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Recently, bioinformatics and computational biology-enabled applications such as gene expression analysis, cellular restoration,
medical image processing, protein structure examination, and medical data classification utilize fuzzy systems in offering effective
solutions and decisions. 'e latest developments of fuzzy systems with artificial intelligence techniques enable to design the
effective microarray gene expression classificationmodels. In this aspect, this study introduces a novel feature subset selection with
optimal adaptive neuro-fuzzy inference system (FSS-OANFIS) for gene expression classification. 'e major aim of the FSS-
OANFISmodel is to detect and classify the gene expression data. To accomplish this, the FSS-OANFISmodel designs an improved
grey wolf optimizer-based feature selection (IGWO-FS) model to derive an optimal subset of features. Besides, the OANFISmodel
is employed for gene classification and the parameter tuning of the ANFIS model is adjusted by the use of coyote optimization
algorithm (COA). 'e application of IGWO-FS and COA techniques helps in accomplishing enhanced microarray gene ex-
pression classification outcomes. 'e experimental validation of the FSS-OANFIS model has been performed using Leukemia,
Prostate, DLBCL Stanford, and Colon Cancer datasets. 'e proposed FSS-OANFIS model has resulted in a maximum classi-
fication accuracy of 89.47%.

1. Introduction

Microarray is an advanced technology that helps to
recognize the pattern of gene expression of various genes
at a time at the genomic level. It supports the researcher
to investigate and analyze millions of genes in a single
experiment [1]. It identifies many present diseases con-
nected to each individual gene such as anaemia and

cancer. Analysis of Gene Expression provides a method to
recognize the gene that is differentially expressed [2],
which is accountable to develop some diseases. Also, it
shows the difference between normal and abnormal genes
through a mathematical model [3, 4]. Many openly ac-
cessible datasets such as Array Express and Gene Ex-
pression Omnibus (GEO) make the task easier to identify
gene patterns of rare diseases. Classification of gene
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expression data splits cancer samples from healthy
samples that are utilized in response to treatment pre-
diction. Due to the smaller amount of samples with a
larger amount of features in the gene expression infor-
mation, the standard ML method disappoints to imple-
ment better for cancer classification [5].

Recently, there has been tremendous growth in the
medical field around the world. 'ere are several com-
putational approaches utilized in the bioinformatics field
in the last few decades, for example, data mining and
pattern recognition, to deal with higher-dimensional
problems but still unsuccessful [6]. 'us, recently, ma-
chine learning (ML), a branch of artificial intelligence, has
received considerable attention from researchers in gene
expression and genomics [7]. Also, ML is a branch of data
science; the main goal is to allow a model for training and
learning to make decisions by itself in the future. Machine
learning is widely classified into semisupervised, semi-
unsupervised, supervised, and unsupervised learning [8].
For microarray data classification, the ML-based feature
selection (FS) techniques such as gene selection techniques
assist in selecting the essential gene [9]. Feature selection
assists to preserve useful attributes. It is mainly utilized for
the higher-dimensional data; simply, FS is a dimension-
ality reduction method. Feature selection significantly
assists in the field that has relatively scarce and samples too
many features, e.g., DNAMicroarray and RNA sequencing
[10]. 'is approach assists in better understanding of the
feature space, preventing the scare of model overfitting,
maximizing the model training time, handling the di-
mension, and maximizing the prediction accuracy. 'e
results of FS are the optimum amount of features that are
related to the provided class label that contributed to the
prediction process.

'is study introduces a novel feature subset selection with
optimal adaptive neuro-fuzzy inference system (FSS-OAN-
FIS) for gene expression classification. 'e FSS-OANFIS
model designs an improved grey wolf optimizer-based feature
selection (IGWO-FS) model to derive an optimal subset of
features. Besides, the OANFIS model is employed for gene
classification and the parameter tuning of the ANFIS model is
adjusted by the use of coyote optimization algorithm (COA).
'e application of IGWO-FS and COA techniques helps in
accomplishing enhanced microarray gene expression classi-
fication outcomes. For examining the enhanced outcomes of
the FSS-OANFIS model, a comprehensive simulation analysis
was performed on distinct datasets.

