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Uterine Fibroids [UF(s), AKA: leiomyoma] are the most important benign neoplastic
threat to women’s health. They are the most common cause of hysterectomy imposing
untold personal consequences and 100s of billions of healthcare dollars, worldwide.
Currently, there is no long term effective FDA-approved medical treatment available,
and surgery is the mainstay. The etiology of UFs is not fully understood. In this
regard, we and others have recently reported that somatic mutations in the gene
encoding the transcriptional mediator subunit Med12 are found to occur at a high
frequency (∼85%) in UFs. UFs likely originate when a Med12 mutation occurs in a
myometrial stem cell converting it into a tumor-forming stem cell leading to a clonal
fibroid lesion. Although the molecular attributes underlying the mechanistic formation
of UFs is largely unknown, a growing body of literature implicates unfavorable early
life environmental exposures as potentially important contributors. Early life exposure
to EDCs during sensitive windows of development can reprogram normal physiological
responses and alter disease susceptibility later in life. Neonatal exposure to the EDCs
such as diethylstilbestrol (DES) and genistein during reproductive tract development
has been shown to increase the incidence, multiplicity and overall size of UFs in the
Eker rat model, concomitantly reprogramming estrogen-responsive gene expression.
Importantly, EDC exposure represses enhancer of zeste 2 (EZH2) and reduces levels
of histone 3 lysine 27 trimethylation (H3K27me3) repressive mark through Estrogen
receptor/Phosphatidylinositide 3-kinases/Protein kinase B non-genomic signaling in
the developing uterus. Considering the fact that distinct Mediator Complex Subunit
12 (Med12) mutations are detected in different fibroid lesions in the same uterus,
the emergence of each Med12 mutation is likely an independent event in an altered
myometrial stem cell. It is therefore possible that a chronic reduction in DNA repair
capacity eventually causes the emergence of mutations such as Med12 in myometrial
stem cells converting them into fibroid tumor-forming stem cells, and thereby leads
to the development of UFs. Advancing our understanding of the mechanistic role
epigenetic regulation of stem cells plays in mediating risk and tumorigenesis will help
in pointing the way toward the development of novel therapeutic options.

Keywords: fibroid, endocrine disrupting compounds, histone modification, polycomb repressive complex,
Trithorax group, developmental reprogramming

Frontiers in Pharmacology | www.frontiersin.org 1 March 2016 | Volume 7 | Article 40

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/Pharmacology/editorialboard
http://www.frontiersin.org/Pharmacology/editorialboard
http://dx.doi.org/10.3389/fphar.2016.00040
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fphar.2016.00040
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2016.00040&domain=pdf&date_stamp=2016-03-01
http://journal.frontiersin.org/article/10.3389/fphar.2016.00040/abstract
http://loop.frontiersin.org/people/264857/overview
http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


fphar-07-00040 February 26, 2016 Time: 19:22 # 2

Yang et al. Environmental Exposure and Fibroid Development

INTRODUCTION

Exposure to environmental toxicants and toxins causes
epigenetic changes that play a role in the development of
disease (Cook et al., 2005; Walker and Ho, 2012; Yang et al.,
2015b). Identifying changes in epigenomic marks (e.g., DNA
methylation, histone modifications, non-coding RNAs) in
affected tissues/cells is not always feasible in humans. Herein
lies one of the challenges in making a direct connection between
exposure-induced epigenetic changes and health outcomes in
human populations. UFs, also known as uterine leiomyomas,
are the most common pelvic tumors, occurring in nearly 70%
of all reproductive-aged women (Al-Hendy and Salama, 2006;
Bulun, 2013). It is the leading indication for hysterectomy with
a conservative economic burden of about $34.4 billion/year in
the US alone (Cardozo et al., 2012). These UFs cause severe
symptoms such as heavy, irregular, and prolonged menstrual
bleeding, anemia, pelvic pain, bowel and bladder dysfunction,
infertility, recurrent abortion, and many obstetric complications
such as preterm labor, obstructed labor necessitating cesarean
section, fetal malpresentation, and fetal anomalies, as well as
postpartum hemorrhaging (Sabry and Al-Hendy, 2012). These
morbidities exert a tremendous toll on an individual’s overall
health and well-being, impacting the quality of life of women
of all ethnicities. Understanding mechanisms which regulate
normal and aberrant myometrial cell function is paramount in
the management of UFs. Therefore, development of effective,
safe and inexpensive approach for the management of UFs is
highly needed to improve the quality of life among those affected
by UFs, but also in consideration of the significant impact UFs
have in the context of public health (Sabry and Al-Hendy, 2012).

