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Duchenne muscular dystrophy (DMD) is an irreversible muscle disease characterized
by a progressive loss of muscle function, decreased ambulation, and ultimately death
as a result of cardiac or respiratory failure. DMD is caused by the lack of dystrophin, a
protein that is important for membrane stability and signaling in excitable cells. Although
vascular smooth muscle cells (VSMCs) dysfunction occurs in many pathological
conditions, little is known about vascular smooth muscle function in DMD. We have
previously shown that striated muscle cells, as well as neurons isolated from dystrophic
(mdx) mice have higher intracellular Ca2+ ([Ca2+]i) and Na+ ([Na+]i) concentrations and
decreased cell viability in comparison with wild type (Wt). Experiments were carried out
in isolated VSMCs from mdx (a murine model of DMD) and congenic C57BL/10SnJ
Wt mice. We found elevated [Ca2+]i and [Na+]i in VSMCs from mdx mice compared
to Wt. Exposure to 1-oleoyl-2-acetyl-sn-glycerol (OAG), a TRPC3 and TRPC6 channel
activator, induced a greater elevation of [Ca2+]i and [Na+]i in mdx than Wt VSMCs. The
OAG induced increases in [Ca2+]i could be abolished by either removal of extracellular
Ca2+ or by SAR7334, a blocker of TRPC3 and TRPC 6 channels in both genotypes.
Mdx and Wt VSMCs were susceptible to muscle cell stretch-induced elevations of
[Ca2+]i and [Na+]i which was completely inhibited by GsMTx-4, a mechanosensitive
ion channel inhibitor. Western blots showed a significant upregulation of TRPC1 -3, -6
proteins in mdx VSMCs compare to age-matched Wt. The lack of dystrophin in mdx
VSMCs produced a profound alteration of [Ca2+]i and [Na+]i homeostasis that appears
to be mediated by TRPC channels. Moreover, we have been able to demonstrate
pharmacologically that the enhanced stretch-induced elevation of intracellular [Ca2+]
and concomitant cell damage in mdx VSMCs also appears to be mediated through
TRPC1, -3 and -6 channel activation.
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INTRODUCTION

Duchenne muscular dystrophy (DMD) is an X-linked inherited neuromuscular disorder caused
by mutations in the dystrophin gene (Hoffman et al., 1987). Dystrophin is localized in the
plasmalemma of excitable cells connecting the cytoskeleton of the cell to the extracellular matrix
(Ibraghimov-Beskrovnaya et al., 1992; Waite et al., 2012). While initial clinical manifestations
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of DMD are related to skeletal muscle weakness (Chakkalakal
et al., 2005), the development of dilated cardiomyopathy occurs
occasioning heart failure and death (Nigro et al., 1990) and a non-
progressive cognitive impairment has been observed in DMD
patients (Bresolin et al., 1994; Anderson et al., 2002). Disturbance
of intracellular [Ca2+] has been reported in skeletal muscle from
DMD patients (Lopez et al., 1987) and mdx mice (Turner et al.,
1988; Altamirano et al., 2013, 2014), in cardiac cells from mdx
mice (Mijares et al., 2014) and in cortical and hippocampal
neurons isolated from mdx mice (Lopez et al., 2016).

Although X-linked neuromuscular pathologies have been
extensively studied in striated muscle, the implications of
lack of dystrophin in smooth muscle in patients with DMD
and mdx mice have not been adequately studied. Studies
on mdx dystrophic gastric and intestinal smooth muscle
cells have revealed impaired nitrergic relaxation and an
increase in spontaneous tone, which have been attributed
to the impairment of intracellular Ca2+ homeostasis (Mule
et al., 1999; Baccari et al., 2000; Mule and Serio, 2001).
In addition, in DMD patients, dysfunction in small airways
(Begin et al., 1980), constipation (Nowak et al., 1982), gastric
dilatation, intestinal pseudo-obstructions and acute gastric
dilatation (Leon et al., 1986; Barohn et al., 1988; Jaffe
et al., 1990) have been described. Furthermore, endothelial
cell damage, platelet adhesion, and aggregation in small
blood vessels have been observed in DMD patients (Miike
et al., 1987). However, the functional implications of the
lack of dystrophin in vascular smooth muscle cells (VSMCs)
are mostly unknown.

In the current study, we show for the first time that
dystrophin deficiency of VSMCs leads to dysfunctional
regulation of [Ca2+]i and [Na+]i, which appears to be
mediated by an influx of these ions through the transient
receptor potential canonical (TRPC) channels. Furthermore,
mechanical stretch elicited a further elevation of [Ca2+]i in
VSMCs from mdx compared to Wt, which was inhibited
by the removal of extracellular calcium and by TRPC
channel blockade.

MATERIALS AND METHODS

Animal Model
Wt (C57BL/10SnJ) and mdx (CS7BL/10ScSn-mdx) male
(6 months old) mice were obtained from breeding colonies
at the Mount Sinai Medical Center, from founders initially
obtained from the Jackson Laboratory (Bar Harbor, ME).
All protocols used in the study were performed following
the recommendations in the Guide for the Care and
Use of Laboratory Animals of the National Institutes
of Health and approved by the institution (IACUC
Protocol #19090).

