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Abstract: Computed tomography (CT) is undoubtedly the most reliable and the only method for
accurate diagnosis of sinusitis, while X-ray has long been used as the first imaging technique for early
detection of sinusitis symptoms. More importantly, radiography plays a key role in determining
whether or not a CT examination should be performed for further evaluation. In order to simplify
the diagnostic process of paranasal sinus view and moreover to avoid the use of CT scans which
have disadvantages such as high radiation dose, high cost, and high time consumption, this paper
proposed a multi-view CNN able to faithfully estimate the severity of sinusitis. In this study, a
multi-view convolutional neural network (CNN) is proposed which is able to accurately estimate
the severity of sinusitis by analyzing only radiographs consisting of Waters’ view and Caldwell’s
view without the aid of CT scans. The proposed network is designed as a cascaded architecture,
and can simultaneously provide decisions for maxillary sinus localization and sinusitis classification.
We obtained an average area under the curve (AUC) of 0.722 for maxillary sinusitis classification,
and an AUC of 0.750 and 0.700 for the left and right maxillary sinusitis, respectively, using the
proposed network.

Keywords: paranasal sinus view; sinusitis; artificial intelligence; CNN; multi-view network

1. Introduction

Rhinosinusitis is defined as inflammation of the nasal cavity and paranasal sinuses
(PNS). The prevalence of chronic rhinosinusitis in the general population based on sinus
radiology and symptoms ranges from 3.0% to 6.4% of clinically substantiated chronic
rhinosinusitis (CRS) in a randomly selected group of subjects [1]. While the diagnosis of
acute rhinosinusitis is based on history and physical examination, chronic rhinosinusitis
and recurrent acute rhinosinusitis are diagnosed by symptoms and the presence of disease
on either a sinus examination CT scan and/or endoscopy [2]. Imaging findings do not
always correlate with symptoms. Therefore, imaging should confirm the presenting signs
and symptoms [3]. Radiographs can detect mucosal thickening, air fluid levels, opacities of
the paranasal sinuses, anatomic variants, and foreign bodies [4]. The diagnostic sensitivity
of the paranasal sinus view is very low due to the opacification of the bone by overlapping
with some anatomical structures [5]. Waters’ view has its limitations in the diagnosis of
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sinusitis of the maxillary sinuses and its contribution to the diagnosis of lesions in the other
maxillary sinuses is very poor [6]. Therefore, CT of the paranasal sinuses has become the
gold standard for sinus imaging in complicated sinus disease [4]. However, PNS view is
usually examined at their first visit in patients who visit the ENT (ear, nose and throat)
department for nasal symptoms of sinusitis.

Meanwhile, deep learning techniques are highly appreciated as a tool for a variety of
problems in the field of medical image analysis and computer-aided diagnosis (CAD) [7–12].
In fact, several deep learning-based studies have reported invaluable results related to the
diagnosis of sinusitis in the PNS view. One of the related studies has shown that deep
learning-based diagnosis of maxillary sinusitis on Waters’ radiograph can achieve a better
area under the receiver operating characteristic curve (AUC) than conventional methods,
and also has comparable sensitivity and specificity to that of the radiologist [13]. Alterna-
tively, based on the fact that the diagnosis of maxillary sinusitis in the ENT department
is usually made using both Caldwell’s and Waters’ view, a multi-view model analyzing
the two different views simultaneously was proposed and showed higher AUC than the
previous study [13] which used Waters’ view for the diagnosis of frontal, ethmoid and
maxillary sinusitis only. Another noteworthy point of the approach is the construction
of a cascaded network by introducing a detector network at the preceding stage of the
classification network, so that the method could bypass the time-consuming and laborious
task of manually specifying the sinus region [14]. Although the study obviously showed
better performance than conventional sinusitis diagnosis, which relies solely on human
decisions [1], there are still critical issues that need to be addressed. First, the findings
obtained in the study did not distinguish between the left and right sides of the PNS view.
However, to assist medical personnel in their clinical decisions, it is essential that a CAD
tool indicates the correct side of the sinus: the left or right side. More importantly, the
related work aimed to classify three groups, i.e., the severity of normal-healthy, sinusitis
(inflammation over 4 mm) and air-fluid, but this problem is unlikely to be an urgent issue
in a real clinical field. In fact, the problem of distinguishing a healthy sinus from a case with
severe sinusitis should be less challenging for both computer vision and human specialists.