THE ROLE OF ESTROGEN IN
NON-GENOMIC AND GENOMIC
SIGNALING OF UFs

A striking feature of UFs is their dependency on the ovarian
steroids estrogen and progesterone (Bulun, 2013). A number of
experimental data suggests that estrogen stimulates the growth
of UFs through ER α. The primary roles of estrogen and its’
receptor α in UFs growth are permissive in that they enable
tissue to respond to progesterone by inducing expression of the
progesterone receptor (Ishikawa et al., 2010).

The biological effects of 17β-estradiol are mediated by two
isoforms of the ERs (ERα and ERβ). Hormone-activated ERs

Abbreviations: AKT, Protein kinase B; Ash2L, absent, small, or homeotic-like;
BMI1, B-B-lymphoma Mo-MLV insertion region 1 homolog; BPA, Bisphenol A;
BTIC, breast tumor initiating cells; CBP, CREB binding protein; CBX, chromobox
homolog; DES, diethylstilbestrol; Dpy30, dosage compensation-related protein 30;
EDCs, endocrine disrupting compounds; EED, embryonic ectoderm development;
ERs, Estrogen receptors; EZH2, enhancer of zeste 2; HMG 14, high mobility
group protein 14; MAPK, mitogen-activated protein kinases; Med12, Mediator
Complex Subunit 12; MET, Mesenchymal epithelial transition factor; MLL, mixed-
lineage leukemia protein; P300, E1A binding protein P300; PcG, Polycomb group;
PHC, polyhomeotic homolog; PI3K, phosphatidylinositide 3-kinases; RbBP5,
retinoblastoma binding protein 5; RING1A or RING1B, ring finger 1A or 1B;
SUZ12, Suppressor of zeste 12; TrxG, trithorax group; UFs, Uterine fibroids;
WDR5, WD40 repeat domain 5.

form dimers. Since the two forms are coexpressed in many cell
types, the receptors may form ERα (αα) or ERβ (ββ) homodimers
or ERαβ (αβ) heterodimers. Although ERs are widely expressed
in different tissues types, some notable differences in their
expression patterns occur. For instance, the ERα is found in
endometrium, ovarian stromal cells, and breast cancer cells.
ERs mediate the effects of 17β-estradiol under physiologic and
pathologic conditions. ERs trigger 17β-estradiol-sensitive gene
transcription by binding to specific estrogen response elements
(i.e., genomic mechanism) (Hewitt et al., 2003; Gielen et al.,
2007; Winuthayanon et al., 2014). In the absence of the estrogen
hormone, ERs are largely located in the cytosol. The estrogen
binds to the receptor, triggering a cascade of events, starting
with the migration of the receptor from the cytosol into the
nucleus; dimerization of the receptor; and subsequent binding
of the receptor dimer to specific sequences of DNA known as
estrogen response elements. The DNA/receptor complex then
recruits other proteins that are responsible for transcriptional
activation, which eventually alters target gene expression. ERs are
also found within the cell nucleus, and both ER subtypes have a
DNA-binding domain and can function as transcription factors
to regulate gene expression (Burns and Korach, 2012).

Some ERs can be rapidly activated to downstream kinase
cascades by exposure of the cells to estrogen (i.e., non-
genomic mechanism; Bjornstrom and Sjoberg, 2002, 2005;
Wong et al., 2002; Hofmeister et al., 2012). These so-called
“non-genomic” effects are independent of gene transcription
or protein synthesis and involve steroid-induced modulation
of cytoplasmic or cell membrane-bound regulatory proteins.
Estrogen can modulate regulatory cascades, such as MAPK, PI3K,
and tyrosine kinases through non-transcriptional mechanisms.
Furthermore, steroid hormone receptor modulation of cell
membrane-associated molecules, such as ion channels and
G-protein-coupled receptors, e.g., GPR30 has been shown in
diverse tissues (Kelly et al., 2003; Prossnitz and Arterburn, 2015).