2. Related Works

In reference [11], a two-phase approach named as ML-
integrated ensemble of feature selection (FS) technique is
used, and then a survival study was presented. In a
primary stage, it can be chosen the optimum amongst 7
ML approaches dependent upon classifier accuracy,
utilizing the whole group of features (under this case
miRNAs). In the secondary stage, dependent upon
classifier accuracy values, the top feature in all the FS
approaches is assumed for making an ensemble to offer

more categorization of miRNAs. Ayyad et al. [12] pre-
sented a novel classifier approach to gene expression data.
Both executions are assumed that improve the perfor-
mance of KNN. An important idea is for utilizing robust
neighbors in trained data with utilizing a novel weighting
approach. 'e authors in reference [13] presented a re-
cently developed classification named Forest DNN
(fDNN) for integrating the DNN structure with a su-
pervised forest feature detector. Utilizing this built-in
feature detector, this technique is capable of learning
sparse feature representation and feeding the represen-
tation to NN for mitigating the overfitting problem.
Dwivedi [14] developed a structure of approaches de-
pendent upon supervised ML with utilizing the ANN
approach for gene classification.

Shukla [15] established a novel gene selection (GS)
approach by integrating minimum redundancy maximum
relevance (mRMR) and teaching learning-based optimiza-
tion (TLBO) for accurate cancer prediction. Primarily,
during the presented method, mRMR was executed for
determining one of the discriminative genes in the original
feature set. In SVM, mRMR was utilized as a fitness function
(FF) under the presented technique for selecting relevant
features that are used for estimating the prediction accuracy
and classifying cancer correctly. In reference [16], a novel
social network analysis-based GSmethod was presented.'e
presented approach contains 2 important objectives: rele-
vance maximization and redundancy minimization of
chosen genes. During this approach, on all iterations, a
maximal community was chosen repetitively. Next amongst
the present genes under this community, the suitable genes
were chosen by utilizing the node centrality-based
condition.

In reference [17], an ensemble DL approach was
presented for reducing the dimensional features. Pri-
marily, the reduction of dimensional with utilize of auto-
encoder (AE) by utilizing several hidden layers have
occurred and under the next step, a folded AE is also
utilized for reducing the dimensional of identical original
data. Eventually, both are combined and top feature is
chosen on the fundamental of T-score value. Forestiero
et al. [18] presented a multiagent technique to create a
distributing approach to DNA microarray management.
'e group of agents, whereas all one signifying a
Microarray (or chip), implement from the parallel a se-
quence of easy functions exploiting local data and orga-
nized virtual infrastructure was created at a global level.
'e word embedded method, capable of capturing the
semantic context and signifying microarray with vector,
was utilized for mapping the chip, thus permitting ad-
vanced agent functions.

3. The Proposed Model

In this study, a new FSS-OANFIS model has been de-
veloped for microarray gene expression data classifica-
tion. 'e presented FSS-OANFIS model encompasses a
series of processes, namely, data preprocessing, IGWO-
FS-based election of features, ANFIS classification, and
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COA-based parameter optimization. 'e application of
IGWO-FS and COA techniques helps in accomplishing
enhanced microarray gene expression classification
outcomes. Figure 1 shows the overall process of FSS-
OANFIS technique.

