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Mapping the pathways that give rise to metastasis is one of the key challenges of breast cancer
research. Recently, several large-scale studies have shed light on this problem through analysis of
gene expression profiles to identify markers correlated with metastasis. Here, we apply a protein-
network-based approach that identifies markers not as individual genes but as subnetworks
extracted from protein interaction databases. The resulting subnetworks provide novel hypotheses
for pathways involved in tumor progression. Although genes with known breast cancer mutations
are typically not detected through analysis of differential expression, they play a central role in the
protein network by interconnecting many differentially expressed genes. We find that the
subnetwork markers are more reproducible than individual marker genes selected without
network information, and that they achieve higher accuracy in the classification of metastatic
versus non-metastatic tumors.
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Introduction

Distant metastases are the main cause of death among breast
cancer patients (Weigelt et al, 2005). Clinical and pathological
risk factors, such as patient age, tumor size, and steroid
receptor status, are commonly used to assess the likelihood of
metastasis development. When metastasis is likely, aggressive
adjuvant therapy can be prescribed which has led to significant
decreases in breast cancer mortality rates (Weigelt et al, 2005).
However, for the majority of patients with intermediate-risk
breast cancer, the traditional factors are not strongly predictive
(Wang et al, 2005). Accordingly, approximately 70-80%
of lymph node-negative patients may undergo adjuvant
chemotherapy when it is in fact unnecessary (van ‘t Veer
et al, 2002). Moreover, it is believed that many of the current
risk factors are likely to be secondary manifestations rather
than primary mechanisms of disease. An ongoing challenge is
to identify new prognostic markers that are more directly
related to disease and that can more accurately predict the risk
of metastasis in individual patients.
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In the recent years, an increasing number of disease markers
have been identified through analysis of genome-wide
expression profiles (Golub et al, 1999; Alizadeh et al, 2000;
Ben-Dor et al, 2000; Ramaswamy et al, 2003). Marker sets are
selected by scoring each individual gene for how well its
expression pattern can discriminate between different classes
of disease. In breast cancer, two large-scale expression studies
by van ‘t Veer et al (2002) and Wang et al (2005) each identified
a set of ~70 gene markers that were 60-70% accurate for
prediction of metastasis, rivaling the performance of clinical
criteria. Strangely, however, these marker sets shared only
three genes in common, with the first set of markers predicting
metastasis less successfully when scoring patients from the
second study, and vice versa (Ein-Dor et al, 2006). One
possible explanation for the different marker sets is that
changes in expression of the relatively few genes governing
metastatic potential may be subtle compared to those of the
downstream effectors, which may vary considerably from
patient to patient (Symmans et al, 1995; Ein-Dor et al, 2005;
Tomlins et al, 2005).
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Due to these types of difficulties, many groups have
hypothesized that a more effective means of marker identifica-
tion may be to combine gene expression measurements over
groups of genes that fall within common pathways. Several
approaches have been proposed to score known pathways by
the coherency of expression changes among their member
genes (Pavlidis et al, 2002, 2004; Doniger et al, 2003; Draghici
et al, 2003; Subramanian et al, 2005; Tian et al, 2005; Wei and
Li, 2007). Known pathways are drawn from sources such as the
Gene Ontology (GO) (Harris et al, 2004) and KEGG (Kanehisa
et al, 2004) databases. Recently, pathway-based analysis has
been extended to perform classification of expression profiles
and applied to discriminate irradiated from non-irradiated
yeast cells (Rapaport et al, 2007). However, a remaining hurdle
to pathway-based analysis is that the majority of human genes
have not yet been assigned to a definitive pathway.

The recent availability of large protein networks provides one
means to at least partially address these challenges. Using
protein-protein interaction networks derived from literature, the
yeast two-hybrid system, or mass spectrometry (reviewed by
Mendelsohn and Brent, 1999), a number of approaches have
been demonstrated for extracting relevant subnetworks based on
coherent expression patterns of their genes (Ideker et al, 2002;
Chen and Yuan, 2006) or on conservation of subnetworks across
multiple species (Sharan et al, 2005). Each subnetwork is
suggestive of a distinct functional pathway or complex, yielding
many known and novel pathway hypotheses in organisms for
which sufficient protein interaction data have been measured.
Large protein networks have only recently become available for
human (Peri et al, 2003; Ramani et al, 2005; Rual et al, 2005; Stelzl
et al, 2005), enabling new opportunities for elucidating pathways
involved in major diseases and pathologies (Calvano et al, 2005).