Both ER-evoked genomic and non-genomic effects originate
from a unique signaling network (Bjornstrom and Sjoberg, 2005).
A growing amount of evidence suggests that non-transcriptional
signaling plays a pivotal role in the estrogen effect, which
has clinical relevance, particularly in the development of UFs.
Fibroids are common estrogen-dependent uterine tumors that
cause significant morbidity for women and inflict a substantial
economic impact on the US health delivery system (Al-Hendy
and Salama, 2006). Our in vivo data in a mouse model
demonstrates the ability of an adenovirus-expressing dominant-
negative ER to arrest fibroid growth (Hassan et al., 2010). Taken
together, cellular activities of estrogen and EDCs are the result
of a combination of non-genomic and genomic actions via
membrane and nuclear ERs-mediated signaling pathways.

EPIGENETIC MODIFICATIONS: PcG
PROTEINS AND TrxG PROTEINS

Epigenetic regulation is a dynamic process, which integrates
environmental changes and enables cellular plasticity. As a result,
it is involved in various pathologies related to environmental
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exposure to toxins. Proteins that carry out these epigenetic
modifications are classified as “writers”, “readers”, and “erasers”
(Figure 1). Epigenetic writers catalyze the addition of chemical
groups onto either histone tails or onto the DNA itself (Cosgrove,
2012). These modifications are known as epigenetic marks
(Vermeulen et al., 2010; Yun et al., 2011). Among them, PcG
and TrxG proteins function as crucial epigenetic “writers” that
regulate developmental gene expression in a variety of tissues and
organs (Figure 2; Ringrose and Paro, 2007; Schuettengruber et al.,
2007).

Polycomb group proteins form multimeric complexes that
exert their functions by modifying chromatin structure and
by regulating the deposition and recognition of multiple post-
translational histone modifications (Morey and Helin, 2010).
Two major PcG protein complexes have been described. The
first complex, named polycomb repressive complex 1 (PRC1)
is composed of four submits as shown in Figure 2. The
second complex PRC2 consists primarily of EZH2, which is
the catalytic core protein, EED, and SUZ12 (Figure 2). PRC2
methylates H3K27 via its EZH2 subunit. This modification,
in turn, provides a binding site for the chromodomain-
containing Pc subunit of PRC1, which subsequently leads to
ubiquitination of H2AK119 via its Ring1a/1b subunit (Wang
et al., 2004; Lehmann et al., 2012; Figure 2). In recent years,
these proteins have raised considerable interest, due to their
regulatory mechanisms and for the variety of key roles they
play in normal cellular and disease processes (Villa et al.,
2007; Pasini et al., 2010; Ntziachristos et al., 2012; Mozzetta
et al., 2014; Serresi et al., 2016). For instance, EZH2 regulates
chromatin structure and chromosome architecture at their target
loci (Table 1) through canonical and non-canonical activity
(Figure 3).

Trithorax group proteins also function in multi-subunit
complexes (Figure 2), confer heritable memory by sustaining
active gene expression states, but they antagonize the function
of the PcG (Schuettengruber et al., 2007, 2011; Steffen and
Ringrose, 2014). For example, H3K4 trimethylation inhibits
PRC2-mediated H3K27 trimethylation (Schmitges et al.,
2011).

EPIGENETIC TARGETS IN RESPONSE
TO ENVIRONMENTAL FACTORS IN
SOME TISSUES

The process of developmental programming exhibits a high
degree of epigenetic plasticity, which is modifiable by intrinsic
and extrinsic factors (Walker and Ho, 2012). However, when the
in utero environment is suboptimal, permanent developmental
reprogramming of the epigenetic targets could take place.
Adverse environmental exposures during development can alter
susceptibility later in life to adult diseases, including UFs
(Cook et al., 2005, 2007; Greathouse et al., 2012). Increasing
evidence suggests that early exposure to EDCs induces epigenetic
changes in context to epigenetic regulated target genes in
some tissues (Cook et al., 2005; Wong et al., 2015). For
instance, neonatal exposure of CD-1 mice to EDCs such as
DES (Walker and Ho, 2012; Gibson and Saunders, 2014),
induces uterine adenocarcinoma in aging animals, concomitantly
inducing hypomethylation of nucleosome binding protein1
(Nsbp1) promoter CpG Island (CGI) in the uteri which leads
to persistent overexpression throughout life. Since the Nsbp1
encodes a nuclear protein similar to the HMG 14, this
protein may alter the gene expression pattern in utero, in

