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Abstract

We recently identified sphingosine-1-phosphate (S1P) signaling and the cystic fibrosis
transmembrane conductance regulator (CFTR) as prominent regulators of myogenic
responsiveness in rodent resistance arteries. However, since rodent models frequently
exhibit limitations with respect to human applicability, translation is necessary to validate
the relevance of this signaling network for clinical application. We therefore investigated the
significance of these regulatory elements in human mesenteric and skeletal muscle resis-
tance arteries. Mesenteric and skeletal muscle resistance arteries were isolated from
patient tissue specimens collected during colonic or cardiac bypass surgery. Pressure myo-
graphy assessments confirmed endothelial integrity, as well as stable phenylephrine and
myogenic responses. Both human mesenteric and skeletal muscle resistance arteries (i)
express critical S1P signaling elements, (ii) constrict in response to S1P and (iii) lose
myogenic responsiveness following S1P receptor antagonism (JTE013). However, while
human mesenteric arteries express CFTR, human skeletal muscle resistance arteries do
not express detectable levels of CFTR protein. Consequently, modulating CFTR activity
enhances myogenic responsiveness only in human mesenteric resistance arteries. We
conclude that human mesenteric and skeletal muscle resistance arteries are a reliable and
consistent model for translational studies. We demonstrate that the core elements of an
S1P-dependent signaling network translate to human mesenteric resistance arteries. Clear
species and vascular bed variations are evident, reinforcing the critical need for further
translational study.
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Introduction

Rodent models are prevalent research tools; yet their human applicability is strikingly limited
[1,2] and translation often lags well-behind basic science advancements. This divide is remark-
ably pronounced in the resistance artery research field. Despite significant investigative invest-
ment, much of our mechanistic understanding of vascular tone control is still limited to rodent
models. In particular, the use of isolated human resistance arteries in pressure myography
studies, a physiologically relevant means of assessing intact artery function in vitro, is dispro-
portionately sparse. This is ostensibly because tissue samples containing relevant vascular beds
are difficult, if not impossible, to routinely obtain. However, our dependence on rodent data
contributes to the high rate of late-phase clinical trial failures for therapeutics targeting vascular
tone and their near-absence in the development pipelines of drug companies.

The present investigation focuses on the myogenic response, a critical mechanism that con-
trols tissue perfusion and peripheral resistance [3-6]. We have recently identified sphingosine-
1-phosphate (S1P) signaling and the cystic fibrosis transmembrane conductance regulator
(CFTR) as prominent regulators of the myogenic response [7-9]. These elements combine to
form a pathophysiologically relevant signaling network, where microvascular CFTR modulates
S1P signaling and consequently, underlies clinically relevant functional changes [7,8,10]. These
concepts and knowledge have now advanced to a stage where translation to the human setting
is mandatory to validate and ultimately exploit this mechanism’s therapeutic potential. In fact,
a recent editorial highlighting this work has legitimately challenged the inherent premise that
S1P signaling is an equally prominent regulator of myogenic tone within the human microcir-
culation [11].

In this investigation, we assess whether S1P signaling modulates human resistance artery
myogenic tone. Since myogenic mechanisms display significant heterogeneity across vascular
beds [12], our assessment spans 2 distinct artery types: mesenteric and skeletal muscle. As
rationale for these selections, mouse mesenteric arteries are widely used experimentally, while
skeletal muscle resistance arteries possess significant physiological relevance, since they are
prominent regulators of blood pressure and blood distribution [13-15]. As our core hypothesis,
we propose that the SIP/CFTR signaling axis [7] prominently regulates myogenic tone in both
human mesenteric and human skeletal muscle resistance arteries.

Materials and Methods

The use of human subjects in this study conforms to the principles outlined in the Declaration
of Helsinki and was approved by the Research Ethics Board of St. Michael’s Hospital, Toronto,
Canada (Approval #11-198). Patients 18 years of age and older who planned to undergo elec-
tive surgery were recruited from the outpatient general surgery (mesenteric resistance arteries)
or cardiac surgery (skeletal muscle resistance arteries) clinics at St. Michael’s Hospital. All
patients provided informed written consent through Research Ethics Board-approved consent
forms prior to study enrolment.