Primary Culture of VSMC
Mdx and their Wt non-dystrophic littermates were euthanized
using CO2 or cervical dislocation. VSMCs were isolated using a
modification of a previously described method (Ray et al., 2001).

In brief, the aorta was dissected from its origin at the left
ventricle to the iliac bifurcation, and the vessel was cut and
placed in Hank’s Balanced Salt Solution (HBSS) (Thermo Fisher
Scientific, FL, United States). Using a dissecting microscope,
the fat tissue and the adventitia were removed; then, the aorta
was irrigated with HBSS plus 2.5 µg/mL Fungizone (Thermo
Fisher Scientific, FL, United States). The vessel was open
longitudinally, and with sterile cotton swabbed, the endothelial
layer of cells was gently removed and then cut into small
segments (around 4 mm2 each). The aorta segments were
incubated in HBSS containing 1 mg/ml collagenase type 2
(Worthington Biochemical Corporation, NJ, United States) for
30 min. Then, the solution containing collagenase type 2 was
replaced with a solution containing 1 mg/ml collagenase type 2
and 0.5 mg/ml elastase (Worthington Biochemical Corporation,
NJ, United States). After the second digestion step, the remaining
tissue was mechanically dissociated in the dish by flushing
through a series of decreasing size fire-polished pipettes. Fresh
HBSS was then added to stop the enzymatic digestion, and
the cell suspension was centrifugated at 600 × g. The cell
pellet was resuspended and centrifugated again at 600 × g
and then transferred to a Matrigel-coated 24-well cell culture
plate containing smooth muscle cell growth medium (SGM-2,
Lonza, GA, United States). Isolated VSMC were cultured in a
humidified atmosphere (37◦C) and for 7–10 days after platting
before experimentation.

Assessment of VSMC Functionality
The following criteria were used to judge the functionality of
VSMCs: (i) no cell shortening was observed when they perfused
with the Ca2+ containing Ringer solution (1.8 mM Ca2+) and
(ii) they contracted in response to electrical stimuli (1 ms square
pulse duration,∼1.5× threshold voltage).

Measurements of Resting [Ca2+]i and
[Na+]i
Double-barreled Ca2+ and Na+ selective microelectrodes were
prepared as described previously (Eltit et al., 2013). Single
smooth muscle cells were impaled with either a Ca2+ – or Na+-
selective double-barreled microelectrode, and their potentials
were recorded via a high-impedance amplifier (WPI Duo 773
electrometer; World Precision Instruments, FL, United States).
Criteria for successful impalement of single muscle cells included
an (i) abrupt drop to a steady level of Vm more negative
than −55 mV, (ii) a recording stable for both potentials (Vm
and Ca potential) for at least 60 s and (iii) an quick return
to baseline on the exit of the microelectrodes from the cell.
The specific Ca2+ potential (VCae) or Na+ potential (VNae)
was obtained by subtracting the VCa potential or VNa from
the 3 M KCl microelectrode potential (Vm); Vm, and the
specific Ca2+- Na+ potentials were stored in a computer for
future analysis.

Muscle Mechanical Stretch
VSMCs were seeded on flexible-bottomed culture plates
coated with poly-L-lysine (Flexcell International Corp., NC,
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United States). After 48 h to allow for cell attachment and
spreading, Wt and mdx VSMCs were bathing with Ringer
solution and then subjected to mechanical stretch elongation of
30 cycles/min (0.5 Hz), 20% elongation using a Flexcell FX 5000
tension system for 5 min. After the cyclic stretch, to estimate
cell damage, the medium was collected for the determination of
lactate dehydrogenase (LDH) activity (released by VSMCs) using
the LDH kit from Sigma-Aldrich (St. Louis, MO, United States)
according to the manufacturer’s instructions. Parallel series of
Flex culture plates not subjected to stretching served as controls.
At the time of collection of the medium for LDH determination,
[Ca2+]i or [Na+]i was measured in the stretched VSMCs using
ion-selective microelectrodes.

Western Blot Analysis
Mdx and Wt anesthetized mice were euthanized using CO2.
The aorta was dissected as described above (Primary culture
of VSMC). Aortic total protein extraction was performed using
a modified Millipore enzyme buffer with added 0.5% Triton-
X-100 for 1 h digestion and lysis step. After proteins transfer
from the gel, we spliced the membrane horizontally according
to the molecular weight of proteins of interest. Then, individual
membrane strips were incubated with the primary anti-TRPC1,
TRPC3, TRPC6, and dystrophin antibodies (Uryash et al.,
2015). The corresponding protein size was determined based
on the protein standard marker. The levels of target protein(s)
were normalized to loading control using the housekeeper
protein β-actin.