3.1. Preprocessing. 'e z-score is a normalized and stan-
dardized system, which describes the count of standard
deviation (SD), a raw data point, which is below or above
the population mean [18]. It ideally lies in the range of −3
and +3. It standardizes the dataset to the aforementioned
scale to change data with distinct scales to default scale.
'us, reflecting that several SD a point is below/above the
mean as follows, but x refers to the value of particular
instance, μ signifies the mean, and σ depicts the SD:

Z − score �
(x − μ)

σ
. (1)

3.2. Steps Involved in IGWO-FS Technique. Once the input
data is preprocessed, the next stage is to choose an op-
timal subset of features. 'e GWO algorithm is naturally
inspired by the behavior and social leadership of the grey
wolves [19]. 'e population of wolves can be classified
into alpha, beta, delta, and omega for establishing the
social hierarchy of wolves. 'e fittest solution is called
alpha (α), whereas beta (δ) and delta (δ) represent the
2nd and 3rd most efficient options, respectively. Omega
(ω) represents semblance of a hopeful solution. 'e ar-
ithmetical expression of readapting position 0 is shown as
follows:

D
→

α � C
→

1 · X
→

a − X
→􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

D
→

β � C
→

2 · X
→

β − X
→􏼌􏼌􏼌􏼌􏼌
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δ � C
→

3 · X
→

δ − X
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(2)
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(3)

where X
→

a denotes the location of the alpha, X
→

β represent the
location of the beta, X

→
δ indicates the location of the delta,

and C
→

1, C
→

2, and C
→

3 and A
→

1, A
→

2, and A
→

3 signifies random
vector, that is, the location of the existing solution, and
shows the amount of iterations. It can be expressed in the
following equation:

T
→

(u + 1) � T
→

p(u) + B
→

· E
→

, (4)

where E
→

is represented in equation (3), u indicates the it-
eration number, B

→
, D
→

denote the vector coefficient, and Tp

�→

and T
→

represent the praise and grey wolf locations. 'e
B
→

, D
→

vectors are calculated in the following equation:

E
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,
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(5)

s1 and s2 denote vectors with arbitrary numbers within
[0, 1] and b

→
parameter is linearly reduced from 2 to 0 all
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Figure 1: Overall process of FSS-OANFIS technique.
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over the iteration. Usually, the alpha is responsible for the
chase. To change the position with the optimal searching
agent position, the first three optimal solutions attained up
until now compel another searching agent. 'en, the wolves
position can be upgraded as follows:

E
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'e variable b governs the balance between exploration
and exploitation. Here, the variable b

→
can be updated

linearly in all the iterations, which ranges from 2 to 0, with u

being the iteration number and mi be the overall iterations
allowed for the optimization:

b
→

� 2 − u ·
2

mi

. (7)

'e wolf’s location reflects attribute set selection and the
solution space can be made by each probable attribute se-
lection. 'e fitness function of the IGWO-FS technique can
be utilized for determining whether an attribute subset
would be selected or not:

Fitness � ∝∗cS(E) + β∗
|D − S|

|D|
. (8)

|S| represents the selected attribute length subset and
cS(E) denotes the classification quality of attribute set S in
relation to decision E. 'e overall amount of quality in-
dicates the letter |D| ∝∈ 0, 1 and β � 1 − ∝ , are two
respective values for the attribute subset length and
classification quality, repectively. Both have dissimilar
implications for the attribute reduction task. 'e set ∝ �

0.9, β � 0.1 and attribute subset length are less important
when compared to the quality classification. 'e higher
ensure that the ideal location is a rough set reduction as a
minimum. 'e fitness function evaluates the quality of
location. After defining the fitness level, important feature
is taken as well as removing the unwanted feature.

'e performance of the GWO algorithm can be im-
proved by the design of IGWO algorithm with the inclusion
of adaptive β-hill climbing (AβHC). It is a recently presented
local search-based technique, that is, basically, a modified
version of β-hill climbing (βHC) [20]. 'e study has
established that AβHC gives optimum performance than
several other famous local search techniques. For boosting
the techniques exploitation capability and the quality of last
solutions, AβHC has been combined with the fundamental
GTO for support searching the neighborhoods of optimum
solution under this study. 'e explanation of AβHC has
been demonstrated mathematically as follows:

In order to provide an existing solution
Xi � (xi,1, xi,2, . . . , xi,D), AβHC is iteratively created an
improved solution Xi

″ � (xi,1″ , xi,2″ , . . . , xi,D
″ ) on the

fundamental of 2 control operators: N− operator and
β-operator. 'e N-operator primarily transfers Xi to a novel
neighborhood solution.