Here, we pursue a protein-network-based approach for
identifying markers of metastasis within gene expression
profiles, which can be used to identify genetic alterations and
to predict the likelihood of metastasis in unknown samples. The
markers in question are not encoded as individual genes or
proteins, but as subnetworks of interacting proteins within a
larger human protein-protein interaction network. We find that
the network-based method has several advantages over previous
analyses of differential expression. First, the resulting subnet-
works provide models of the molecular mechanisms underlying
metastasis. Second, although genes with known breast cancer
mutations are typically not detected through analysis of
differential expression, such as P53, KRAS, HRAS, HER-2/neu,
and PIK3CA, they play a central role in the protein network by
interconnecting many expression-responsive genes. Third, the
identified subnetworks are significantly more reproducible
between different breast cancer cohorts than individual marker
genes selected without network information. Finally, network-
based classification achieves higher accuracy in prediction, as
ascertained by selecting markers from one data set and applying
them to a second independent validation data set.

Results and discussion

Overview of subnetwork marker identification

We applied a protein-network-based approach to analyze the
expression profiles of the two cohorts of breast cancer patients
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previously reported by van de Vijver et al (2002) and Wang et al
(2005). Both sets of expression profiles had been obtained from
primary breast tumors but hybridized to different microarray
platforms (Agilent oligonucleotide Hu25K microarrays and
Affymetrix HG-U133a GeneChips, respectively). We restricted
our analysis to the 8141 genes present in both data sets. For 78
patients in van de Vijver et al (2002) and 106 in Wang et al
(2005), metastasis had been detected during follow-up visits
within 5 years of surgery. Profiles for these patients were
assigned to the class ‘metastatic; whereas profiles for the
remaining 217 and 180 patients were labeled ‘non-metastatic.’ To
obtain a corresponding human protein-protein interaction
network, we assembled a pooled data set comprising 57235
interactions among 11203 proteins, integrated from yeast
two-hybrid experiments (Rual et al, 2005; Stelzl et al, 2005),
predicted interactions via orthology and co-citation (Ramani
et al, 2005), and curation of the literature (Peri et al, 2003;
Alfarano et al, 2005; Joshi-Tope et al, 2005).

To integrate the expression and network data sets, we
overlaid the expression values of each gene on its correspond-
ing protein in the network and searched for subnetworks
whose activities across the patients were highly discriminative
of metastasis. This process involved several scoring and search
steps, as illustrated in Box 1 and described further in Materials
and methods. Briefly, a candidate subnetwork was first scored
to assess its activity in each patient, defined by averaging its
normalized gene expression values. This step yielded 295 and
286 activity scores per subnetwork, corresponding to the
number of breast cancer patients in the two data sets,
respectively. Second, the discriminative potential of a candi-
date subnetwork was computed based on the mutual
information between its activity score and the metastatic/
non-metastatic disease status over all patients. Significantly
discriminative subnetworks were identified by comparing
their discriminative potentials to those of random networks.

Subnetwork markers correspond to the hallmarks
of cancer

A total of 149 and 243 discriminative subnetworks were
identified in van de Vijver et al (2002) and Wang et al (2005)
data sets (consisting of 618 and 906 genes, respectively,
and based on a panel of three separate tests for statistical
significance—see Materials and methods). A compendium
including all of these subnetworks is available online via the
Cell Circuits database (Mak et al, 2007) (www.cellcircuit-
s.org), which provides each subnetwork in graphical (GIF) and
machine-readable (SIF) formats. Each significant subnetwork
may be viewed as a putative marker for breast cancer
metastasis, which is not based on a single gene but rather on
the aggregate behavior of genes connected in a functional
network. This feature is a significant departure from conven-
tional expression-alone analysis, which does not provide
functional insight into the identified markers.