The use of animals in this investigation conforms to the Guide for the Care and Use of Labo-
ratory Animals published by the NIH (Publication No. 85-23, revised 1996); the experimental
protocols were approved by the Institutional Animal Care and Use Committees at the Univer-
sity of Toronto and were conducted in accordance with Canadian animal protection laws.

Isolation of human resistance arteries

A total of 37 general surgery patients receiving bowel resection surgery were included: 27 were
treated for colon cancer; the remaining cases involved other pathologies, including Crohn’s dis-
ease, ulcerative colitis, diverticular disease and fistulas. A total of 51 cardiac surgery patients
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receiving coronary artery bypass graft surgery were included: all patients were diagnosed with
coronary artery disease and most patients had an ejection fraction greater than 40%. A com-
plete composite of patient characteristics, co-morbidities and treatments is provided in Tables
A and B in S1 File.

Surgeons directly provided a small piece of either human mesentery (4-5cm?) or thoracic
wall skeletal muscle (3—4cm”) to research staff inside the operating room. The surgeon identi-
fied and excised a small section of tissue without cautery (the use of cautery damages arteries
within the sample). The specimen was immersed in room temperature MOPS buffer, placed on
ice and transported to the laboratory; once the specimen cooled, it was washed with ice-cold
MOPS buffer and placed in a Petri dish. Resistance arteries were carefully dissected from the
surrounding tissue, taking care to minimize vessel tension during the isolation process. Vessel
segments (~1mm in length) were collected and either (i) functionally assessed by pressure
myography [8] or (ii) used in standard western blotting / QRT-PCR procedures [7].

Functional assessment

Resistance arteries were cannulated, pressurized to 45mmHg and slowly warmed to 37°C (over
30 minutes). The transmural pressure (TMP) was increased to 60mmHg; following a stabiliza-
tion period of 30 minutes, vessel viability was assessed with either a single-dose of 10pumol/L
phenylephrine (PE) or 60umol/L KCI. Vessels that failed to constrict at least 30% were consid-
ered compromised and excluded.

Phenylephrine- and S1P-stimulated vasomotor responses were quantified as tone =
[(diaax—diaresponse)/didmax] X100, where dia,esponse refers to the steady-state diameter following
agent application and dia,.x refers to the maximal vessel diameter (measured under calcium-
free conditions). All vasomotor responses were assessed at a transmural pressure of 60 mmHg.

Myogenic responsiveness was assessed as either: (i) the steady-state level of constriction rela-
tive to the passive diameter over a range of 20-100mmHg in 20mmHg increments (defined here
as “myogenic tone”) [7,8,10] or (ii) magnitude of constriction that follows a large, single pressure
step of 60mmHg to 100mmHg (defined here as “active myogenic constriction”) [9,16,17]. For the
former, myogenic tone was calculated as tone = [(diaax—diaactive)/diamax] %100, where dia,ive
refers to the minimal diameter observed within 8-minutes post-pressure step and dia,,, refers to
the maximal vessel diameter (measured under calcium-free conditions). For the latter, active
myogenic constriction was calculated as dia;p;tja-diamin, Where diaj,ia is the diameter immedi-
ately following the pressure step and dia,,;, is the minimal diameter observed within 8 minutes
post-pressure step.

Isolation of mouse resistance arteries

Wild-type male mice (2-3 months; C57BL/6N) were purchased from Charles River Laborato-
ries (Montreal, Canada). Prior to experiments, mice were housed for two weeks under a stan-
dard 14h:10h light-dark cycle, fed normal chow and had access to water ad libitum. Following
tull anesthesia with isoflurane, the animal was euthanized by cervical dislocation. The mesen-
tery and cremaster muscles were grossly dissected and placed in a Petri dish containing ice-
cold MOPS buffer. Mesenteric arteries and cremaster skeletal muscle resistance arteries were
carefully dissected and immediately snap-frozen with liquid nitrogen (for PCR assessments)

[8].