Xi
′ � (xi,1′ , xi,2′ , . . . , xi,D

′ ) that is demonstrated in equa-
tions (9) and (10) as follows:

xij
′ � xij ± U(0, 1) × N, j � 1, 2, . . . , D, (9)

N(t) � 1 −
t
1/K

Maxiter1/K
, (10)

where U(O, 1) refers the arbitrary number between the
interval of 0 and 1 , xij represents the value of decision
variable from the jth dimensional, t stands for the existing
iteration, Maxiter denotes the maximal count of itera-
tions, N signifies the bandwidth distance amongst the
existing solution and their neighbor, D refers to the spatial
dimensionality, and the parameter K is a constant.

3.3. Optimal ANFIS-Based Classification. At the final stage,
the OANFIS model has been employed for the detection
and classification of gene expression data into multiple
classes. A network with 2 inputs, x and y and one output, f
is considered. 'e ANFIS is a fuzzy Sugeno method. For
presenting the ANFIS structure, 2 fuzzy if-then rules
dependent upon a first-order Sugeno method are assumed
as follows [21]:

(i) Rule 1: ifx is A1 and y is B1, then
f1 � p1x + q1y + r1

(ii) Rule 2: if x is A2 and y is B2, then
f2 � p2x + q2y + r2

Where x and y are inputs, A1 and Bi imply fuzzy sets, fi

is the output of fuzzy system, and pi, qi, and ri represent the
design parameters that are defined in the training procedure.
'e ANFIS structure for implementing these 2 rules,
whereas a circle represents the set node and a square refers
the adaptive node. 'e ANFIS infrastructure has 5 layers.
Figure 2 showss the framework of ANFIS.

Layer 1. All nodes from layer1 are adaptation nodes. 'e
resultant of layer 1 is are fuzzy membership grade of the
inputs that are provided as follows:

O
1
i � μA(x)i � 1, 2,

O
1
i � μBi−2

(x)i � 3, 4,
(11)

where x and y refer the inputs to node i, A refers the lin-
guistic label, and ∝ Ai

(x) and μBi−2
(x) are some fuzzy

membership functions. Generally, ∝ Ai
(x) is chosen as

μAi
�

1

1 + x − ci( 􏼁/ai􏼂 􏼃
2

􏽮 􏽯
bi

, (12)

where ai, bi, and ci are the parameters of membership bell-
shaped function.
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Table 1: Dataset details.

Dataset Leukemia Prostate DLBCL Stanford Colon Cancer
No. of genes 7129 12600 4026 2000
Class 0 27 52 24 40
Class 1 11 50 23 22
Total no. of samples 38 102 47 62
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Figure 3: Confusion matrix of FSS-OANFIS technique under four datasets.
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Layer 2. 'e node of this layer is labeled M, signifying that it
can be implemented as an easy multiplier 'e resultant of
this layer is demonstrated as follows:

O
2
i � wi � μAi

(x)μBi
(y)i � 1, 2. (13)

Layer 3. It comprises set nodes which compute the ratio of
firing strength of the rules as follows:

O
3
i � wi �

wi

w1 + w2
i � 1, 2. (14)

Layer 4. During this layer, the adaptive node is used. 'e
resultants of this layer are calculated by the following
equation:

O
4
i � wifi � wi pix + qiy + ri( 􏼁i � 1, 2. (15)

wi signifies the normalized firing strength in layer 3.

Table 2: Result analysis of FSS-OANFIS technique with different
measures and datasets.