In all, 47.3% (van de Vijver et al, 2002) and 65.4% (Wang
et al, 2005) of the discriminative subnetworks were enriched
for proteins functioning in a common biological process as
annotated by GO (hypergeometric test with a false discovery
rate of 5%). To test whether this functional enrichment might
be solely due to network topology, we extracted 1000 random
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Box 1 Schematic overview of subnetwork identification
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Protein—protein interaction networks are used to assign sets of genes to discrete subnetworks. Gene expression profiles of tissue samples drawn from each type of
cancer (i.e., metastatic or non-metastatic) are transformed into a ‘subnetwork activity matrix’. For a given subnetwork My in the interaction network, the activity is a
combined z-score derived from the expression of its individual genes. After overlaying the expression vector of each gene on its corresponding protein in the
interaction network, subnetworks with discriminative activities are found via a greedy search. Significant subnetworks are selected based on null distributions
estimated from permuted subnetworks (see Materials and methods). Subnetworks are then used to identify disease genes, and the subnetwork activity matrix is

also used to train a classifier.
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subnetworks of the same size as the identified discriminative
subnetworks, but without regard to the expression profiles.
In the two sets of random subnetworks, 25.4+40.6 and
26.540.1% (mean+s.d.) were enriched for proteins with a
common biological process. Our higher rate suggests that
integrating protein networks with cancer expression profiles is
able to identify proteins coordinately functioning in pathways.
Among the discriminative subnetworks, 66 identified from
van de Vijver et al (2002) and 153 identified from Wang et al
(2005) corresponded to signaling of cell growth and survival,
cell proliferation and replication, apoptosis, cell and tissue
remodeling, circulation and coagulation, or metabolism (see
Figure 1 for some example subnetworks; see CellCircuits
database for all functional annotations). Together, these
processes contribute to the major events that have been
implicated in the progression of cancer (Hanahan and
Weinberg, 2000). Many extracellular matrix and inflammatory
proteins related to tumor aggression, such as matrix metallo-
peptidase 9 (MMP9 in Figure 1D) and interleukins (Figure 1H),
were also included in the identified subnetworks. Approxi-
mately 88% of the 149 subnetworks identified from van de
Vijver et al (2002) had higher activity levels in metastatic breast
tumors than in non-metastatic ones, whereas the 243 subnet-
works identified from Wang et al (2005) were split roughly
equally in their direction of activity change (124 versus 119).

Subnetwork markers have increased
reproducibility across data sets

Next, we examined the agreement between markers identified
from the two breast cancer cohorts using our network-based
approach. As shown in Figure 2A, the subnetwork markers
were significantly more reproducible between data sets than
were individual marker genes selected without network
information (12.7 versus 1.3%). In terms of biological
function, extracellular signal-regulated kinase 1 (MAPK3)
was reproducible as a central node in subnetworks identified
from both data sets (Figure 2C versus 2D). Figure 2E and F
illustrate two other subnetworks that were discriminative in
both data sets, although there was less consistency in
the expression levels of genes comprising these subnetworks.
For instance, PKMYTT1 is significantly differentially expressed
in van de Vijver et al (2002) but not in Wang et al (2005)
(Figure 2E; diamond versus circle), whereas CD44 is sig-
nificantly differentially expressed in Wang et al (2005) but not
in van de Vijver et al (2002) (Figure 2F). However, by
aggregating the expression ratios of these genes with their
network neighbors, the subnetworks containing these genes
are found to be significant in both data sets.

One concern is that the increased overlap between subnet-
work markers might be expected, given that the number of all
possible subnetworks is smaller than the number of gene sets
(selected irrespective of the network). However, the observed
overlap between subnetworks was also significantly greater
than that achieved among 1000 same-size sets of connected
subnetworks chosen at random (P<0.002). Another question
is why, even using subnetworks, the percentage overlap is not
larger. One reason may be the difference in clinical design of
the two data sets. While all of patients in Wang et al (2005) had
lymph node-negative breast cancer, approximately half of the
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patients in van de Vijver et al (2002) were lymph node-positive
and underwent adjuvant therapy before expression profiling.
Another explanation may be the difference in microarray
platforms or the incompleteness of the protein-protein
interaction network, which covered only ~40% of the gene
expression levels measured in either study.