Solutions
The normal Ringer’s solution contained the following (in mM):
135 NaCl, 5 KCl, 1.8 CaCl2, 1 MgCl2, 5 glucose, 3.6 NaHCO3
(pH 7.4). In all experiments, Wt and mdx VSMCs were perfused
and equilibrated with the Ringer’s solution aerated with a mixture
of 95% O2 and 5% CO2 at 37◦C. For the Ca2+ free solution
CaCl2 was omitted and 2 mM MgCl2 and 1 mM EGTA were
added in its place. 1-oleoyl-2-acetyl-sn-glycerol (OAG) (100 µM)
a TRPC3, and TRPC6 channel activator, SAR7334 (0.1 and
1 µM) a TRPC3 and TRPC6 channel blocker, GsMTx4 (5 µM) a
specific mechanosensitive channel inhibitor, nifedipine (10 µM)
a selective voltage-gated Ca2+ channel blocker solutions were
prepared from stock solutions.

Statistical Analysis
All values are reported as mean ± SD. Student’s t-test or analysis
of variance (1-way ANOVA and Tukey’s post hoc tests were used
to determine significance. p < 0.05 was considered statistically
significant. nmice: number of mice used experimentally, ncell:
represents the number of successful measurements carried out.

RESULTS

[Ca2+]i and [Na+]i Dyshomeostasis in
mdx Vascular Smooth Cells
Striated muscle cells from DMD patients and mdx mice (Lopez
et al., 1987; Altamirano et al., 2013, 2014; Mijares et al., 2014)

FIGURE 1 | Elevated [Ca2+]i and [Na+]i in mdx VSMCs. [Ca2+]i or [Na+]i was
measured in quiescent VSMCs isolated from Wt, and mdx mice using
double-barreled ion-specific microelectrodes. [Ca2+]i and [Na+]i were
significantly higher in mdx than Wt VSMCs. For [Ca2+]i measurements:
nmice = 3/experimental condition, ncell = 41–48/genotype; For [Na+]i
measurements: nmice = 3/experimental condition, ncell = 25–27/genotype.
Values are expressed as means ± S.D. Student’s t-test, ***p ≤ 0.001.

show elevated intracellular Ca2+ and Na+. Therefore,
intracellular [Ca2+] and [Na+] were measured in VSMCs
isolated from Wt and mdx mice using double-barreled
ion-specific microelectrodes. [Ca2+]i was elevated in mdx
VSMCs (266 ± 27 nM, n = 45) compared to that observed
in Wt cells (121 ± 3 nM, n = 41), (p < 0.001) (Figure 1).
Similarly, [Na+]i was higher in mdx VSMCs (14 ± 1.2 mM
n = 25) than observed in Wt cells (8 ± 0.1 mM n = 25)
(p < 0.001) (Figure 1).

OAG a TRPC3 and TRPC6 Activator,
Induced Elevation of [Ca2+]i and [Na+]i
in VSMCs
To directly investigate the effect of diacylglycerol (DAG) on
[Ca2+]i and [Na+]i in smooth muscle cells, VSMCs were
exposed to the DAG analog 1-oleoyl-2-acetyl-sn-glycerol (OAG)
which activates TRPC3 and TRPC6 channels (Hofmann et al.,
1999). Incubation in OAG (100 µM) for 10 min produces an
elevation of [Ca2+]i and [Na+]i in both genotypes. Figures 2A–
D show representative measurements of the resting membrane
potential (Vm) and [Ca2+]i from Wt and mdx VSMCs
before and after exposure to OAG. In Wt VSMCs OAG
provoked an increase of [Ca2+]i by 46%, from 121 ± 3 nM,
n = 22, to 177 ± 19 nM, n = 25 (p < 0.001), and in
mdx VSMCs by 73%, from 271 ± 29 nM, n = 25, to
470 ± 55 nM, n = 27 (p < 0.001) (Figure 3A). [Na+]i was
also significantly elevated in Wt by 25% and in mdx VSMC
by 46% upon incubation in OAG (Figure 3B). We examined
the possible involvement of the voltage-gated Ca2+ channels in
the OAG-induced elevation of [Ca2+]i by pretreating cultured
VSMCs with nifedipine 10 µM, a specific voltage-gated Ca2+
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FIGURE 2 | Simultaneous measurements of Vm and [Ca2+]i in single smooth
muscle cells from control Wt and mdx mice. Effects of OAG. Vm is the
membrane potential recorded with a conventional microelectrode filled with
3 M KCI, and VCae is the potential recorded with the calcium-selective
electrode after the subtraction of Vm. VCae potential represents cell
intracellular [Ca2+]. In Wt, [Ca2+]i was 124 nM, and the Vm was –62 mV
before OAG treatment and represents the cell intracellular [Ca2+] (A). After
incubation in OAG 100 µM [Ca2+]i increased to 187 nM with no effect on Vm
(–63 mV) (B). The measurements of Vm and [Ca2+]i before and after OAG
treatment were carried in the same muscle cell. In the mdx muscle cell Vm:
was –62 mV and [Ca2+]i was 258 nM before OAG (C) and after OAG
incubation, [Ca2+]i rose to 492 nM after OAG, with no change in Vm (–65 mV)
(D). The determinations of Vm and [Ca2+]i before and after OAG treatment
were carried in two distinct muscle cells.