Inspired by the achievements and limitations of the aforementioned studies, this
study proposes a CNN-based multi-view model capable of accurately diagnosing maxillary
sinusitis using Waters’ and Caldwell’s views. To accurately diagnose sinusitis, the maxillary
sinus was reckoned as a region of interest (ROI) using a region proposal network (RPN),
which was eventually used to diagnose paranasal sinusitis. We attempted to find the most
suitable deep learning network for diagnosing maxillary sinusitis among six CNN-based
multi-view networks, based on the combination of three different CNN models. Our
proposed model was able to accurately locate the paranasal sinuses in the PNS view and
determine the development of paranasal sinusitis, making it possible to create an objective
and reliable CAD system without the help of CT.

2. Materials and Methods
2.1. Study Populations

This retrospective study collected radiographic PNS series from 1491 patients eval-
uated for paranasal sinusitis at Gachon University Gil medical center between 2007 and
2020. To account for pneumatization of the paranasal sinuses, data from patients under
19 years. In addition, those patients with air-fluid were excluded via clinical decision of
otolaryngologist, and finally only 587 PNS series from patients (279 males and 308 females)
aged 20 to 90 years were examined. Of the 587 patients, 446 were patients with maxillary
sinus, and 141 were normal healthy patients.

2.2. Radiograph Acquisition

X-ray image acquisition was done under the following conditions. Tube voltage ranged
from 63 to 85 kVp, with a mean value of 73.35, and tube-current covered 195–800 mA with
a mean value of 391.64 mA. To ensure an optimal contrast, the window center and window
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width were set to 0–255 in the range of 1788 to 14,162; and 2075 to 16,647, respectively; the
mean values were 5031.49 and 8963.16, respectively.

2.3. Labeling

The CT scan of the maxillar served as the ground truth (gold standard) of sinusitis
for deciding paranasal sinusitis during model learning. Paranasal sinusitis was labelled
separately for right and left maxillary sinus, which was determined according to the
following scoring criteria: level-0 (healthy) if the proportion of inflammation in the right
or left maxillary was less than 2 mm, level-1 in the case of 2–5 mm, and lastly, level-3
if greater than 5 mm. This labelling process was applied consistently to both datasets
collected from Waters’ and Caldwell’s views. The left and right maxillary sinuses are
indistinguishable in the lateral view, so Waters’ view and Caldwell’s view were used in
this study except for the lateral view. From our dataset, patients with sinusitis level-1
on the left sinus were 83, and 180 patients were level-2. In the right sinus, patients with
sinusitis level-1 were 74, and 193 patients were level-2. We included 324 normal healthy
left maxillary sinus participants and 320 normal healthy right maxillary sinus participants.
Two well-trained otorhinolaryngologists labeled all radiographs: ENT professors with 10
and 20 years of experience.

2.4. Experimental Design

In this study, the deep learning models were evaluated with a five-fold cross-validation
method, in which the problem of dataset imbalance was mitigated by evenly distributing
the ratio of patients with paranasal sinusitis and normal-healthy; each fold consists of
approximately 80% of patients with sinusitis and 20% normal-healthy.

2.5. Region of Sinus Detection

For the detection of the maxillary, we used RPN based on a feature pyramid net-
work using Resnet50 as the backbone also known as RetinaNet [15,16]; the source code is
available at https://github.com/fizyr/keras-retinanet (accessed on 10 November 2021).
During RPN learning, the right and left side maxillary sinus were trained separately as
individual objects.

Prior to the implementation of the algorithm, i.e., learning, validation, and testing,
all input data were normalized to fix the intensity to a uniform range of −1 to 1, and
resized to a resolution of 512 × 512. To facilitate the learning process, we introduced a
transfer-learning scheme where the parameters are initialized with ImageNet pre-trained
weight [17]. The RetinaNet outputs the bounding box coordinates for the sinus region and
the probability value (0–1) for the left or right class for the corresponding region.

2.6. Sinusitis Classification

This study is based on the concept of ablation study [18] where three internal modules,
i.e., basic CNN blocks, dense blocks [19], and inception blocks [20] were tested by inserting
them individually into the multi-view network (MVNet) shown in Figure 1. The CNN
model used in this study consists of four resolution steps and uses batch normalization and
rectified linear unit (ReLU). We modified the open-access code of the multi-view CNN [21]
to make it usable for our dataset; the original code is available at https://github.com/
suhangpro/mvcnn (accessed on 10 November 2021). The X-ray images from Waters’ view
and Caldwell’s view were independently encoded in the network, while two different
views were used simultaneously for the network optimization, as shown in Figure 1. In
contrast, to stabilize the optimization, we introduced an auxiliary classifier [22] with global
average pooling (GAP) and sigmoid activation function in the third resolution step. The
auxiliary losses were only used for network optimization and not for sinusitis inference. In
addition, a drop out scheme was applied to the third convolution block and the last layer
resulting in an output of 70% and 30%, respectively.