Class labels Accuracy Recall Specificity F-score G-measure
Leukemia dataset
Class 0 83.33 100.00 50.00 88.89 89.44
Class 1 83.33 50.00 100.00 66.67 70.71
Average 83.33 75.00 75.00 77.78 80.08
Prostate dataset
Class 0 80.65 100.00 60.00 84.21 85.28
Class 1 80.65 60.00 100.00 75.00 77.46
Average 80.65 80.00 80.00 79.61 81.37
Stanford dataset
Class 0 73.33 33.33 100.00 50.00 57.74
Class 1 73.33 100.00 33.33 81.82 83.21
Average 73.33 66.67 66.67 65.91 70.47
Colon dataset
Class 0 89.47 92.31 83.33 92.31 92.31
Class 1 89.47 83.33 92.31 83.33 83.33
Average 89.47 87.82 87.82 87.82 87.82
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Figure 4: Precision-recall analysis of FSS-OANFIS technique
under the Leukemia dataset.
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Figure 8: ROC analysis of FSS-OANFIS technique under different datasets.
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Figure 9: Accuracy and loss analysis of FSS-OANFIS technique under various datasets.
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Layer 5. 'e node executes the summation of every in-
coming signal. 'erefore, an entire result of the model is
provided as follows:

O
5
i � 􏽘

i

wifi �
􏽐iwifi

􏽐iwi

. (16)

It could be realized that there are 2 adaptive layers
under this ANFIS structure such as the 1st layer and 4th
layer. During the 1st layer, there are 3 modifiable pa-
rameters a, bici􏼈 􏼉 that are connected to the input mem-
bership function. 'ese parameters are usually named as
premise parameters. During the 4th layer, there are also 3
modifiable parameters piqiri􏼈 􏼉 relating to the first-order
polynomial. 'is parameter is supposed the consequent
parameter.

For tuning the ANFIS parameters, the COA is applied to
it. 'e COA is a mathematical model that depends on smart
diversity [22]. Chasing, driving, attacking, and blocking are
archived by four distinct kinds of chimps that are attained by
chasers, drivers, attackers, and obstacles.'ese hunting steps
are accomplished in two phases such as exploration and
exploitation stages. 'e exploration phase involves chasing,
driving, and blocking the prey. 'e exploitation phase
should attack the prey, and the chasing and driving are
characterized as follows:

d � c · xprey(t) − m · xchimp(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

xchimp(t + 1) � xprey(t) − a · d,
(17)

where Xprey denotes the vector of prey location, xchimp in-
dicates the vector of chimp location, t denotes the amount of

present iterations, a, c, and m represent coefficient vectors
and are calculated as follows:

a � 2 · f · r1-f,

c � 2 · r2,

m � chaotic − value,

(18)

where f declined nonlinearly from 2.5 to 0, r1 and r2 denote
the random value within [0, 1], and m represents the chaotic
vector. 'e dynamic coefficient f is selected for distinct
slopes and curves; therefore, chimps employ distinct ca-
pabilities for searching the prey. Chimps upgrade the po-
sition according to the other chimps, and the arithmetical
expression can be given in the following equation:

dAttacker � c1xAttacker − m1χ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

dBarrier � c2xBarrier − m2χ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

dChaser � |c3xChaser − m3x|

dDriver � c4xDriver − m4x
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

x1 � xAttacker − a1 dAttacker( 􏼁,

x2 � xBarrier − a2 dBarrier( 􏼁,

x3 � xChaser − a3 dChaser( 􏼁,

x4 � xDriver − a4 dDriver( 􏼁,

x(t + 1) �
x + x2 + x3 + χ4

4
.

(19)

4. Experimental Validation

In this section, the experimental validation of the FSS-
OANFIS model has been performed using four benchmark
datasets [23–26]. 'e details of the dataset are given in
Table 1. 'e results are investigated and the outcomes are
assessed in terms of different measures. For experimental
validation, a 10-fold cross-validation process is utilized.