Subnetwork markers increase the classification
accuracy of metastasis

We next tested the predictive performance of subnetwork
markers during classification of a new expression profile as
metastatic or non-metastatic. To use the subnetworks for
classification, the expression levels of the genes in each
subnetwork were averaged to compute a subnetwork activity
score, in the same way the activity score was computed in
identifying the subnetwork markers originally (see above).
These activity scores were then used as feature values by a
classifier based on logistic regression. At a fixed sensitivity of
90%, the subnetwork markers achieved 70.1% (van de Vijver
et al,2002) and 72.2% (Wang et al, 2005) accuracy, measured
as the percentage of correct classifications using the technique
of five-fold cross-validation within each data set. This
accuracy compares favorably with those reported in the
original studies (van de Vijver et al, 2002; Wang et al, 2005)
(62 and 63 %; see Supplementary Table S1).

In the above five-fold cross-validation, one-fifth of the
samples were designated as ‘test’ data and withheld during
classifier training (in which the relative weights of each
subnetwork feature are determined). However, the subnetwork
features themselves were identified using all microarray
samples before classification, which introduces possible
circularity into the wvalidation procedure. To achieve an
unbiased evaluation of subnetwork performance, we further
tested the subnetwork markers selected from one cohort of
breast cancer patients as predictors of metastasis on the other
cohort. This same cross-data set analysis was also run using
individual marker genes according to the conventional method
(controlled for size by providing the classifier with the set of
618 or 906 top discriminative genes in van de Vijver et al (2002)
or Wang et al (2005), respectively, which is the same number of
genes covered by the subnetwork markers; see Materials and
methods). Similar to the procedure for the subnetwork
markers, five-fold cross-validation was performed on one data
set using the genes selected from the other data set.

At 90% sensitivity, the subnetwork markers from van de
Vijver et al (2002) achieved 48.8% accuracy in classifying
samples in Wang et al (2005), and 55.8% accuracy for the
reciprocal test. The single-gene markers achieved 45.3 and
41.5% accuracies, respectively. Although all marker sets have
decreased performance in predicting metastasis in an inde-
pendent data set, the accuracies remain significantly higher
than random guesses (31.2 and 39.7 %, respectively). To show
that the better performance was not dependent on the chosen
classification algorithm, we evaluated the markers by support
vector machines (SVM) (Chang and Lin, 2001), which led to
the same trends (Supplementary Figure S1).

To capture performance over the entire range of sensitivity/
specificity values, we also analyzed the classifiers using the
AUC metric (area under ROC curve). As shown in Figure 2B

© 2007 EMBO and Nature Publishing Group
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Figure 1  Subnetworks enriched for the hallmarks of cancer. Example discriminative subnetworks from van de Vijver et al (2002) are shown in (A-E), whereas those
from Wang et al (2005) are shown in (F-K). Nodes and links represent human proteins and protein interactions, respectively. The color of each node scales with the
change in expression of the corresponding gene for metastatic versus non-metastatic cancer. The shape of each node indicates whether its gene is significantly
differentially expressed (diamond; P < 0.05 from a two-tailed ttest) or not (circle). The predominant cellular functions from Supplementary Figure 1 are indicated next to
each module. Known breast cancer susceptibility genes are marked by a blue asterisk.
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Figure2 Marker reproducibility and metastasis prediction performance. (A) Agreement in markers selected from the van de Vijver et al (2002) data set versus those
selected from Wang et al (2005). Blue bars chart the magnitude of overlap on the left axis; the red line charts the hypergeometric P-values of overlap on the right axis.
The first ‘single-gene’ analysis was performed by using the same number of top discriminative genes as the number of genes covered by subnetwork markers. The
second ‘single-gene’ analysis was performed by using the same number of top discriminative genes as those in the gene signatures published in van de Vijver et al
(2002) and Wang et al (2005). (B) AUC classification performance of subnetworks, individual genes, or modules from GO or MSigDB. The blue line charts the
performance of markers selected based on the Wang et al (2005) data set and tested on the van de Vijver et al (2002) data set; the pink line represents the reciprocal
test. The performance of the 1000 random subnetworks is denoted by its mean +s.d. (C and D) Erk1 (MAPK3) subnetworks in van de Vijver et al (2002) and Wang et
al (2005). (E and F) Example network motifs shared between subnetworks selected from the two cohorts. The left-hand side motif is from van de Vijver et al(2002) and
the right-hand side is from Wang et al (2005). (G and H) Examples of highly predictive subnetwork markers from Wang et al (2005). (I and J) Examples of highly
predictive subnetwork markers from van de Vijver et al (2002).