https://github.com/fizyr/keras-retinanet
https://github.com/suhangpro/mvcnn
https://github.com/suhangpro/mvcnn
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Figure 1. (a) Displays the overview of the framework to detect paranasal sinusitis using RetinaNet.
Red and orange bounding boxes indicate the region of left and right sinuses, respectively. (b) provides
the schematic diagram of Aux-MVNet that represents the roles of the individual blocks. Abbreviations:
FPN, feature pyramid network; Drop, drop out; BN, batch normalization; ReLU, rectified linear unit;
GAP, global average pooling.

Three CNN models were derived into six CNN models by adding an auxiliary loss
function in the layer corresponding to the third resolution step of each model. Table 1
compares the internal structures of the four CNN-based models tested in this work, each
of which yields an additional version by hiring the layers with the symbol *; in total, we
tested six models.

Table 1. Network architectures used to compare sinusitis classification performance.

Basic MVNet MVNet with Dense Module MVNet with Inception-v1 Module

Input shape: (N, 512, 512, 1)
Conv5, 16

Maxpool2, stride2

Conv5, 32 6 × dense block
Transition layer Inception-v1 block

Maxpool2, stride2

Conv3, 64 12 × dense block
Transition layer Inception-v1 block

Drop 0.7, GAPAux *

Maxpool2, stride2

Conv3, 128 24 × dense block
Transition layer Inception-v1 block

Maxpool2, stride2

Conv3, 256 16 × dense block
Transition layer Inception-v1 block

Drop 0.3 *

GAPmain

Fully connected layer with sigmoid

Output shape: (N, 6)
Abbreviations: Conv5, 5 × 5 convolution filter; Maxpool2; 2 × 2 maxpool filter; Conv1, 1 × 1 convolution filter;
Conv3, 3 × 3 convolution filter; Drop, drop out; GAP, global average pool.
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The networks tested consist of two individual networks for Waters’ and Caldwell’s
views, and the two individual networks compute the probability of six classes from Waters’
and Caldwell’s views, respectively, i.e., the probabilities of normal healthy, sinusitis level-
1 and level-2 with respect to either the left or right sinus. The final output (Ŷ) of the
multi-view network is determined by the following formula:

Ŷ =
Pw × 0.6 + Pc × 0.4

2
(1)

where Pw and Pc denote the probabilities computed from networks taking Waters’ and
Caldwell’s views as the input.

2.7. Implementation Details

We used Keras version 2.2.5 (TensorFlow-GPU backend, version 1.15.4) for deep
learning analysis and Simple-ITK (ver. 1.2.0) for radiograph preprocessing on Python
version 3.6.12. This study was conducted on a ppc64le central processing unit (CPU)
architecture of the IBM POWER9 system and NVIDIA Tesla V100 graphics-processing
unit (GPU).

The Adam optimizer [23] (initial learning-rate = 0.001) and the binary cross-entropy
loss function were used for each network. We also used the sigmoid activation function to
output the network’s inference results. The hyper-parameters used for our model are as
follows: batch-size = 32; total training epochs = 500; learning-rate reduction factor = 0.1
and learning-rate reduction patience = 10. Lastly, the early stopping approach was applied
with 50 patience.

All networks were designed to perform the multi label classification based on the com-
parison of probabilities resulting from 6 sigmoid functions corresponding to 6 classes, gener-
ated by the combination of 3 sinusitis levels and two sides, the left and right sinus regions.

3. Results
3.1. Region of Sinus Detection

Prior to the diagnosis of paranasal sinusitis, the detection process for left and right
maxillaries was performed. Figure 2 shows precision-recall (p-r) curves representing
the performance of RetinaNet in detecting left and right maxillaries from Waters’ and
Caldwell’s views. In this work, the average precision (AP) was used as a metric to evaluate
the detection performance with respect to maxillary. If the intersection over union (IOU)
value was above 0.5, it was considered to be a true positive [24,25].

We obtained 0.960 and 0.970 of AP for the left and right sinus detection task via
RetinaNet on Waters’ view, and AP values for the left and right sinus detection on Cald-
well’s view were 0.882 and 0.872. In terms of IOU scores, from Waters’ view we obtained
0.797 ± 0.096 and 0.789 ± 0.097 of average IOU in left and right and from Caldwell’s view,
the average IOU values were 0.724 ± 0.125 and 0.720 ± 0.131 in left and right, respectively.