Molecular and Biochemical Procedures

Standard procedures were used for quantitative RT-PCR and western blots [7]. Specific meth-
odological details are provided in the S1 File. The Diagnostic Laboratories at St. Michael’s
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Hospital quantified serum “NT-proBNP” levels, using an electrochemiluminescence assay
(Elecsys proBNP II assay automated on a cobas e601 platform; Roche Diagnostics; Indianapo-
lis, USA). “NT-proBNP” is a N-terminal cleavage peptide that is generated when the prohor-
mone form of B-type natriuretic peptide (BNP) is converted into an active hormone: it is a
biomarker of compromised cardiac function that is used to screen/diagnose acute heart failure
[18]. As per clinical guidelines utilized at St. Michael’s Hospital, patients in ambulatory care
were considered to have a positive result (i.e., heart failure; “BNP+”) if serum NT-proBNP val-
ues were: (i) above 125ng/L in patients <50 years, (ii) above 250ng/L in patients 50-75 years or
(iii) above 500ng/L in patients over 75 years.

Statistics

All data are expressed as means + SEM; unless otherwise specified, n is the number of vessels
studied and N is the number of patients. Statistical comparisons utilized the following proce-
dures: a non-parametric (i.e., exact p-value computation) Mann-Whitney test for one unpaired
comparison; a non-parametric Wilcoxon test for one paired comparison; a nonparametric
Friedman repeated measures one-way ANOVA for multiple paired comparisons, in conjunc-
tion with a Dunn’s multiple comparison correction; and a two-way ANOVA for comparing
myogenic tone and phenylephrine dose-response relationships (i.e., differences between
curves). Differences were considered significant at P<0.05.

Results
Quality control

Data derived from human mesenteric and skeletal muscle resistance arteries are sparse: it was,
therefore, crucial to rigorously assess both vessel quality (i.e., endothelial and smooth muscle
function) and response stability. A large proportion of both human mesenteric and skeletal
muscle resistance arteries failed initial viability tests: our overall success rate was approximately
17% for both artery types.

We confirmed smooth muscle and endothelial functional integrity in both human mesen-
teric and skeletal muscle resistance arteries, by demonstrating constriction in response to
10pmol/L phenylephrine (PE) and dose-dependent vasodilatation to subsequent acetylcholine
(Ach) co-application (Fig 1). Since many tissue samples are not available until late in the day,
we determined whether overnight storage at 4°C (in MOPS buffer) influences artery responses
(which would allow us to shift lengthy experimental protocols to within normal working
hours). Human mesenteric artery responses are unaffected (Fig A in S1 File) and therefore, we
incorporated overnight storage as a standard procedure for all samples. In contrast, human
skeletal muscle artery responses changed following storage (Fig A in S1 File) and therefore,
experiments proceeded immediately following vessel isolation.

Time-control experiments determined whether PE and myogenic responses were suffi-
ciently stable for paired comparison experimental designs (i.e., pre/post inhibitor treatment):
functional parameters were initially assessed (“time 1”); the vessel was then incubated for
30 minutes under normal buffer conditions (i.e., the time period that corresponds to a typical
inhibitor incubation requirement) and re-tested (“time 2”). Human mesenteric resistance
artery responses are stable (Fig 2); indeed, they remain comparable after a second 30-minute
incubation period and re-test (Fig B in S1 File). Since measuring active constriction requires
substantially less procedural time than for myogenic tone, we utilized the former in mesenteric
artery inhibitor studies.

Human skeletal muscle resistance artery responses are less stable, relative to human mesen-
teric arteries: although PE responses and myogenic tone are unchanged at “time 27, active
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Fig 1. Human mesenteric and skeletal muscle resistance artery vasodilator responses. Human (A) mesenteric (n = 7 vessels from N = 3 patients) and
(B) skeletal muscle (n = 8, N = 5) resistance arteries constrict in response to 10 mol/L phenylephrine (open circles) and dose-dependently dilate when
acetylcholine is subsequently co-applied (closed circles). For mesenteric arteries: dianyax = 255+23um and logECs, = -7.4+0.2. For skeletal muscle arteries:
diamax = 133+22um and logECsq = -7.2+0.2. Dian,ay is defined as the maximal diameter (under calcium free buffer conditions) at 60mmHg.

doi:10.1371/journal.pone.0138142.g001

myogenic vasoconstriction is significantly reduced (Fig 2); myogenic tone is not stable beyond
“time 2” (Fig B in S1 File). Inhibitor studies using skeletal arteries, therefore, required the myo-
genic tone assessment procedure.

