moderate effect
size. This change in spindle density was positively correlated with changes
in performance on memory testing in the exercise group.
Conclusions: This study is the first to demonstrate that high-intensity exercise
rehabilitation has a potential role in improving sleep spindle density in PD
and leading to better cognitive performance in the memory domain. These
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findings represent a promising advance in the search for non-pharmacological
treatments for this common and debilitating non-motor symptom.
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Introduction

Neurophysiological rhythms in the brain underlie the

fundamental biological process of sleep (1). Sleep spindles

are one such crucial oscillatory rhythm characteristic of

non-rapid eye movement (NREM) sleep (2). This oscillation

encompasses frequencies ranging from 11 to 16 Hz and

originates in the thalamo-cortical loop (3). Sleep spindles are

essential for declarative memory and sleep-related memory

consolidation (3).

Although Parkinson’s disease (PD) has historically been

viewed primarily as a neurodegenerative motor disorder, we

now have a clearer picture of non-motor manifestations of the

disease (4–6). In fact, sleep disorders are frequently seen among

individuals with PD and affect 74%–98% of patients (7, 8).

Unfortunately, despite the profound impact of sleep dysfunction

on PD, few pharmacological therapies have been shown to

improve these symptoms, and the available treatments can have

adverse side effects (9). In the absence of a biomarker, it has

been difficult to find a treatment for cognitive dysfunction.

However, a recent study by Latreille and colleagues found that

sleep spindles are associated with the risk of cognitive decline in

PD (10). Indeed, at the physiological level, spindles play an

important role in the consolidation of memory (11).

The benefits of exercise on non-motor symptoms of PD are

widely recognized (12, 13) as an exciting paradigm for

nonpharmacological treatment. Indeed, a recent meta-analysis

showed that exercise provided significant improvements in

subjective sleep quality (14). Furthermore, our previous work

and the only study in the literature to evaluate the effects of

exercise on objective sleep outcomes showed an increase in

sleep efficiency as measured by polysomnography (PSG) (15).

However, to the best of our knowledge, no study has

examined the effects of exercise on quantitative sleep EEG

(qEEG) in PD (16).

With this objective in mind, this post hoc analysis leverages

data collected in our recent clinical trial investigating the

influence of exercise on objective sleep outcomes in PD (15)

to address whether exercise also affects the microarchitecture

of sleep spindles. This is a critical area of study due to

the importance of spindles for memory consolidation, the

high prevalence of both sleep and cognitive dysfunction in

PD, and the limited treatment options available for these

non-motor symptoms. We therefore sought to examine the

effects of exercise on sleep spindle density and amplitude in a
02
comprehensive manner. We hypothesized that exercise would

increase spindle density and amplitude compared to a no-

exercise control group and that changes in sleep spindles due

to exercise would correlate with exercise-induced changes in

memory performance.
Methods

Participants

This study represents a post hoc analysis performed

on polysomnography-acquired EEG collected during a

randomized controlled trial (clinicaltrials.gov: NCT02593955).

The primary objective of the parent trial was to investigate

the impact of high-intensity exercise rehabilitation (EX),

compared to a sleep hygiene no-exercise control (SH-C), on

objective sleep outcomes in Parkinson’s disease (15). The

CONSORT flow diagram [Figure 1, adapted from (15)] shows

the enrollment, group allocation, and follow-up of participants

in the parent study. The analysis for the current study

excluded five additional participants (N = 3 EX and N = 2

SH-C) because the sleep study file either at baseline or post-

intervention were not usable for the qEEG analysis. Therefore,

50 participants (N = 24 EX and N = 26 SH-C) were included

in the current analysis. Participants in this study were

recruited from the Movement Disorders Center at the

University of Alabama at Birmingham (UAB). Detailed

eligibility criteria are previously reported (15); briefly,

inclusion required: (1) diagnosis of PD based on the

Movement Disorders Society’s clinical criteria (17), (2) age

>45 years, (3) on stable medications for at least four weeks

prior to study entry, (4) Hoehn and Yahr stages 2–3, and (5)

Montreal Cognitive Assessment (MoCA) ≥18. Exclusion

criteria were: (1) atypical or secondary parkinsonism, (2)

untreated sleep apnea, (3) inability to walk without a cane, (4)

deep brain stimulator, or (5) meeting or exceeding the U.S.