and Supplementary Figure S2, the subnetwork markers and 0.012 against 1000 sets of same-sized random subnet-
significantly outperformed the single-gene markers in both works on van de Vijver et al (2002) and Wang et al (2005),
data sets. Subnetwork classification performance was also respectively); strangely, performance of the conventional
higher than classifiers built on random subnetworks (P=0.046 classifiers was not (P=0.124 and 0.174, respectively).
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Finally, we compared the classification performance of
the subnetwork markers with markers based on predefined
groups of functionally related genes (Figure 2B). These
included 1446 sets of functionally related genes extracted
from GO and 522 from the Molecular Signatures Database
(MSigDB) (v1.0). Neither of these functionally related group-
ings performed as well as either the subnetwork markers or
individual genes. This finding might indicate that some of the
functional groupings relevant to breast cancer metastasis have
not yet been curated in the current pathway databases.

Beyond achieving better performance, the discriminative
subnetworks lend insight into the biological basis for why
samples are classified as metastatic or non-metastatic. For
instance, a single cell cycle-related subnetwork was identified
from Wang et al (2005), which could be used to predict the
metastatic outcome of ~60% of patients in van de Vijver et al
(2002) (Figure 2G). Thioredoxin (TXN), which was not
differentially expressed, mediated interconnections among many
cell mobility and DNA replication proteins that were differen-
tially expressed in Wang et al (2005), forming subnetworks that
were informative for metastasis in van de Vijver et al (2002) (see
Figure 2H for the TXN core motif shared in multiple subnet-
works). Conversely, several subnetworks identified from van de
Vijver et al (2002), such as the RAD54L-related proteasome
(Figure 2I) and a Ras-related subnetwork (RAB1A and RABI11A;
Figure 2J), were predictive for patients in Wang et al (2005).

Subnetwork markers are informative of
non-discriminative disease genes

Unlike conventional expression clustering or classification
methods, network-based analyses can implicate proteins with
low discriminative potential (e.g., those that are not differen-
tially expressed), if such proteins participate in a subnetwork
whose overall activity is discriminative. Such proteins can arise
within a significant subnetwork if they are essential for
maintaining its integrity, that is they are required to interconnect
many higher scoring proteins. This property is important for the
discovery of disease-causing genes, because the phenotypic
changes most indicative of breast cancer metastasis need not be
regulated at the level of expression (Turner et al, 2004).

Overall, 85.9 and 96.7% of the significant subnetworks
contained at least one protein that was not significantly
differentially expressed in metastasis (P>0.05 from a two-
tailed t-test). Many well-established prognostic markers of
breast cancer disease outcome, such as HER-2/neu (ERBB2),
Myc, and cyclin D1, were not present in gene signatures from
conventional expression-alone analysis (van ‘t Veer et al,
2002), but played a central role in the discriminative subnet-
works by interconnecting many expression-responsive
genes (see Figure 1C and J for examples and Supplementary
Figure S3 for all). Other examples are the SMAD family and
the phosphoinositide-3-kinase catalytic subunit (PIK3CA)
(Figure 1E, F, I, and K): changes in SMAD phosphorylation
have been linked to breast cancer metastasis (Kang et al,
2005), and somatic mutations in PIK3CA are associated with
constitutive upregulation of kinase activity in ~30% of breast
cancers (Bachman et al, 2004; Campbell et al, 2004).

To evaluate the power of a network-based method to
uncover disease genes, we assembled a list of 60 breast cancer

© 2007 EMBO and Nature Publishing Group
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susceptibility genes that had been reported as such in previous
literature and were also represented in our expression data sets
(de Jong et al, 2002; Lymberis et al, 2004; Online Mendelian
Inheritance in Man (OMIM)) (the complete list is provided in
Supplementary Table S2). We found that 32 out of 149
discriminative subnetworks from van de Vijver et al (2002)
and 27 out of 243 from Wang et al (2005) contained at least
one known cancer susceptibility gene (seven and five subnet-
works, respectively, contained two or more known suscepti-
bility genes). Some notable examples are RAD51 and TP53
shown in Figure 1A; ESR1 and TP53 in Figure 1B; ERBB2 in
Figure 1C; BRCAL in Figure 1F; ESR1, BRCA1, and CYP1Al in
Figure 1G; PIK3CA and HRAS in Figure 1I; GSTT1 in Figure 17J;
and KRAS and PIK3CA in Figure 1K.