We confirmed that neither the type of surgical procedure (open versus laparoscopic for
mesenteric arteries; Fig C in S1 File), nor the operating surgeon (Fig D in S1 File) influenced
functional responses. The maximal artery diameter range was approximately 200-250um
(mesenteric artery dia,., range = 59um-318um; skeletal muscle artery dia,,,x range = 33um-

217um); responses were similar in the upper and lower quartiles of maximal vessel diameter
(Fig E in S1 File).

Sphingosine-1-phosphate signaling in human mesenteric resistance
arteries

Using end-point and quantitative PCR (qQPCR), we demonstrate that human mesenteric resis-
tance arteries express mRNA encoding all critical S1P signaling components, including sphin-
gosine kinase 1 (Sphk1), S1P phosphohydrolase 1 (SPP1) and S1P receptors (SIPR) subtypes
1-3 (Fig 3A; N = 8 separate patient samples). The relative S1P receptor mRNA expression pat-
tern in human mesenteric arteries (S1P;R >> S1P;R = S1P,R; Fig 3A) is similar to that of
mouse mesenteric arteries (Panel A of Fig F in S1 File), with the exception that S1P;R is more
highly expressed relative to S1P,R in human arteries (25 fold higher in human arteries versus
10 fold higher in mouse arteries). Human mesenteric resistance arteries express CFTR at

both the mRNA (Fig 3B; representative of N = 8) and protein (Fig 3C; representative of

N = 3) levels. Consistent with data reported in mice [7,8,10], SIP stimulates dose-dependent
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Fig 2. Response stability in human mesenteric and skeletal muscle resistance arteries. Time-control experiments confirm that (A) phenylephrine (PE)-
stimulated vasoconstriction (logECsp = -6.4+0.2; diamax = 173+33um; n = 7 vessels from N = 5 patients), (B) myogenic tone (diamax = 185+34pym; n=7, N =4)
and (C) active myogenic constriction (following a pressure step from 60mmHg to 100mmHg; diapax = 105+15um; n =7, N = 3) are consistent in human
mesenteric resistance arteries over two separate assessments. (D) PE-stimulated vasoconstriction (IlogECsq = -6.5+0.1; diaax = 104+13um; n =10, N=10)
and (E) myogenic tone (diamax = 122+21um; n =9, N = 8) are also consistent over two separate assessments in human skeletal muscle resistance arteries;
however, (F) active myogenic constriction (diamax = 94+9um; n =7, N = 6) is not stable. Dia,,x is defined as the maximal diameter (under calcium free buffer
conditions) at 60mmHg. Myogenic tone (Panels A and D) and PE responses (Panels B and E) were statistically compared with a paired two-way ANOVA,;
active constriction measures (Panels C and F) were compared with a Wilcoxon test. * denotes P<0.05 for a paired comparisons.

doi:10.1371/journal.pone.0138142.g002

vasoconstriction in human mesenteric arteries (Fig 3D) and dose-dependently enhances myo-
genic vasoconstriction (Fig 3E); inhibiting CFTR channel activity (Inmol/L CFTR;,p)-172)
also augments myogenic vasoconstriction. We antagonized S1P signaling in human arteries
with the chemical antagonist JTE013; we selected this inhibitor based on its extensive use in
our previous investigations in rodents [8-10,16,19-21]. JTE013 is a purported S1P,R-selective
antagonist; however, as scrutinized in our discussion (see below), emerging evidence suggests
that its receptor subtype selectivity is imperfect [10,22,23]. Thus, we use JTE013 to assess S1P
signaling in human arteries, without specifically attributing the effects to a particular S1P
receptor subtype. Consistent with previous observations in rodents [8], JTE013 (10nmol/L)
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Fig 3. S1P signaling in human mesenteric resistance arteries. (A) Human mesenteric resistance arteries express mRNA encoding critical sphingosine-
1-phosphate (S1P) signaling elements (N = 8 patients), including sphingosine kinase 1 (Sphk1), S1P phosphohydrolase 1 (SPP1) and S1P receptor
subtypes 1-3 (S1P4R, S1P.R and S1P3R). In terms of relative expression, S1PR is the most highly-expressed receptor, followed by S1PzR and then S1P,R
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(N = 8). Human mesenteric arteries express the cystic fibrosis transmembrane conductance regulator (CFTR) at both the (B) mRNA (N = 8) and (C) protein
levels (N = 3); in (C), tubulin confirms adequate loading. (D) S1P stimulates dose-dependent vasoconstriction (logECsg = -6.7+0.2; diamax = 121£13uym; n=5
vessels from N = 3 patients). (E) Shown are normalized active constriction measurements (post-treatment measures normalized to pre-treatment responses).
At sub-threshold concentrations (i.e., levels that do not stimulate overt constriction), S1P dose-dependently enhances myogenic vasoconstriction (1nmol/L
S1P: diamax = 177£27um, n =7, N = 5; 10nmol/L S1P: diamax = 165219um, n = 11, N = 6); CFTR inhibition (1nmol/L CFTRjnn)-172: diamax = 203+13um,