4.1. Results Analysis of ProposedModel. Figure 3 illustrates a
set of confusion matrices offered by the FSS-OANFIS model
on test datasets. 'e figure reported that the FSS-OANFIS
model has properly recognized the class labels on all
datasets. For instance, on the Leukemia dataset, the FSS-
OANFIS model has identified 8 samples in class 0 and 2
samples in class 1. In addition, on the Prostate dataset, the
FSS-OANFIS system has identified 16 samples in class 0 and
9 samples in class 1. Also, on the DLBCL Stanford dataset,
the FSS-OANFIS approach has identified 2 samples in class 0
and 9 samples in class 1. Besides, on the Colon Cancer
dataset, the FSS-OANFIS algorithm has identified 12 sam-
ples in class 0 and 5 samples in class 1.

Table 2 provides the overall classification outcomes of
the FSS-OANFIS model on the test datasets. 'e experi-
mental outcomes pointed out that the FSS-OANFIS model

Table 3: Comparative analysis of FSS-OANFIS technique with
existing approaches.

Methods Accuracy Sensitivity Specificity G-measure
Leukemia dataset
FSS-OANFIS 83.33 75.00 75.00 80.08
AHSA-GS 75.49 69.66 74.81 45.94
PSO algorithm 80.59 74.95 73.96 68.07
DE algorithm 68.67 63.01 63.62 64.80
Prostate dataset
FSS-OANFIS 80.65 80.00 80.00 81.37
AHSA-GS 71.19 53.82 79.79 79.84
PSO algorithm 68.78 63.63 70.15 66.01
DE algorithm 62.77 60.37 63.22 67.94
Stanford dataset
FSS-OANFIS 73.33 66.67 66.67 70.47
AHSA-GS 71.27 62.64 65.15 68.82
PSO algorithm 72.80 60.82 60.17 61.74
DE algorithm 66.93 63.80 59.16 61.48
Colon dataset
FSS-OANFIS 89.47 87.82 87.82 87.82
AHSA-GS 61.02 48.07 64.04 43.62
PSO algorithm 59.00 43.02 58.34 36.66
DE algorithm 50.38 33.63 38.76 58.07
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has offered effective outcomes on all the datasets applied. For
instance, with the Leukemia dataset, the FSS-OANFISmodel
has resulted in average accuy, recal, specy, Fscore, and Gmeasure
of 83.33%, 75%, 75%, 77.78%, and 80.08%, respectively.
Following this, with the Prostate dataset, the FSS-OANFIS
methodology has resulted in average accuy, recal, specy,
Fscore, and Gmeasure of 80.65%, 80%, 80%, 79.61%, and
81.37%, respectively. Meanwhile, with the DLBCL Stanford
dataset, the FSS-OANFIS algorithm has resulted in average
accuy, recal, specy, Fscore, and Gmeasure of 73.33%, 66.67%,
66.67%, 65.91%, and 70.47%, respectively. Eventually, with
the Colon Cancer dataset, the FSS-OANFIS technique has
resulted in average accuy, recal, specy, Fscore, and Gmeasure of
89.47%, 87.82%, 87.82%, 87.82%, and 87.82%, respectively.

Figure 4 shows the precision-recall curves offered by the
FSS-OANFIS model on the test Leukemia dataset. 'e figure
indicated that the FSS-OANFIS model has depicted effective
precision-recall values on the classification of two classes,
namely, class 0 and class 1 on the test Leukemia dataset.

Next, Figure 5 shows the precision-recall curves offered by
the FSS-OANFIS model on the test Prostate dataset. 'e
figure revealed that the FSS-OANFIS technique has depicted
effective precision-recall values on the classification of two
classes, namely, class 0 and class 1 on the test Prostate dataset.

Similarly, Figure 6 shows the precision-recall curves
offered by the FSS-OANFIS system on the test DLBCL
Stanford dataset. 'e figure exposed that the FSS-OANFIS
model has depicted effective precision-recall values on the
classification of two classes, namely, class 0 and class 1 on the
test DLBL Stanford dataset.