We compared these levels of enrichment to a conventional
expression-alone analysis, which did not incorporate informa-
tion on pathway structure. As shown in Figure 3A and B,
subnetworks were significantly enriched with cancer suscept-
ibility genes, in contrast to genes identified by a conventional
analysis. Disease genes that can be only detected using
network information include TP53, KRAS, HRAS, ERBB2,
and PIK3CA.

Finally, we also examined the enrichment of the discrimi-
native subnetworks for a recently published list of 122 genes
with somatic mutations associated with breast cancer (Sjo-
blom et al, 2006) (71 of these were represented in the
expression data sets we examined). Genes in this list were
determined by DNA sequencing to have mutations in at least 1
of the 11 breast cancer cell lines, with no cancer cell line having
more than six mutant genes in common with any other cancer.
A total of 11 mutations mapped to proteins in the discrimina-
tive subnetworks (see Figure 3C-E for examples). Although
still higher than the conventional method in van de Vijver et al
(2002) (Supplementary Figure S4a), this enrichment was not
significant by either approach (P=0.434 for subnetwork
markers and 0.914 for single-gene markers). One explanation
could be that the cancer cell lines capture a different disease
state than that found in the population of patients surveyed by
microarray profiling. Only two genes (p53 and BRCA1)
reported in the sequencing study were linked with breast
cancer in Online Mendelian Inheritance in Man, perhaps
because the newly discovered mutations are rare or not
genetically transmissible.

Conclusions

Human interaction databases are growing dramatically
through systematic yeast two-hybrid and transcriptional
interaction screens (Kim et al, 2005). Increased coverage,
quality, and variety of human protein interaction data will, in
turn, enable further opportunities for molecular characteriza-
tion of human disease. Integrating other types of genome-wide
data, such as sequence, transcription factor binding, gene and
protein expression, or phenotypic information, holds further
promise for determining cause and effect relationships within
and between the network modules. At present, the success of
network-based pathway identification and classification sup-
ports the notion that cancer is indeed a ‘disease of pathways’
(Hanahan and Weinberg, 2000; Petricoin et al, 2005), and that

Molecular Systems Biology 2007 7



Network classification of breast cancer
H-Y Chuang et a/

A 250 23.33%
..10—4

2.00 \ 1
\ 1103
\ 11.67% "1072
1.00

\):/O +
0.00 + + 1

Single-gene Single-gene
markers markers
(control for size)

-
(42
o

Significance (P-value)

o
I3
o

%.Known susceptibility genes

Subnetwork
markers
(70-gene signature)

D

Expression level
L - .
Downregulated Upregulated

B 250
(2]
o 1104
% 2.00 | B
£ p108 2
%_ 1.50 2U70 | 5',
[0} [0}
3 1102 8
5 1.00 13-33% g
2]
c ~N T ES
3 0.50 \\ + 1071 c%’
(=
X
X \\O:/o
0.00 ; + g 1
Subnetwork Single-gene Single-gene
markers markers markers

(control for size) (76-gene signature)

CT,S,CR

(M)  Metabolism
(CT) Cell and tissue
remodeling

(CC) Circulation and
coagulation

(A) Apotosis

(S) Signaling of cell growth
and survival

(CR) Cell proliferation and
replication

Figure 3 Detection of 60 known disease genes in breast cancer. The enrichment of disease genes is shown for subnetworks or individual genes selected from van de
Vijver et al (2002) (A) or Wang et al (2005) (B). Blue bars chart the percentage of disease genes among all genes covered in the markers on the left axis; the red line
charts the hypergeometric P-values of enrichment on the right axis. Numbers above the bars are the recovery rates of the known susceptibility genes in each marker set.
(C-E) Example discriminative subnetworks containing genes with breast cancer mutations listed in Sjoblom et al. Mutation genes are marked by a plus sign.

the keys for understanding at least some of these pathways are
encoded in the protein network.