n =12, N = 6) also enhances myogenic vasoconstriction, while S1P receptor antagonism (10nmol/L JTE013: diamax = 148+30um, n =7, N = 4) attenuates
myogenic vasoconstriction. Dian,.x is defined as the maximal diameter (under calcium free buffer conditions) at 60mmHg. In Panel A, * denotes P<0.05 for
S1P4R relative to the other two receptors (Friedman ANOVA); in Panel E, * denotes P<0.05 for a paired comparison to the pre-treatment response (Wilcoxon

test).
doi:10.1371/journal.pone.0138142.9003

attenuates myogenic vasoconstriction in human mesenteric arteries (Fig 3E), without causing a
general loss in contractility (PE responses are unaffected; Fig G in S1 File).

Sphingosine-1-phosphate signaling in human skeletal muscle
resistance arteries

Although all of the human skeletal muscle tissue specimens originated from patients requiring
cardiac surgery, our patient cohort varied in terms of their cardiac function. Since experimental
heart failure modifies skeletal muscle artery myogenic tone [8], we first determined whether
the heterogeneity in cardiac function within our patient cohort influenced myogenic tone. As
shown in Fig H of the S1 File, human skeletal muscle resistance artery myogenic tone did not
differ when segregated by (i) serum NT-proBNP levels (positive versus negative result) [18];
(ii) New York Heart Association (NYHA) functional class (Class I versus Classes 2 and above)
[24,25]; (iii) the presence of reduced left ventricular ejection fraction (normal defined as
>55%) [25]; or (iv) previous history of myocardial infarction. The consistency in myogenic
responsiveness confirms that our model of human skeletal muscle resistance arteries is highly
suited for mechanistic inspection.

As in human mesenteric arteries, human skeletal muscle resistance arteries express mRNA
encoding Sphkl1, SPP1 and S1P receptors 1-3 (Fig 4A, N = 8 separate patient samples). Nota-
bly, the S1P receptor mRNA expression pattern (S1P;R > S1P;R > S1P,R) does not match
that of human mesenteric arteries (compare Fig 3A and Fig 4A). As observed for mesenteric
arteries, SIP ;R expression is significantly higher in human skeletal muscle arteries, relative to
mouse cremaster skeletal muscle arteries (Panel B of Fig F in S1 File). Human skeletal muscle
resistance arteries express mRNA encoding CFTR (Fig 4B, representative of N = 7); however,
the expression level is 34 fold lower than in mesenteric arteries (P <0.05; Mann-Whitney test).
CFTR protein was not detected in human skeletal muscle arteries (Fig 4C, representative of
N =5). As in human mesenteric arteries, (i) human skeletal muscle resistance arteries dose-
dependently constrict in response to S1P (Fig 4D) and (ii) antagonizing S1P receptors
(0.1nmol/L JTE013) attenuates myogenic responsiveness (Fig 4E), without affecting PE
responses (Fig I in S1 File). However, in contrast to human mesenteric arteries (Fig 3), neither
10nmol/L S1P (Fig 4F) nor CFTR inhibition (10pmol/L CFTRnn)-172; Fig 4G) specifically
enhanced myogenic responses. In the case of the latter, increasing the CFTR inhibitor concen-
tration beyond 10pmol/L attenuated both PE and myogenic responses (Fig J in S1 File).