FIGURE 3 | OAG induces elevation of [Ca2+]i and [Na+]i . Exposure of
quiescent Wt and mdx VSMc to 1-oleoyl-2-acetyl-sn-glycerol (OAG) 100 µM
induced a significant elevation of [Ca2+]i (A) and [Na+]i (B), which were
greater in mdx than Wt muscle cells. Over the horizontal axis are indicated the
experimental conditions used to measure [Ca2+]i and [Na+]i. For [Ca2+]i
measurements: nmice = 4/experimental condition, ncell = 21–27/genotype. For
[Na+]i measurements: nmice = 3/experimental condition,
ncell = 23–25/genotype. Values are expressed as means ± S.D. for each
condition. Student’s t-test ***p ≤ 0.001.

channel blocker. Nifedipine had no significant effects on OAG-
induced elevation of [Ca2+]i in either Wt or mdx VSMCs
(Supplementary Figure S1).

Removal of Extracellular Ca2+ Reduced
[Ca2+]i and Prevented OAG-Induced
Elevation of [Ca2+]i
To establish the impact of extracellular Ca2+ ([Ca2+]e) on
OAG-induced elevation of [Ca2+]i, Wt and mdx VSMCs were
incubated for 5 min in Ca2+-free solution before OAG (100 µM)
treatment. Exposure to reduced [Ca2+]e significantly lowered
[Ca2+]i in Wt and mdx VSMCs but had a greater effect in
mdx (−49%, from 271 ± 24, n = 15 to 138 ± 11, n = 18,
p < 0.001) than in Wt (−18%, from 122 ± 3 nM, n = 15
to 100 ± 5 nM, n = 17, p < 0.001) VSMCs (Figure 4). In
the absence of [Ca2+]e, the previously observed rise in [Ca2+]i
elicited by OAG in Ca2+ replete buffer was completely inhibited
in both Wt and mdx VSMCs (Figure 3). In addition to the
decrease in [Ca2+]i, incubation in Ca2+-free solution leads to
a reversible depolarization of cell membrane potential in both
genotypes of about 4–6 mV despite the presence of 2 mM Mg2+

(Supplementary Figure S2).

SAR7334 Reduced [Ca2+]i and Abolished
the Increases of [Ca2+]i and [Na+]i
Elicited by OAG
To gain insight into molecular mechanisms resulting in [Ca2+]i
elevation upon exposure to OAG, we measured [Ca2+]i in Wt
and mdx VSMCs before and after incubation with SAR7334

FIGURE 4 | Removal of [Ca2+]e prevents the OAG-induced elevation in
[Ca2+]i. Removal of extracellular Ca2+ significantly lowered the [Ca2+]i and
provoked the inhibition of OAG (100 µM) induced elevation of [Ca2+]i in VSMc
isolated from Wt and mdx mice. On the horizontal axis are indicated the
experimental conditions used to measure [Ca2+]i. For [Ca2+]i measurements:
nmice = 4/experimental condition, ncell = 15–18/genotype. Values are
expressed as means ± S.D. for each condition. One-way ANOVA with Tukey’s
post-test, ***p ≤ 0.001.

Frontiers in Physiology | www.frontiersin.org 4 February 2020 | Volume 11 | Article 126

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00126 February 18, 2020 Time: 19:36 # 5

Lopez et al. TRPC Channels Induce Ca2+ Dyshomeostasis

FIGURE 5 | SAR7334 reduced [Ca2+]i and [Na+]i and blocked the elevation of [Ca2+]i and [Na+]i induced by OAG. [Ca2+]i was measured in VSMc isolated from
Wt and mdx mice before and after incubation in SAR7374 (0.1 µM or 1 µM), as well as after the exposure with SAR7374 and OAG (100 µM). (A) shows that
preincubation in SAR7374 (0.1 µM) reduced significantly [Ca2+]i and [Na+]i in both genotypes. (B) illustrates that SAR7374 (1 µM) further reduced [Ca2+]i and
[Na+]i and prevented the increase in intracellular [Ca2+] and [Na+] induced by OAG. (C) shows that SAR7374 (1 µM) reduced [Na+]i in control and mdx VSMc and
prevents the elevation of [Na+]i induced by OAG. Over the horizontal axis are indicated the experimental conditions used to measure [Ca2+]i and [Na+]i. For [Ca2+]i:
nmice = 3/experimental condition, ncell = 17–20/genotype. For [Na+]i: nmice = 3/experimental condition, ncell = 13–19/genotype. Values are expressed as
means ± S.D. for each condition. One-way ANOVA with Tukey’s post-test, **p < 0.01, ***p ≤ 0.001.