Health and Human Services physical activity guidelines

(≥150 min/ week of moderate-intensity aerobic activity or

75 min/week of vigorous-intensity activity and muscle

strengthening activities involving all muscle groups 2 or more

days/week). Subjective sleep quality was not one of the entry

criteria. The Institutional Review Board of UAB approved the

study. Prior to participation, all participants signed a written

informed consent.
frontiersin.org

clinicaltrials.gov
https://doi.org/10.3389/fresc.2022.952289
https://www.frontiersin.org/journals/rehabilitation-sciences
https://www.frontiersin.org/


FIGURE 1

Consort flow diagram.
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Intervention

Exercise group
Participants randomized to the EX group trained three

times per week for 16 weeks at the UAB Center for Exercise

Medicine under the supervision of experienced trainers

certified by the American College of Sports Medicine. Sessions

included resistance training (RT) and bodyweight functional

mobility exercises to improve endurance, strength, power,

and balance (15, 18), as previously described. Participants

completed all sessions before 2 PM at the time they felt their

PD medications were most effective. The intervention

protocol was adapted from our previous dose-response

optimization study in older adults (19, 20). In brief, the first
Frontiers in Rehabilitation Sciences 03
four sessions consisted of a familiarization phase followed by

a ramp-up phase, during which resistance training volume

and intensity increased. Following ramp-up, RT intensity

targeted 10-repetition maximum (10RM) in sessions 1 and 3

each week, while session 2 reduced resistance loads by 30%

and maximized speed of movement during the concentric

phase. The RT sessions included strength-building exercises

(leg press, knee extension, chest press, overhead press, pull

down); trunk exercises to improve postural stability (trunk

extension/flexion); and body-weight exercises to improve

balance and power (step-up, squat, jump squat, lunge, side

lunge, push-up, assisted pull-up, assisted dip). In this manner,

different muscle groups were targeted by alternating RT and

bodyweight exercises. Heart rate (HR) was recorded with a
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Polar HR monitor throughout the sessions to determine short

rest intervals between sets. Adherence was emphasized and

the mean adherence to exercise was 92.2 ± 12.5% of sessions.

Sleep hygiene group
Participants randomized to the SH-C group received sleep

hygiene counseling from a board-certified sleep medicine

physician (AWA). During the counseling session, participants

were given the opportunity to discuss their specific sleep

complaints and were provided recommendations for

improving sleep hygiene. Additionally, participants received

written materials describing strategies for sleep relaxation and

ways to improve insomnia. To enhance study engagement,

SH-C participants were contacted every 4 weeks by telephone

to address any questions related to sleep hygiene.
Assessments

Polysomnography
Laboratory-based, supervised polysomnography (PSG)

was performed at baseline and following the 16-week

intervention. PSG was recorded with a 32-channel Natus

Sandman Elite™ (Middleton, WI, USA), and included EEG,

electrooculogram, submental and bilateral anterior tibial and

extensor digitorum communis electromyograms, chest and

abdominal polyvinylidene fluoride belts, airflow monitoring

with thermocouple and nasal pressure, pulse oximetry and

video. The EEG signals were digitized at a sampling rate of

512 Hz. EEG included frontal (F3, F4), central (C3, C4), and

occipital (O1, O2) leads, all referenced to the contralateral

mastoid. A certified sleep technician and a board-certified

sleep physician (AWA) staged sleep in 30-second epochs

according to the American Academy of Sleep Medicine’s

(AASM’s) Manual for the Scoring of Sleep and Associated

Events (21). Additionally, REM without atonia was scored

according to the AASM scoring criteria (21). PSGs were

labeled with a study code to allow blinding of group

allocation during PSG interpretation.

Additional assessments
Participants were assessed for disease severity using the

Movement Disorders Society-Unified Parkinson’s Disease Rating

Scale (MDS-UPDRS) (17). In addition, cognitive performance

was evaluated in the memory domain. The tests in the memory

domain included: (1) Hopkins Verbal Learning Test-Revised

(HVLT-R) total recall and delayed recall; and (2) 10–36 Spatial

Recall Test (10–36) immediate recall and delayed recall. Using

the raw scores for the HVLT-R and 10–36, a normalized (z-)

score was calculated based on normative values, controlling for

age, race, and years of education, as appropriate for each test.