Discussion

We have previously demonstrated that CFTR and S1P signaling are critical signaling elements
that regulate rodent resistance artery function in health and experimental disease models [7-
10]. As a prerequisite for capitalizing on this knowledge for human gain, we established stan-
dardized procedures for assessing human mesenteric and skeletal muscle resistance arteries, in
order to translate the key aspects of the signaling mechanism.

PLOS ONE | DOI:10.1371/journal.pone.0138142 September 14,2015 8/13
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Fig 4. S1P signaling in human skeletal muscle resistance arteries. (A) Human skeletal muscle resistance arteries express mRNA encoding critical
sphingosine-1-phosphate (S1P) signaling elements (N = 8 patient samples), including sphingosine kinase 1 (Sphk1), S1P phosphohydrolase 1 (SPP1) and S1P
receptor subtypes 1-3 (S1P4R, S1P,R and S1P3R). In terms of relative expression, S1P4R is the most highly expressed; S1P3R is more highly expressed than
S1P;R (N = 8). Human skeletal muscle resistance arteries (B) express detectable levels of cystic fibrosis transmembrane conductance regulator (CFTR) mRNA
(N = 8); however, (C) CFTR protein is not detected (N = 5). In (C), tubulin confirms adequate loading. (D) S1P stimulates dose-dependent vasoconstriction
(diamax = 122.2416.5um; n = 6 vessels from N = 4 patients). (E) S1P receptor antagonism (100pmol/L JTE013: diamax = 132+15um, n = 8, N = 5) attenuates
myogenic tone. However, neither (F) sub-threshold concentrations of S1P (10nmol/L S1P: diamax = 110£20um; n =5, N = 4) nor (G) CFTR inhibition (10pmol/L
CFTRjnny-172: diamay = 139£33um, n = 5, N = 4) modulate myogenic tone. Diamay is defined as the maximal diameter (under calcium free buffer conditions) at
60mmHg. In Panel A, * denotes P<0.05 relative to all other receptor subtypes (Friedman ANOVA). Panels E, F and G were statistically compared with a paired
two-way ANOVA; in Panel E, * denotes P<0.05 relative to the pre-treatment control response.

doi:10.1371/journal.pone.0138142.9004
Even with strict procedures for obtaining and handling the tissue samples, 75% of the arter-

ies tested failed our viability standards. However, these rigorous constraints ensured the inclu-
sion of high quality specimens, as evidenced by robust, reproducible and stable vasomotor and
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myogenic responses. In fact, reliably demonstrating human mesenteric artery PE and Ach
responses is, in relation to present literature [26], a significant achievement. Despite the inher-
ent variability within the recruited patient population, resistance artery myogenic responses
were reasonably consistent: this unexpected characteristic permits manageable sample sizes.

The myogenic response serves several critical roles in the microcirculation, including: pre-
serving constant tissue perfusion at varying systemic pressures (autoregulation) [3,4],
maintaining proper capillary hydrostatic pressure [27,28] and, by generating a significant pro-
portion of peripheral resistance, contributing to systemic blood pressure control [5,6]. The
complex molecular mechanisms that underpin this response display remarkable heterogeneity
across species and vascular bed (reviewed by Lidington et al. [12]): this obstacle has undoubt-
edly hindered the development of pharmaceuticals that specifically target microvascular tone
(e.g., as an anti-hypertensive agent). A significant strength of the current investigation, there-
fore, is that it documents the mechanistic differences in human arteries derived from two dis-
tinct vascular beds.

Our molecular, biochemical and functional data clearly demonstrate that S1P signaling is a
dominant regulator of myogenic vasoconstriction in both human mesenteric and skeletal mus-
cle resistance arteries. Specifically, we show that: (i) the critical signaling elements are present;
(ii) S1P stimulates vasoconstriction and (iii) S1P receptor antagonism (JTE013) attenuates
myogenic responsiveness. As a cornerstone of myogenic vasoconstriction, S1P signaling repre-
sents a potential therapeutic target in at least two human microvascular beds; our rodent data
[8,10,20,21] predict that this applicability likely extends beyond just two microvascular beds.