FIGURE 6 | Effects of SAR7334 on [Ca2+]i in Wt and mdx VSMC. A typical
response obtained with a conventional microelectrode (Vm) and a
Ca2+-selective microelectrode (VCae) from a Wt and mdx VSMCs before and
after SAR7334 (1 µM) treatment. (A) shows the recording from a Wt VSMC
before SAR7334 treatment (Vm: –63 mV and [Ca2+]i 124 nM) and (B) after
SAR7334 incubation (Vm: –64 mV and [Ca2+]i 98 nM). The Vm and [Ca2+]i
measurements show in (A,B) were carried in the same smooth muscle cell.
(C,D) represent the determination of Vm and [Ca2+]i before (Vm –63 mV and
[Ca2+]i 280 nM) and after SAR7334 application (Vm: –64 mV and [Ca2+]i
147 nM) in a mdx VSMCs. The Vm and [Ca2+]i measurements in show (C,D)
were carried in the same smooth muscle cell.

which is a blocker of TRPC6 and TRPC3 channels (Maier
et al., 2015), and then again after exposure to OAG (100 µM).
Pretreatment with SAR7334 significantly lowered [Ca2+]i in

dose-dependent manner in both genotypes. Pretreatment with
0.1 µM SAR7334, a concentration that block mostly TRPC6
channels (Maier et al., 2015) reduced [Ca2+]i in Wt by 6%
and in mdx VSMCs by18% (Figure 5A). Preincubation with
SAR7334 (1 µM) that blocks TRPC3 and 6 channels (Maier
et al., 2015) provoked further reduction of [Ca2+]i in Wt (15%)
and mdx VSMCs (50%) (Figure 5B). The Figure 6 shows
representative records of the effects of SAR7334 on [Ca2+]i
in Wt VSMCs (Figure 6B), and mdx VSMCs (Figure 6D). In
addition, SAR7334 1 µM also reduced [Na+]i in Wt (13%) and
in mdx VSMCs (35%) (Figure 5C) and prevented any significant
increase in [Ca2+]i and [Na+]i upon exposure to OAG in both
genotypes (Figures 5B,C).

Cyclic Stretch Provokes Larger Increase
of [Ca2+]i and [Na+]i in mdx VSMCs
Stretching smooth muscle cells has previously been shown to
increase [Ca2+]i (Zou et al., 2002; Ducret et al., 2010). Numerous
members of the TRPC channel family, especially TRPC1, TRPC3,
and TRPC6 are considered to be mechanosensitive channels
(Friedrich et al., 2012; Takahashi et al., 2013) and are therefore
possible candidates for this increase. In our VSMC stretch
experiments [Ca2+]i and [Na+]i increased in both genotypes;
however, the magnitude of the increases in Ca2+ and Na+
were greater in mdx than Wt. In Wt VSMCs [Ca2+]i was
elevated by 39% from 121 ± 3 nM, n = 25 to 169 ± 18 nM,
n = 23 (p < 0.001) (Figure 7A) and [Na+]i by 31% from to
8 ± 0.1 mM, n = 10 to 11 ± 1 mM, n = 10 (p < 0.001)
(Figure 7B). In mdx VSMCs [Ca2+]i was elevated by 69% from
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FIGURE 7 | Stretch induces elevation of [Ca2+]i and [Na+]i in VSMCs.
Repetitive mechanical (30 cycles/min) elongation (20% of resting length)
produced a significant elevation of [Ca2+]i and [Na+]i in Wt and mdx VSMc,
however, the magnitude of the increase of intracellular Ca2+ and Na+

concentrations was greater in mdx than Wt (A,B). For [Ca2+]i:
nmice = 4/experimental condition, ncell = 20–28/genotype. For [Na+]i:
nmice = 3/experimental condition, ncell = 10–19/genotype. Values are
expressed as means ± S.D. for each condition. Student’s t-test, ***p ≤ 0.001.

285 ± 25 nM, n = 25 to 482 ± 37 nM, n = 20 (p < 0.001)
(Figure 7A) and [Na+]i by 43% from to 14 ± 1.2 mM, n = 19
to 20 ± 1.8 mM, n = 12 (p < 0.001) (Figure 7B). To test
whether the elevation of [Ca2+]i associated with stretch was
mediated by Ca2+ influx through sarcolemma Ca2+ channels,
extracellular Ca2+ was removed and 2 mM MgCl2 and 1 mM
EGTA were added to the bathing supernatant (see section
“Materials and Methods”). Under these conditions the increase in
[Ca2+]i in response to stretch was abolished in both Wt and mdx
VSMCs (Figure 8A). Re-addition of extracellular Ca2+ before
repeating the stretch protocol allowed recovery of the increase
in both genotypes. These results suggest that a Ca2+ influx
was involved in the elevation of [Ca2+]i upon the mechanical
stretch. To further dissect the mechanism involved in the stretch-
induced elevation of [Ca2+]i in VSMCs we tested the effect of
GsMTx-4 (5 µM), which is known to inhibit mechanosensitive
channels (Spassova et al., 2006; Bowman et al., 2007). GsMTx-4
completely inhibited the stretch-induced increases of [Ca2+]i in
both genotypes (Figure 8B). Additionally, we examined whether
the stretch-induced elevation of [Ca2+]i was mediated via L-type
voltage-gated Ca2+ channels by incubating the VSMCs with the
Ca2+ channel blocker nifedipine (10 µM). The stretch-induced
increase in [Ca2+] was not modified by nifedipine in either
genotype (Supplementary Figure S3).