FIGURE 1 | Histone modification, DNA methylation, and non-coding RNA alter gene expression pattern. Epigenetic writers catalyze the chemical
modifications of amino acids on histones or the cytosine of DNA. Epigenetic erasers catalyze the removal of these modifications and epigenetic readers recognize
the modifications and recruit large macromolecular complexes to the chromatin template. Ac, Acetyl; M, Metyl; C, protein complex.
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FIGURE 2 | Transcriptional regulation by PRC1, PRC2, and TrxG chromatin complex. (A) Transcriptional regulation by PRC1 and PRC2 complex. PRC1
ubiquitinate H2A at lysine 119 (H2AK119ub). PRC2 trimethylates lysine 27 on histone 3 (H3K27me3). Experimental study suggests that H3K27me3 generated by
PRC2 facilitates compaction of chromatin leading to the repression of gene expression. The CBX subunit of the PRC1 recognizes H3K27me3, and subsequently
RING1A/1B subunits of the PRC1 ubiquitinate H2AK119 to facilitate the maintenance of the repressed state. H3K27 demethylases JMJD3 and UTX demethylate
methylated H3K27. (B) Transcriptional regulation by TrxG complex. TrxG trimethylates histone 3 lysine (H3K4me3) leading to activate gene expression.

response to early life EDC exposure leading to an increased
risk of uterine cancer in adulthood (Tang et al., 2008). In
rat mammary gland, prenatal exposure to BPA, another EDC,
alters the epigenome and increases the propensity to neoplastic
development. Accordingly, BPA exposure led to higher levels
of MLL mediated epigenetic mark H3K4 trimethylation at
the transcriptional initiation site of the alpha-lactalbumin
gene, concurrently enhancing mRNA expression of this gene
(Dhimolea et al., 2014). The protein encoded by this gene plays
an important role in galactose metabolism. In addition, using
a rat model for developmental reprogramming of susceptibility
to prostate carcinogenesis (Yean Wong et al., 2015), neonatal
exposure to BPA significantly upregulated (>100-fold) the
expression of Scgb2a1 in the prostate of adult rats via H3
lysine 9 acetylation. Importantly, Secretoglobin, Family 2A,
Member 1 (Scgb2a1) encodes a component of prostatein, a major
androgen-binding protein secreted by rat prostate, and hence
suggests potential implications for cancer risk and response to
chemotherapeutics associated with prostatein binding (Wong
et al., 2015).

ANIMAL MODEL FOR DEVELOPMENTAL
REPROGRAMMING OF SUSCEPTIBILITY
TO UF PATHOGENESIS

Although there are several UF developmental models available
(Hassan et al., 2009; Friel et al., 2010; Prizant et al., 2013; Mas
et al., 2015), the best experimental animal model for studying UFs
in response to early life adverse environmental exposure is the

Eker rat model (Cook et al., 2005; Walker and Ho, 2012). Eker rats
carry a germ-line mutation in the tuberous sclerosis complex-2
(Tsc2) tumor suppressor gene (Cook and Walker, 2004). In this
Eker rodent model, the high spontaneous incidence of smooth
muscle tumors of the uterus provides a unique opportunity to
study the molecular mechanisms underlying the development
of these clinically important neoplasms (Everitt et al., 1995).
Using this model, Dr. Walker’s group demonstrated that early
life exposure to EDCs including DES or genistein, a natural
isoflavone phytoestrogen found in soybeans, increased tumor
penetrance (from 65% to >90%), tumor multiplicity and overall
size (Cook et al., 2005; Greathouse et al., 2012). This increased
penetrance induced by early life environmental exposure to EDCs
is associated with the reprogramming of estrogen-responsive
genes, which become hyper-responsive to the estrogen hormone
and promote the development of hormone-dependent UFs
(Greathouse et al., 2008; Walker and Ho, 2012).

ROLE OF EPIGENETIC “WRITERS” IN UF
DEVELOPMENT

Estrogen triggering genomic signaling in context to epigenetic
“writers” has recently been identified. Bhan et al. (2014)
demonstrate that EZH2 is transcriptionally induced by
estradiol in cultured breast cancer cells and in the mammary
glands of ovariectomized rats. Similar to estradiol, DES-
induced EZH2 expression is coordinated by ERs, MLLs and
CBP/P300. These studies suggest that EZH2 is potentially
dysregulated upon exposure to EDCs, and provides a direct
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TABLE 1 | List of EZH2-regulated genes.