Lastly, the individual test z-scores were averaged for each

participant to determine the memory domain score.
Frontiers in Rehabilitation Sciences 04
Quantitative sleep spindle
morphological analysis

Preprocessing involved converting sleep EEG data into

European Data Format (EDF); importing EDF into MATLAB

(version R2020b); and inspecting each 30-s epoch for artifacts.

The EEG evaluator (AAM) was blinded to the participant’s

group allocation. Because sleep spindle activity tends to be

predominantly found in central leads during non-rapid eye

movement sleep (NREM) (3), sleep spindle activity was

analyzed in central leads and averaged over NREM stage 2

(N2) and stage 3 (N3). We visually examined the C3 channel

for the entire PSG recording and detected electrical and

movement artifacts. Whenever the C3 lead had continuous

artifacts, C4 channels were used. Total artifact rejections pre-

intervention included 3.9% of N2 and 1.0% of N3 for the EX

group and 2.6% of N2 and 0.7% of N3 for the SH-C group.

Post-intervention included: 2.8% of N2 and 0.8% of N3 for the

EX group and 3.5% of N2 and 0.8% of N3 for the SH-C group.

A custom-made MATLAB script was used to detect sleep

spindle events in the postprocessing step (3, 22). The

following parameters were applied to the most artifact-free

central channel: (1) frequency filter = 11–16 Hz, (2)

amplitude threshold = 75th % percentile, (3) duration = 0.5–

3 s. After that, the following sleep spindle characteristics

were calculated and averaged over all N2 and N3 epochs of

the whole night of PSG: (1) density (events/minute); and (2)

amplitude (peak to peak, expressed in µV). In addition, we

examined the spindle’s characteristics over the first and

second halves of the night because sleep spindle density has

been shown to change over the course of the night in

relation to elapsed sleep time (23).
Statistical analysis

Statistical analysis was conducted using JMP Statistical

Discovery Pro version 16.0. In the descriptive statistics,

the Shapiro-Wilk test was used to identify the normality

of all variables. We compared the demographic and

polysomnographic characteristics between the EX and SH-C

groups using Fischer’s exact test for categorical variables and

the independent sample two-tailed t-test for continuous

variables. The main statistical methods for analyzing the

intervention effects were general linear models with group x

time interaction. Effect size was evaluated with Cohen’s d. The

significance level was set at p < 0.05. Due to the exploratory

nature of our study, we did not correct for multiple

comparisons and opted to tolerate possible Type I error rather

than reject potential associations due to correction-induced

Type II errors.
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Results

Demographics, clinical and
polysomnographic characteristics

In Table 1, the demographics and disease characteristics are

summarized. There were no significant differences between the

groups regarding age, sex, race, use of medications that impact

sleep, disease duration, levodopa equivalent dose, or MDS

UPDRS Parts I, II, III, or IV. In addition, there were no

significant differences in baseline sleep architecture for the full

night, first half, or second half of the night between the EX

and the SH-C groups including sleep efficiency, total sleep

time, sleep latency, wake after sleep onset, time and percent of

each sleep stage, number of participants with REM sleep
TABLE 1 Demographics and clinical characteristics.

Characteristics Exercise group

N 24

Age (years)

Mean ± SD 65.7 ± 8.3

Range 45–78

Sex: N (%)

Male 14 (58.3)

Female 10 (41.7)

Race: N (%)

Caucasian 22 (91.7)

African American 2 (8.3)

Medications that affect sleepa: N (%) 8 (33.3)

Duration of Disease (DOD) (years)

Median (IQR) 6.0 (2.3–8.0)

Levodopa Equivalent Dose (LED)

Median (IQR) 620.0 (410.0–843.8)

MDS-UPDRS

Part I

Median (IQR) 7.0 (4.3–10.5)

Part II

Mean ± SD 10.8 ± 5.5

Range 0–24

Part III

Mean + SD 34.1 ± 12.9

Range 10–70

Part IV

Median (IQR) 3.0 (0.3–5.0)

Total

Mean + SD 56.5 ± 18.2

Range 30–105

Mean ± SD reported for normally distributed data. Median (IQR) reported for non-

Parkinson’s Disease Rating Scale.
aMedications that affect sleep include benzodiazepines; non-benzodiazepine sedativ

(gabapentin/pregabalin; melatonin; trazodone; oxybutynin; barbiturates.
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behavior disorder, apnea hypopnea index, or periodic limb

movement index (all p > 0.05) (data not shown).
NREM quantitative sleep spindle analysis