Although JTE013 is a purported S1P, receptor-selective antagonist, emerging evidence indi-
cates that it is also capable of antagonizing other S1P receptor subtypes [10,22,23]. There is no
indication that JTE013 has effects beyond S1P signaling: in our hands, other agonist responses,
including endothelin-1 and phenylephrine, are fully preserved [8,10,21]. Thus, as we have in
our previous studies [10,21], we reconcile JTE013’s specificity issue by asserting that it is suit-
able for investigating S1P signaling, while strongly urging caution in terms of attributing its
effects solely to S1P,R. From a translational perspective, our study demonstrates that myogenic
vasoconstriction in human mesenteric and skeletal muscle resistance arteries is (i) sensitive to
JTEO013-mediated antagonism and therefore, (ii) dependent on S1P signaling: these results and
conclusions are entirely consistent with those made in rodent models [8-10,16,19-21].

Unlike the S1P signaling components, microvascular CFTR is differentially expressed in the
two artery types; consequently, CFTR modulates myogenic vasoconstriction only in human
mesenteric arteries. The lack of CFTR protein expression in human skeletal muscle resistance
arteries is surprising, given that CFTR was first characterized as a myogenic modulator in ham-
ster skeletal muscle resistance arteries [9]. Species heterogeneity is one plausible explanation
for the discrepancy. However, we have previously shown that experimental heart failure down-
regulates CFTR expression in mice [7]: we therefore cannot exclude that the patient’s medical
condition significantly contributed to the observed phenotype.

Microvascular CFTR expression may be necessary for S1P to modulate resistance artery
myogenic tone. We recently demonstrated that exogenous S1P inhibits CFTR channel activity
by an S1P; receptor-dependent mechanism [29]. Since the S1P; receptor is the most highly
expressed subtype, we assert that S1P attenuates CFTR activity at S1P levels that do not stimu-
late overt vasoconstriction. Importantly, our proposed model dictates that the sensitivity to
S1P requires CFTR expression: hence, S1P augments myogenic tone in human mesenteric
arteries, but not in human skeletal muscle resistance arteries. Accordingly, direct CFTR
(CFTR(inn)-172) inhibition mirrors the effects of S1P: it augments myogenic responses in
mesenteric arteries, but has no effect in skeletal muscle resistance arteries.
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There is also a striking disparity between rodent and human resistance arteries in terms of
inhibitor sensitivity: both JTE013 and CFTR(inh)-172 are at least 100-fold more potent in
human arteries. In fact, at the concentrations utilized in our rodent studies [7-9,16], both
inhibitors non-selectively abolished contractility (data not shown). Even S1P exhibits at least
100-fold higher potency in human mesenteric arteries, relative to its murine counterpart [8].

Thus, while our investigation identifies S1P signaling as a fundamental myogenic regulator
in humans, it also defines several significant dissimilarities that directly bear on our mechanis-
tic understanding, dosage selection and ultimately, the overall development of new therapeutic
strategies. Species and vascular bed differences may explain some of the discrepancies; how-
ever, the undeniable issue with patient samples is discerning the differences caused by underly-
ing medical conditions. This revelation reinforces the critical need for translation and yet sets
limits on the implications of any individual study. We demonstrate that high quality microvas-
cular assessments at the patient level are achievable; yet the success rate (25-30%) and ancillary
requirements (e.g., recruiting patients) demand considerable investigative investment in return
for these human data. Thus, an expansive translational program clearly hinges on developing
new technologies that integrate automation [30] and improve experimental throughput.

In summary, we demonstrate that human mesenteric and skeletal muscle resistance arteries
are, in principle, a reliable and consistent model for translating myogenic mechanisms.
Accordingly, we demonstrate that S1P signaling is a core modulator of myogenic responsive-
ness in human resistance arteries, as initially identified in rodent models [7-10]. Although
clear species and vascular bed differences are evident, we substantiate the speculated value of
pharmacologically targeting S1P signaling within the microvascular system. Since S1P-modu-
lating therapeutics are either in clinical use (Fingolimod) or development, our seminal study
provides justification for advancing these medications as efficacious human cardiovascular sys-
tem modulators.

Supporting Information
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