Genes Tumor type Activation/repression Journal year

INK/ARF Non-specific Repression EMBO J. 2003

RAD51 Breast Repression Neoplasia; Cancer Cell 2005; 2011

ADRB2 Prostate Repression Cancer Cell 2007

BMPR1B Glioma Repression Cancer Cell 2008

CDH1 Prostate Repression Oncogene 2008

DKK1 Lung Repression Cancer Res. 2009

DARB2 Prostate Repression Nat. Med. 2010

VASH1 Ovarian Repression Cancer Cell 2010

CASZ1 Neuroblastoma Repression Cancer Res. 2011

CLU Neuroblastoma Repression Cancer Res. 2011

RUNX3 Neuroblastoma Repression Cancer Res. 2011

NGFR Neuroblastoma Repression Cancer Res. 2011

HOX Mantle cell lymphoma Repression Epigenetics 2013

ITGA2 Colon Repression PloS ONE 2014

RUNX1 Prostate Repression Oncotarget 2014

MDR Glioblastoma Repression Int. J. Clin. Exp. Pathol. 2014

MRP Glioblastoma Repression Int. J. Clin. Exp. Pathol. 2014

BCRP Glioblastoma Repression Int. J. Clin. Exp. Pathol. 2014

CDKN2A Hepatocellar carcinoma Repression Mol. Cancer Res. 2014

E2F1 Hepatocellar carcinoma Repression Mol. Cancer Res. 2014

Notch2 Hepatocellar carcinoma Repression Mol. Cancer Res. 2014

TP53 Hepatocellar carcinoma Repression Mol. Cancer Res. 2014

E-cadherin Renal Repression BJU Int. 2014

DCK Melanoma Repression Nat. Commun. 2015

AMD1 Melanoma Repression Nat. Commun. 2015

WDR19 Melanoma Repression Nat. Commun. 2015

c-myc Breast Activation Mol. Cell Biol. 2007

cyclinD1 Breast Activation Mol. Cell Biol. 2007

TNF Breast Activation Molecular Cell 2011

IL6 Breast Activation Molecular Cell 2011

IL8 Breast Activation Molecular Cell 2011

AR Prostate Activation Science 2012

EZH2 is involved in regulation of gene expression through repressed or activated mechanism.

link between EDC-induced nuclear hormone receptor signaling
and modulation of the epigenetic machinery (Bhan et al.,
2014).

Until recently, little information has been available about
the role of PcG/TrxG proteins in the development UFs.
However, Dr. Walker’s group reported that DES is capable of
binding to membrane-associated ER to activate non-genomic
ER signaling, activating PI3K signaling and the kinase AKT.
Subsequently Phosphorylation of serine 21 of EZH2 by AKT
inactivates EZH2 leading to reduced levels of the repressive
trimethylation of H3K27 in the developing uterus (Bredfeldt
et al., 2010). A further study indicated that yet another
environmental estrogen, genistein, also induced PI3K/AKT
non-genomic ER signaling to the histone EZH2 (Greathouse
et al., 2012). These studies demonstrate the importance of
the interplay between non-genomic signaling and epigenetic
mechanisms in response to early life environmental exposure
to estrogen that may contribute to an increased risk of UF
development.

DNA DAMAGE REPAIR IN STEM CELLS

Accumulating evidence demonstrates that environmental
chemicals or their reactive intermediates can react with DNA
to modify DNA bases leading to DNA damage (Linder, 2012;
Moller et al., 2013). Exposures can act through an epigenetic
mechanism by which DNA damage repair is altered (Langie
et al., 2013). Currently, Med12 somatic mutation is the most
widely detected DNA mutation in human fibroid lesions. We
and others have detected a single nucleotide Med12 mutations
in up to 85% of sporadic fibroid lesions (Makinen et al., 2011a,b;
Markowski et al., 2012; McGuire et al., 2012; Halder et al.,
2014). Interestingly, distinct Med12 mutations are detected
in different fibroid lesions in the same uterus (Makinen
et al., 2011b). This strongly suggests that the emergence of
each Med12 mutation is an independent event in an altered
myometrial stem cells. It is possible that some risk factors
attenuate key DNA damage repair gene function leading to
reduced myometrial DNA repair capacity. This reduction in the
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FIGURE 3 | Role of EZH2 in genomic signaling through canonical and
non-canonical activity. EZH2 confers long-term, heritable memory by
sustaining silent gene expression states. In addition to its role as epigenetic
modifier, EZH2 also works as transcriptional co-activators through
non-canonical signaling pathway.