Cyclic Stretch Provokes Cell Damage in
mdx VSMCs
Resting LDH activity in the supernatant from non-stretched mdx
VSMCs (a marker of cell damage) was 35% greater than in
the supernatant from Wt VSMCs (Figure 9). Muscle stretching
increased LDH activity in both genotypes; however, the increase
was more significant in mdx than Wt VSMCs (41% in Wt vs. 90%
in mdx VSMCs) (Figure 9).

FIGURE 8 | Reducing Ca2+ influx inhibits stretch-induced elevation of [Ca2+]i
in VSMCs. Removal of extracellular [Ca2+] (A) or blocking the
mechanosensitive channels using GsMTx4 (5 µM) (B) reduced [Ca2+]i and
abolished the increase in [Ca2+]i in response to stretch (20% of resting length)
in both genotypes. For [Ca2+]i: nmice = 5/experimental condition,
ncell = 13–19/genotype. Values are expressed as means ± S.D. for each
condition. Student’s t-test, ***p ≤ 0.001.

Measurements of Protein Expression
To determine whether the elevation of [Ca2+]i and [Na+]i and
enhanced response to OAG observed in dystrophic VSMs was
associated with changes in TRPC protein in the membrane,
the expression of TRPC1, -3 and -6 were measured using
Western blot analysis. Analysis of these blots demonstrated that
TRPC1, TRPC3, and TRPC6 were significantly upregulated in

FIGURE 9 | Stretch induces greater cell damage in mdx VSMCs. LDH activity
in the supernatant from non-stretch VSMCs was higher in mdx than Wt.
Muscle elongation increases LDH activity in both genotypes; however, it was
much greater in mdx than Wt. For LDL: nmice = 3/experimental condition,
ncell = 17–20/genotype. Values are expressed as means ± S.D. for each
condition. Student’s t-test, ***p ≤ 0.001.
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FIGURE 10 | Expression of TRPC isoforms. Figure 10. Expression of TRPC
isoforms. Representative fluorescent Western blot analysis of the expression
of TRPC1, TRPC3, TRPC6, and dystrophin (DYSTR) proteins in Wt and mdx
VSMCs (A). Densitometric analysis of individual experiment fluorescent
Western blots shown in (B). Data were normalized to actin and expressed as
mean optical unit values ± S.D. nmice = 3. Paired t-test, **p ≤ 0.01,
***p ≤ 0.001.

VSMCs from mdx compared to Wt mice (Figures 10A,B and
Supplementary Figure S4).

DISCUSSION

To the best of our knowledge, this is the first comprehensive
study of [Ca2+]i and [Na+]i dysregulation in mdx VSMCs.
The main findings in the present study are the following: (i)
quiescent VSMCs isolated from mdx mice have [Ca2+]i and
[Na+]i overload; (ii) the increase in [Ca2+]i and [Na+]i induced
by exposure to OAG was greater in mdx than Wt VSMCs;
(iii) Removal of extracellular Ca2+ or blockade of TRPC3 and -6
channels abolished the increases of [Ca2+]i and [Na+]i elicited
by OAG; (iv) Muscle stretch-induced elevation of [Ca2+]i, and
[Na+]i was significantly higher in mdx than Wt VSMCs and
removal of extracellular Ca2+ or exposure to mechanosensitive
channel blockers inhibited the increase in [Ca2+]i linked to

mechanical stretch in both mdx and Wt VSMCs; (v) Baseline and
stretch-induced LDH leak was significantly higher in mdx than
Wt VSMCs; (vi) Expression of TRPC1, -3, and -6 proteins was
upregulated in mdx compared to Wt VSMCs.

Duchenne muscular dystrophy is a lethal muscle disease
characterized by the absence of dystrophin, which leads
to progressive membrane injury and subsequent changes
in intracellular Ca2+ homeostasis and cellular dead
(Ervasti et al., 1990). Dystrophin is the major component
dystrophin-glycoprotein complex, which allows the interaction
between the cytoskeleton and the and extracellular matrix
(Ervasti and Campbell, 1993). Dystrophin is also present in
the smooth muscle, playing a similar role than in skeletal
muscle (North et al., 1993; Sharma et al., 2008). Deficiency
of dystrophin in striated muscle cells results in alterations
intracellular ion dyshomeostasis and muscle degeneration
(Lopez et al., 1987; Danialou et al., 2001; Allen and Whitehead,
2011; Altamirano et al., 2012, 2014). In smooth muscle, the lack
of dystrophin has been related with different alterations in the
respiratory, gastrointestinal tract and the vascular bed (Miike
et al., 1987; Barohn et al., 1988; Jaffe et al., 1990; Sun, 2015;
Brown et al., 2018).