Materials and methods

Scoring subnetworks

A subnetwork is defined as a gene set that induces a single connected
component in the protein-protein interaction network. Given a
particular subnetwork M, let a represent its vector of activity scores
over the tumor samples, and let c represent the corresponding vector of
class labels (metastatic or non-metastatic). To derive a, expression
values g; are normalized to z-transformed scores z; which for
each gene 7 has mean p=0 and s.d. o=1 over all samples j (Box 1).
The individual z; of each member gene in the subnetwork are averaged
into a combined z-score, which is designated the activity a;. Many
types of statistic, such as the t or Wilcoxon score, could be used to
score the relationship between a and c. In this study, we define the
discriminative score S(M) as MlI(d’,c), the mutual information MI
between a’, a discretized form of a, and ¢

e Dy
SO =M = 39 Pl ) 108 )
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where x and y enumerate values of a and c, respectively, p(x, y) is the
joint probability density function (pdf) of @’ and ¢, and p(x) and p(y)
are the marginal pdf’s of a’ and c. To derive @’ from a, activity levels are
discretized into |log 2(#of samples) + 1] =9 equally spaced bins
(Tourassi et al, 2001). A rationale for using MI in cancer classification is
to capture potential heterogeneity of expression in cancer patients
(Tomlins et al, 2005), that is, differences not only in the mean but in the
variance of expression. For examples of the computation of MI see
Supplementary Figure S5. The particular gene set maximizing S(M) is
regarded as optimal for classification.

Searching for significant subnetworks

Given the discriminative score function S, a greedy search is performed
to identify subnetworks within the protein-protein interaction net-
work for which the scores are locally maximal. Candidate subnetworks
are seeded with a single protein and iteratively expanded. At each
iteration, the search considers addition of a protein from the neighbors
of proteins in the current subnetwork and within a specified network
distance d from the seed. The addition that yields the maximal score
increase is adopted; the search stops when no addition increases the
score over a specified improvement rate r. Given that the median
distance between any two proteins in the human protein-protein

© 2007 EMBO and Nature Publishing Group



interaction network is five, we set d=2 to provide a sufficient number
of neighbors while keeping the search local. The parameter ris chosen
as 0.05 to avoid over-fitting to the expression data used. The majority
of searches terminate due to the constraint on r; increasing the value of
d has only marginal effect on the results (data not shown).

To assess the significance of the identified subnetworks, three tests
of significance are performed. For the first test, we perform the same
search procedure over 100 random trials in which the expression
vectors of individual genes are randomly permuted on the network.
Such permutation disrupts the correlation between expression and
interaction. The score of each real subnetwork is indexed on the
‘global’ null distribution of all random subnetwork scores. The second
test indexes each real subnetwork score on a ‘local’ null distribution,
estimated from the scores of 100 random subnetworks initialized from
the same seed protein as the real subnetwork (the distribution is
assumed to be gamma-distributed; Goebel et al, 2005). Third, we test
whether the mutual information with the disease class is stronger than
that obtained with random assignments of classes to patients (Tian
et al, 2005). For the random model, these assignments are permuted in
20000 trials, yielding a null distribution of mutual information scores
for each trial; the real score of each subnetwork is indexed on this
null distribution. In this study, significant subnetworks are selected
that satisfy all three tests with P; <0.05, P,<0.05, and P;<0.00005,
according to the three different null distributions of S.

Classification evaluation

Logistic regression models (Agresti, 1990) are trained on the subnet-
work activity matrix (significant subnetworks versus patient samples)
and the original gene expression matrix (i.e., conventional classifica-
tion). Subnetwork markers or individual gene markers are selected
using the whole first data set (van de Vijver et al, 2002) and then tested
on the second data set (Wang et al, 2005); or vice versa. To measure
unbiased classification performance, the patient samples in the second
data set are divided into five subsets of equal size: three subsets are
used as the training set to build the classifier using markers from the
first data set, one subset is used as the validation set and the other
subset is used as the test set. The P-value of discriminative power to
classify training samples (Ps) is used to rank markers (subnetworks or
genes), after which the logistic regression model is built by adding
markers sequentially in increasing order of P-value. The number of
markers used in the classifier is optimized by evaluating its area under
ROC curve (AUC; see Swets et al, 2000 for details) on the validation set.
The final classification performance is reported as the AUC on the test
set using the optimized classifier. Each of the five patient subsets in the
second data set is evaluated in turn as the test set, with the other
four sets providing training and validation. The averaged AUC values
among the five test sets are reported as a final classification
performance for each marker set.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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