DNA repair capacity may eventually cause the emergence of
mutations such as Med12 in myometrial stem cells converting
them into fibroid tumor-forming stem cells; and thereby, leading
to the development of UFs (Figure 4). In a mouse model that
conditionally expresses a Med12 missense variant (c. 131G > A),
it has been demonstrated that this alteration alone promotes
fibroid formation and drives genomic instability (Mittal et al.,
2015).

A comparative analysis of dysfunctional DNA repair capacity
in stem cells from fibroid tissues or at-risk myometrium
with fibroid versus stem cells from normal myometrium
has not yet been conducted. However, Chang et al. (2011)
reported that BTICs exhibited increased EZH2 expression
which was linked to decreased expression of key DNA
repair gene RAD51. Therefore, accumulation of recurrent
Raf-1 proto-oncogene, serine/threonine Kinase (RAF1) gene
amplification in BTICs occurred, which activates p-ERK-
β-catenin signaling to promote BTIC expansion (Chang et al.,
2011). It has been shown that both human myometrial
and UF tissues contain side population (SP) cells with
progenitor/stem cell properties (Ono et al., 2007, 2012, 2013;
Mas et al., 2012). We recently isolated human surface marker-
specific myometrial and fibroid stem cells. Using Stro-1/CD44

FIGURE 4 | Early life adverse environmental exposure compromises
DNA damage repair system in myometrial stem cells through
epigenetic regulation eventually leading DNA instability and mutations
and subsequent formation of UFs.

surface markers, we were able to isolate stem cells from
adjacent myometrium and human fibroid tissues using the
magnetic beads approach (Mas et al., 2015). In vitro Stro-
1+/CD44+ myometrial cells exhibit the ability to differentiate
into adipocytes, osteocytes, and chondrocytes with the functional
capacity to form fibroid-like lesions in a xenotransplantation
mouse model. In the future, we will compare the DNA repair
capacity of Stro-1+/CD44+ myometrial stem cells from normal
human myometrium versus at-risk myometrium tissues or
fibroids.
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CELL-DERIVED EXOSOMES: ROLES IN
TUMOR DEVELOPMENT AND
PROGRESSION

Emerging evidence consistently demonstrates that exosomal
miRNAs can be reprogrammed by environmental factors
(Goustard-Langelier et al., 2013; Shah et al., 2016). Exosome are
cell-derived small sized vesicles (40–150 nm), present in many
biological fluids (Pan et al., 1985; Simons and Raposo, 2009).
Exosomes are either released from the cells when multivesicular
bodies fuse with plasma membrane or released directly from the
plasma membrane. Emerging evidence indicates that exosomes
contain a range of biological molecules, including mRNA,
microRNA, long non-coding RNAs, proteins, lipids, molecular
chaperones, and signaling molecules (Skog et al., 2008), as
well as involvement in many biological events including cancer
progression (Kogure et al., 2011; Luga et al., 2012). Importantly,
the molecular signatures of exosomes are specific to each tissue
type, providing an alternative option for clinical applications
(Nawaz et al., 2014).

Exosomes exhibit fundamental paracrine mechanisms that
mediate cell-to-cell communication and play a role in the transfer
of messages from one cell to another (Simons and Raposo, 2009;
O’Brien et al., 2013). Exosomes are important players in the
regulation of physiological as well as pathological processes in our
body - depending on their content, they can induce activation,
proliferation, differentiation, or apoptosis of the recipient cells
(Roma-Rodrigues et al., 2014; Ung et al., 2014). In cancer,
this cell-to-cell communication leads to increased proliferation,
motility, induction of invasive properties of the recipient cells, as
well as conferring drug resistance (Kahlert and Kalluri, 2013).