Intracellular calcium plays an essential role under
physiological conditions to regulate many different processes
in VSMCs (Berridge et al., 2003; Huang et al., 2018). Quiescent
and healthy excitable cells maintain an [Ca2+]i in the vicinity
of 100–120 nM versus an extracellular [Ca2+] of 1.8 mM
(Lopez et al., 1983; Mijares et al., 2014; Lopez et al., 2018).
The activity of membrane ion channels, plasma membrane
ATP-dependent Ca2+-pump, Na+/Ca2+ exchangers, and
an endoplasmic reticulum Ca2+ ATPase preserve the
concentration gradient (Karaki et al., 1997). Our data show
that quiescent VSMCs isolated from mdx mice have an
intracellular Ca2+ and Na+ overload compared with non-
dystrophic Wt VSMCs. A substantial increase in [Ca2+]i has
been reported in intact skeletal muscle from DMD patients
and an altered intracellular Ca2+ and Na+ homeostasis
has been observed in the skeletal and cardiac muscle cells
from mdx mice (Altamirano et al., 2014; Lopez et al., 2017,
2018). Chronic elevation in [Ca2+]i may activate hydrolytic
enzymes (proteases, nucleases, and lipases), and subsequently
compromise energy production, intracellular ion regulation,
ROS production and ultimately result in cell death (Nicotera
and Orrenius, 1998; Ascah et al., 2011; Altamirano et al., 2013,
2014; Lopez et al., 2017). Prevention of chronic elevation of
[Ca2+]i may exert a myoprotective effect on mdx VSMCs
precluding cell death.

The TRPC channels are expressed in vascular smooth muscle
vessels playing diverse physiological cellular responses (Yip et al.,
2004; Inoue et al., 2006). We have demonstrated that application
of OAG, a membrane-permeable diacylglycerol analog which
activates TRPC3 and TRPC6 channels (Hofmann et al., 1999; Liu
et al., 2005) produced a robust elevation of [Ca2+]i and [Na+]i
in Wt and mdx, however, the increment was more significant
in mdx than Wt VSMCs. Western blots showed a significant
upregulation of TRPC1 -3, -6 proteins in mdx VSMCs compare
to age-matched Wt, which probably contribute to the observed
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FIGURE 11 | Transient receptor potential canonical channel in healthy and
mdx VSMCs. Schematic representation of TRPC channels isoforms and the
effect of diacylglycerol (DAG) on intracellular [Ca2+] and [Na+] in healthy (A)
and in mdx VSMC (B). Binding of the agonist to the G-protein-coupled
receptor leads to phospholipase C (PLC) activation. The activation of PLC
hydrolyzes phosphatidyl 4-5 biphosphate PI(4,5)P2 to produce diacylglycerol
(DAG) and IP3. DAG contributes to TRPC3 and TRPC6 channels, but also
TRPC1 activation under heteromeric complexes allowing Ca2+ and Na+ influx
into the vascular muscle cell. A chronic increase in Ca2+ and Na+ flux through
the upregulated TRPC channels in mdx VSMCs contribute to the observed
elevate [Ca2+]i and [Na+]i.

intracellular Ca2+, and Na+ overload and also to the greater
responsiveness to OAG found in mdx VSMCs.

Ca2+-free solution inhibited the observed rise in [Ca2+]i
induced by OAG and induced a reversible depolarization of
cell membrane potential. The effect of removing extracellular
Ca2+ on resting membrane potential in smooth muscle has been
previously reported by other groups (Bulbring and Tomita, 1970;
Kuriyama and Tomita, 1970). Furthermore, the incubation of
VSCMs with SAR7334, a TRPC3 and TRPC6 blocker (Maier et al.,
2015), reduced [Ca2+]i in a dose-dependent manner and also
blocked the increases in [Ca2+]i and [Na+]i elicited by OAG in
both Wt and mdx VSMCs. Based on SAR7334 pharmacological
dose blocking effect on TRPC3 and TRPC6 channels (Maier
et al., 2015), we can speculate that the contribution of TRPC3
channels to the VSMCs intracellular Ca2+ dyshomeostasis is
more significant than TRPC6 channels. The increase of [Ca2+]i
induced by OAG was not affected by the Ca2+ channel inhibitor

nifedipine, which suggests that the activation of L-type Ca2+

channels is not part of the mechanism by which OAG induced
elevation of [Ca2+]i and [Na+]i in VSMCs. Dysregulation
of TRPC channels has been associated with diverse vascular
pathologies (Mandegar et al., 2002; Yu et al., 2004; Kumar
et al., 2006) which could explain, at least in part, the severe
pulmonary and systemic hypertension reported in children
and adolescents suffering from DMD (Yotsukura et al., 1988;
Braat et al., 2015).