There were no significant differences between changes in

sleep spindle density or amplitude from baseline to post-

intervention between the groups when evaluated for the

entire night (Figures 2A, 3A). However, when analyzed

separately for the first and second halves of the night, there

was a significant decrease in spindle density in the SH-C

group (F = 6.40, p = 0.0181) in the first half of the night

and exercise attenuated this decrease in spindle density
Sleep hygiene group t/z/x2 p-value

26

66.2 ± 5.1 0.28 0.78

54–77

19 (73.1) 1.21 0.27

7 (26.9)

25 (96.2) 0.45 0.5

1 (3.9)

7 (28.0) 0.164 0.69

3.5 (1.0–8.0) 1 0.31

545.0 (285.0–823.8) 0.58 0.56

9.0 (6.0–13.0) −1 0.11

9.5 ± 5.2 −0.85 0.4

1–23

29.0 ± 15.2 −1.28 0.21

4–65

3.0 (0.0–6.0) 0.18 0.86

51.6 ± 20.9 −0.88 0.38

17–97

normally distributed data. MDS-UPDRS: Movement Disorders Society-Unified

e hypnotics; narcotics; anti-psychotics; alpha-2 delta calcium channel ligands
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FIGURE 2

Exercise prevented the decrease in spindle density experienced during the first half of sleep by the sleep hygiene group (B). No significant changes in
spindle density for the full night (A) and the second half of the sleep (C). In all panels, the figures are scatter plots, and error bars represent the mean
and standard error of mean. ns: not significant.

FIGURE 3

Spindle amplitude was not different between the two groups throughout the night (A), the first half of the sleep (B), or the second half of the sleep (C).
In all panels, the figures are scatter plots, and error bars represent the mean and standard error of mean. ns: not significant.
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experienced by the SH-C group (i.e., a significant group x

time interaction; F = 4.19, p = 0.046; d = 0.58) (Figure 2B).

No significant differences were observed in spindle

density or amplitude for the second half of the night

(Figures 2C, 3C).
Memory performance and
spindle analysis

Next, we evaluated whether the beneficial effects of

exercise in preventing decrease in spindle density were
Frontiers in Rehabilitation Sciences 06
associated with better memory performance. The change

in sleep spindle density in the EX-group was correlated

with the change in the memory domain due to exercise

(r = 0.42, p = 0.0413). A detailed analysis revealed that this

effect was primarily driven by changes during the first

half of the night (Figure 4). There was no significant

correlation between the change in sleep density score

in the SH-C group and the change in the memory

domain. There was no significant correlation between

the change scores in spindle amplitude and the change

scores in the memory domain for either group (data

not shown).
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FIGURE 4

Exercise-induced changes in spindle density during the first half of the night are significantly correlated with changes in the memory domain scores (A).
No significant correlations were found in the sleep hygiene group (B).
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Discussion

In this post hoc analysis of polysomnography-derived EEG

from a randomized controlled clinical trial, exercise

rehabilitation counteracted the decline in spindle density

during NREM in the first half of the night when compared

with a no-exercise control group with a moderate effect size

(d = 0.58). In addition, exercise-induced changes in spindle

density were positively correlated with better cognitive

performance in the memory domain. Although this
Frontiers in Rehabilitation Sciences 07
investigation is exploratory, the findings inform directions for

future larger studies with investigation of exercise-induced

changes in sleep spindles as the primary outcome. Because

available pharmacological treatments for sleep and cognitive

dysfunction are ineffective or have intolerable side effects

(24), the current study represents a potential step towards

identifying mechanisms of nonpharmacological interventions

on sleep and cognition in PD.

Exercise has been shown to significantly improve subjective

sleep quality in people with PD (14). The only study in the
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literature that evaluated the effects of exercise on objective sleep