Although the role of exosomes in tumor development is
not well understood, some studies have highlighted a possible
role in tumor development and progression. Exosomes with a
specific surface protein (glypican-1) were found to be detected
in the serum of patients with pancreatic cancer, distinguishing
healthy subjects from those with benign pancreatic disease
(Melo et al., 2015). Melanome exosomes educate bone marrow
progenitor cells toward a pro-metastatic phenotype via MET, and
exosome-mediated transfer of the oncoprotein. MET functions
as a key regulator of bone marrow education, mobilization,
and metastatic progression (Peinado et al., 2012). The exosomes
from normal and abnormal cells differ in their cargo content,
and potentially in their functions. For instance, breast cancer
exosomes perform cell-independent miRNA biogenesis and alter
the transcriptome of receipt cells in a Dicer-dependent manner
(Melo et al., 2014).

Uterine Fibroids are thought to be monoclonal tumors arising
from the myometrium, and tumor stem cells are considered
to play pivotal roles in the tumorigenesis of UFs. It is
possible that cell-to-cell interaction between myometrial stem
cells and differentiation cells is involved in the development
of UFs. Although the role of myometrial stem cell-derived
exosomes is unknown, increasing, studies have suggested that
stem cell-derived exosomes containing important effectors of
Wnt (Luga et al., 2012), Hedgehog (Gradilla et al., 2014), and
β-catenin (Chairoungdua et al., 2010), may play a potential

role in maintaining stem cell characteristics. Cancer stem
cell-derived exosomes contain distinct biomolecules as compared
to exosomes derived from normal stem cells indicating the
important role of exosomal miRNA content from cancer stem
cells in cancer progression and development. For instance, gastric
cancer tissue-derived mesenchymal stem cells favor gastric cancer
progression by transferring exosomal miRNAs to gastric cancer
cells and promote their proliferation and migration (Wang
et al., 2014). Similarly, glioma-associated stem cells produce
substantial amounts of exosomes which leads to sustained
malignant properties of both glioma cells and glioma stem
cells. Moreover, a recent study has shown that exosomes from
bone marrow-derived mesenchymal stem cells transport tumor
regulatory miRNAs, anti-apoptotic proteins, and metabolites
that promote breast tumor growth (Vallabhaneni et al., 2015).
These studies suggest that stem cell-derived exosomes contain
important molecules that promote tumor progression.

The importance of stem cell-derived miRNAs in response to
environmental factors has recently been identified (Goustard-
Langelier et al., 2013; Shah et al., 2016). Shah et al. (2016)
determined the effects of the chemoprotective fish oil/pectin
diet on miRNAs in colonic stem cells obtained from Lgr5-
EGFP-IRES-creER knock-in mice. They demonstrated that 26
miRNAs were differentially expressed in Lgr5 (high) stem
cells as compared to Lgr5 (negative) differentiated cells. Fish
oil/pectin treatment up-regulated miR-19b, miR-26b and miR-
203 expression as compared to corn oil plus cellulose (CCA)
specifically in Lgr5 (high) cells. They further demonstrated that
only miR-19b and its indirect target PTK2B were modulated
by the fish oil/pectin diet in Lgr5 (negative) cells. In addition,
rat neural stem cells/neural progenitors (NSC) proliferation and
differentiation were dually altered by the in utero polyunsaturated
fatty acid supply, along with marked alterations in miRNA
expression (Goustard-Langelier et al., 2013). Although the role
of exosomes in the pathogenesis of UFs is unknown, we recently
isolated myometrium stem cells from adult uteri early life
exposed to DES. These cells will serve as a tool in determining
how early life environmental exposure alters stem cell derived
exosomal cargo and thereby leads to an increased risk of UF
pathogenesis.

CONCLUDING REMARKS

Currently, there is a remarkable lack of knowledge regarding
the involvement of chromatin assembly in the process by
which adverse environmental exposures increase the overall
risk of UF development. The precise mechanism underlying
EDC-dependent effects on myometrial cell physiology are
not adequately understood. Accordingly, in response to EDC
administration, no single PcG or TrxG-target genes have been
discovered in myometrium tissues as well as in myometrial stem
cells (Yang et al., 2015a). In addition to EZH2 “writer”, many
other epigenetic proteins that play a role in UF development,
need to be investigated. High throughput epigenetic analysis
such as ChIP-seq are needed to determine locus specific
and/or genome-wide epigenetic modifications in myometrial
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stem cells and tissues. A better understanding of these changes
in myometrial stem cells will lead to the mechanistic plausibility
as to the role of epigenetic regulation in mediating risk and
tumorigenesis and the development of new stem cell-directed
therapies for patients with UFs.
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