Previous studies have demonstrated that VSCM stretch
induces elevation of [Ca2+]i (Zou et al., 2002; Ducret et al.,
2010). TRPC channels, especially TRPC1, TRPC3, and TRPC6,
are considered as mechanosensitive channels (Friedrich et al.,
2012; Takahashi et al., 2013). Furthermore, the Gq/11 protein
has been recognized as mechanosensors involve in the myogenic
vasoconstriction in VSMCs of small resistance arteries (Mederos
et al., 2008, 2016). Gq/11-coupled receptors appear to be
linked to the TRPC channels provoking the activation of
TRPC channels in a G protein-dependent manner (Mederos
et al., 2008). Here, we have shown evidence that a Ca2+

influx pathway activated by mechanosensors in VSMCs appears
to be mediated by canonical cationic channel, which seems
to be more critical in mdx VSMCs than Wt. Extracellular
Ca2+ influx mediated by the voltage-dependent L-type Ca2+

channels has been suggested to intervene in VSMC stretch-
mediated activation (Murase et al., 2001; Park et al., 2003;
Ito et al., 2008). However, the fact that nifedipine did not
inhibit stretch-induced [Ca2+]i elevation does not support
this hypothesis.

Basal LDH activity in the extracellular medium was higher
in the supernatant from mdx compared to Wt VSMCs, which
is consistent with the idea that the absence of dystrophin leads
to chronic injury due to a lack of structural support at the
sarcolemma. Besides, stretching further increased extracellular
LDH activity, an indicator that this muscle stretch yielded some
degree of cell injury in both genotypes. However, because the
increase was higher in mdx than Wt, these data support the
view that the lack of dystrophin makes VSCMs more sensitive
to contraction-induced damage (Petrof et al., 1993; Grady et al.,
1997; Brooks, 1998). The intracellular Ca2+ elevation after
VSMCs stretch was suppressed entirely in both genotypes by
removal of extracellular Ca2+ or GsMTx-4, indicating that this
event is mediated by Ca2+ influx from the extracellular side
which appears to be through a GsMTx-4 sensitive pathway.

Study Limitations
Despite the novelty of our study, some limitations should
be acknowledged. First, we used a pharmacological approach
to characterize the involvement of TRPC channels in the
dysregulation of intracellular Ca2+ observed in VSMCs from
mdx mice, and we did not study the functional aspects of TRPC
channels. Secondly, we did not carry out experiments in which
TRPC1, -3, and -6 channels were individually or collectively
downregulated using siRNA. Therefore, we were unable to
assess whether decreasing TRPC channel expression rescues or
improves intracellular Ca2+ regulation in mdx VSMCs.
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CONCLUSION

This study provides direct evidence of anomalous regulation
of resting intracellular Ca2+ and Na+ in VSMCs from
mdx mice. The imbalance of [Ca2+]i and [Na+]i appears
to be mediated mostly through TRPC channels since their
pharmacological blocking activity markedly protected mdx
VSMCs (Figure 11). Further, we have demonstrated the
presence of an abnormal stretch-induced elevation of [Ca2+]i
in mdx VSMCs, which also appears to be mediated by TRPC
channels. The originality of our paper stands in revealing
the relevance of TRPC channels in the pathology of VSMCs
in mdx mice. TRPC channels could be promising targets
to help manage symptoms and slow the progression of this
devastating disease.
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FIGURE S1 | Nifedipine does not block the OAG-induced increase in [Ca2+] in
VSMCs. Incubation with nifedipine (NIFE) 10 µM did not abolish the increase in
[Ca2+]i induced by OAG 100 µM in VSMCs. For [Ca2+]i: nmice = 3/experimental
condition, ncell = 10–17/genotype. Values are expressed as means ± S.D. for
each condition. Student’s t-test, ***p ≤ 0.001.

FIGURE S2 | Effects of removal of extracellular Ca2 + on the resting membrane
potential. The omission of the Ca2+ from the extracellular media induced a partial
membrane depolarization (4–6 mV) in both genotypes. The reintroduction of Ca2+

to the bathing media reverses the observed depolarization. For Vm:
nmice = 3/experimental condition, ncell = 20–26/genotype. Values are expressed as
means ± S.D. for each condition. Student’s t-test, ***p ≤ 0.001.

FIGURE S3 | Stretching induced elevation of [Ca2+]i in VSMCs is not inhibited by
nifedipine. Exposure with nifedipine (NIFE) 10 µM did not prevent the stretch (20%
of resting length) induces elevation of [Ca2+]i in VSMCs. For [Ca2+]i:
nmice = 3/experimental condition, ncell = 9–14/genotype. Values are expressed as
means ± S.D. for each condition. Student’s t-test, ***p ≤ 0.001.

FIGURE S4 | TRPC and Dystrophin protein levels in VSMCs. Each panel shows
representative TRPC1, TRPC3, TRPC6 and Dystrophin protein expressions using
corresponding fluorescent antibody. Data are presented as optical unit (OU) values
normalized to Actin signal. Left Y axis shows MW sizes (kDa) of corresponding
protein standard size markers. Right Y axis is labeled with name and size (kDa) of
corresponding protein signal on the representative blot. Top X axis contains
names of total protein extract samples loaded onto the representative gel.
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