outcomes demonstrated an increase in sleep efficiency as

measured by PSG (15). However, there was no change in the

amount of N2 sleep. We posited that one possible reason for

the lack of exercise-induced changes in stage N2 might be the

semi-quantitative nature of the sleep-stage scoring system. In

fact, for more than 50 years, since 1968, sleep has been

evaluated by applying standardized scoring criteria to

electroencephalograms and electromyography recordings

developed by Rechtshanffen and Kales (25) and later modified

by the American Academy of Sleep Medicine. The limitation

of qualitative sleep staging is that stage N2 is scored only if

one or more trains of K-complexes or sleep spindles can be

observed during a 30-second epoch. Moreover, qualitative

staging does not quantify the number of spindles, which have

been shown to correlate with markers of cognitive

performance (23). As PD involves the thalamocortical circuits

in which spindles are generated (3), and spindle density

predicts the development of PD dementia (10), we

investigated the effects of exercise on spindle density. We

found that exercise significantly prevented the decrease in

spindle density experienced by the SH-C group during the

first half of sleep. The rationale behind evaluating NREM

separately during the first and second halves of the night is

that physiologically, NREM sleep dominates during the first

half of the night, whereas REM sleep dominates during the

latter half (26). In addition, the first half of the night appears

to have a differential effect on spindle activity, based on

previous studies. For example, in a study by Dang-vu and

colleagues, predictive relationships between spindle density

and stress were only observed during the early stages of

NREM sleep (27). Furthermore, Lopez and colleagues found

that teenagers who were depressed had lower spindle density

during the third and fourth stages of their NREM sleep cycle

than those who were not depressed (28). It may be possible

that in PD the beneficial effects of exercise are modulating

NREM during the first half of the night. Also, the reason for

the decrease in spindle density in the no-exercise group could

represent natural progression of disease or may be related to

other causes. However, the expected longitudinal change in

spindle density is not well established in PD, so will need

additional study. To our knowledge, no prior study has

investigated the effects of exercise on sleep qEEG in

neurodegenerative disease (16).

There are many proposed mechanisms to explain ways in

which exercise may affect sleep, including exercise-induced

decreases in inflammation, changes in core body temperature,

changes in neurotransmitters that affect sleep, alterations in

growth hormone or brain-derived neurotrophic factor

(BDNF), changes in heart rate variability, and changes in

autonomic function (29–32). In the parent clinical trial, sleep

efficiency was improved in the exercise group, which may

have resulted in part from increased spindle density since
Frontiers in Rehabilitation Sciences 08
spindles play a crucial role in maintaining and sustaining

sleep (2, 3). The mechanism underlying the exercise-induced

alterations in sleep spindles cannot be determined from the

current study but should be explored in future studies.

The contribution of sleep spindles to cognitive function is well

established in physiological aging, mild cognitive impairment and

neurodegenerative diseases (10, 33–36). Furthermore, a

longitudinal study by Latreille and colleagues has demonstrated

that baseline spindle density is also predictive of the

development of dementia in patients with PD (10). Therefore,

we evaluated the relationship between exercise-induced changes

in spindles and changes in cognition. Change scores in spindle

density were positively correlated with improved performance in

the memory domain in the exercise group but not in the sleep

hygiene group. Even though these findings are exploratory,

given the prevalence of cognitive decline in PD, and the limited

available treatment options, this is an exciting new development

that should be further examined in future research.

Sleep spindle amplitude represents synaptic strength and

synchronization of excitatory postsynaptic potentials and prior

work has shown that PD patients have reduced spindle

amplitude compared to controls (10). In this cohort, exercise

did not significantly change sleep spindle amplitude.

Therefore, it is not surprising that neither EX or SH-C

showed correlations between changes in spindle amplitude

and memory performance. It is necessary to conduct

additional studies to confirm these findings; however, it may

be that exercise-induced changes are more sensitive to spindle

density than to amplitude.

There are several strengths to this study, including the

utilization of polysomnography-derived EEG collected during

a randomized, controlled clinical trial and the use of

automated qEEG analysis methods. There are also several

important limitations, including the post hoc, exploratory

nature of the analysis. Additionally, there was no correction

for multiple comparisons because one purpose of this analysis

was to generate hypotheses for future research. However, it is

important to be aware of this when interpreting the findings.

In conclusion, to our knowledge, the present study is the first

to examine the effects of exercise on quantitative sleep spindle

morphology in PD. Exercise rehabilitation may have potential

benefits in preventing a decline in spindle density during the

first half of the night compared to a no-exercise control group.

Further, the effects of exercise on spindle density were

positively correlated with better memory performance. Due to

the exploratory nature of this study, future studies should

examine the potential beneficial role of rehabilitation-induced

changes in spindle density and cognition, given the high

prevalence of this nonmotor manifestation and the limited

treatment options available. These findings have important

therapeutic implications and represent an exciting advance in

the search for non-pharmacological treatments for this

common and debilitating non-motor symptom.
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