Figure 7 shows the precision-recall curves offered by the
FSS-OANFIS method on the test Colon Cancer dataset. 'e
figure indicated that the FSS-OANFIS approach has depicted
effective precision-recall values on the classification of two
classes, namely, class 0 and class 1 on the test Colon Cancer
dataset.

A brief ROC investigation of the FSS-OANFIS model on
the distinct four datasets is described in Figure 8. 'e results
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Figure 10: Comparative analysis of FSS-OANFIS technique with existing approaches.
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indicated that the FSS-OANFIS technique has exhibited its
ability in categorizing two different classes such as class 0
and 1 on the test four datasets.

Figure 9 shows the accuracy and loss graph analysis of
the ODBN-IDS technique under four datasets. 'e results
show that the accuracy value tends to increase and the loss
value tends to decrease with an increase in epoch count. It is
also observed that the training loss is low and validation
accuracy is high under four datasets.

4.2.Discussion. Finally, a detailed comparative study of the
FSS-OANFIS model with recent methods on distinct
datasets is shown in Table 3 and Figure 10 [27]. 'e ex-
perimental results indicated that the FSS-OANFIS model
has shown effectual outcomes under all datasets. For in-
stance, with the Leukemia dataset, the DE and AHSA-GS
models have depicted lower performance over the other
methods. 'ough the PSO algorithm has resulted in
slightly reasonable performance with accuy, sensy, specy,
and Gmeasure of 80.59%, 74.95%, 73.96%, and 68.07%, the
FSS-OANFIS model has resulted in higher accuy, sensy,
specy, and Gmeasure of 83.33%, 75%, 75%, and 80.08%,
respectively.

At the same time, with the Prostate dataset, the DE and
AHSA-GSmodels have depicted lower performance over the
other methods. Likewise, the PSO algorithm has resulted in
somewhat reasonable performance with accuy, sensy, specy,
and Gmeasure of 68.78%, 63.63%, 70.15%, and 66.01% and the
FSS-OANFIS methodology has resulted in superior accuy,
sensy, specy, and Gmeasure of 80.65%, 80%, 80%, and 81.37%,
respectively. In addition, with the DLBCL Stanford dataset,
the DE and AHSA-GS techniques have showcased lesser
performance over the other methods. 'ough the PSO al-
gorithm has resulted in slightly reasonable performance with
accuy, sensy, specy, and Gmeasure of 72.80%, 60.82%, 60.17%,
and 61.74%, the FSS-OANFIS approach has resulted in
higher accuy, sensy, specy, and Gmeasure of 733.33%, 66.67%,
66.67%, and 70.47%, respectively.

Along with that, with the Colon Cancer dataset, the DE
and AHSA-GS models have portrayed lower performance
over the other methods. But, the PSO approach has resulted
in slightly reasonable performance with accuy, sensy, specy,
and Gmeasure of 59%, 43.02%, 58.34%, and 36.66%, and the
FSS-OANFIS system has resulted in superior accuy, sensy,
specy, and Gmeasure of 89.47%, 87.80%, 87.82%, and 87.82%,
respectively. After examining the results and discussion, it is
apparent that the FSS-OANFIS model has accomplished
maximum performance in the microarray gene expression
classification process.

5. Conclusion

In this study, a new FSS-OANFIS model has been developed
for microarray gene expression data classification. 'e
presented FSS-OANFIS model encompasses a series of
processes, namely, data pre-processing, IGWO-FS-based
election of features, ANFIS classification, and COA-based
parameter optimization. 'e application of IGWO-FS and

COA techniques helps in accomplishing enhanced micro-
array gene expression classification outcomes. For exam-
ining the enhanced outcomes of the FSS-OANFIS model, a
wide range of simulations were performed on distinct
datasets. 'e experimental results indicated that the FSS-
OANFIS model has resulted in enhanced performance over
the recent approaches. In future, the feature reduction and
clustering approaches can be integrated to enhance gene
expression classification outcomes.
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