Figure 3 illustrates the sinus detection results obtained by RetinaNet, where the
blue boxes refer to the gold-standard of maxillary regions, and the yellow boxes indicate
the prediction results. As observed in the figures, the detection results of sinus were
satisfactory in both views; the degree of discrepancies between the two boxes can be
considered negligible. Multiple bounding box coordinates were recommended by the RPN
as possible candidates for the left or right sinuses, and the sinus region with the highest
probability was finally selected and cropped.
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3.2. Sinusitis Classification

To compare the discriminative performance between the presented classification
models, we used the average AUC which can be a measure for a comprehensive evaluation
of a classification problem. The outputs predicted from each model were labeled with true
or false with respect to three classes, i.e., levels 0, 1, and 2, which were used to analyze
the receiver operating characteristics (ROC) individually for the different classes. Table 2
compares the micro average AUC values of six classification networks created with the
concept of an ablation study depending on the application of the auxiliary approach to
three different multi-view networks.

Table 2. Average AUC metrics for each model are provided, and p-values are computed by comparing
the ROC of each model to the MVNet model with an auxiliary classifier, where we used the statistical
significance level of 0.05. The networks with the best performance in each region of sinusitis are
indicated in bold.

Area Under the Curve
p Value *

Left Right Total

MVNet 0.552 0.637 0.602 <0.001

MVNet with auxiliary classifier 0.750 0.700 0.722 -

Dense MVNet 0.695 0.723 0.706 =0.001

Dense MVNet with auxiliary
classifier 0.703 0.722 0.709 =0.005

Inception MVNet 0.583 0.671 0.621 <0.001

Inception MVNet with
auxiliary classifier 0.678 0.753 0.710 =0.002

* The p values for comparison of ROC. The ROC comparison analysis was performed in total region of sinus,
which combined all classifications of left and right sinusitis. Abbreviations: MVNet, multi-view network; AUC,
area under the curve.

As for the classification performance for the models without applying the auxiliary
classifier, the network applying the dense module outperformed its counterparts with an
average AUC of 0.706. When comparing all candidate models to justify the effectiveness of
the auxiliary classifier, the basic MVNet hiring auxiliary classifier (Aux-MVNet) showed
the best performance with an average AUC of 0.722. The p-values in Table 2 numerically
support the significance of the comparison results. For the classification performance, we
used the ROC comparison approach. As shown in the numerical results, the auxiliary
classifier obviously helped to improve the performance.

Looking at the evaluation results for the right maxillary sinusitis dataset only, the
Aux-MVNet with the inception modules showed the highest AUC value. In the overall
results considering both sides (left and right), the Aux-MVNet outperformed the network
showing a much higher AUC score. Overall, the evaluation results of this experiment
revealed that Aux-MVNet is the most likely to classify the degree of maxillary sinusitis
among the deep learning architectures developed in this work. Regarding the effectiveness
of the introduction of the auxiliary classifier, it led to a significant improvement in the
AUC for all networks used, although the degree of contribution varies according to the
models tested.

The graphs of Figure 4 show in detail the performance of the Aux-MVNet which was
found to be the best-fitting model in Table 2. The AUC scores of the graphs corresponding
to three classes, i.e., normal, level-1, level-2 were 0.740, 0.639 and 0.759, respectively, in
the average AUC of left and right sinusitis; we evaluated our network for left and right
sinusitis. The AUC score of most classes was above 0.700, but in the right sinusitis level-1
the AUC was 0.581.
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In terms of the discriminative ability of Aux-MVNet for the severity of the disease,
i.e., normal healthy, sinusitis level-1 and level-2, the average sensitivity and specificity
in left sinus were 0.677 ± 0.107 and 0.683 ± 0.112, respectively, and in the right sinus
were 0.666 ± 0.032 of sensitivity and 0.658 ± 0.077 of specificity. Moreover, we obtained
an average accuracy of 0.689, 0.654 and 0.659 for the left, right and total sinus regions,
respectively. The corresponding diagnostic performance of the Aux-MVNet was evaluated
separately for left and right sinusitis, with the optimal association criterion determined by
Youden’s J statistic [26,27] (Table 3). All corresponding ROC curves for each class resulted
in a statistically significant difference from the identity line that was significantly below
0.05 of the p-value.

We used MedCalc Statistical Software (ver. 14.8.1, https://www.medcalc.org (accessed
on 10 November 2021)) and Scikit-learn (ver. 0.22.1, https://scikit-learn.org (accessed on
10 November 2021)) for network assessment.

To investigate the effectiveness of introducing the auxiliary classifier, we compared
the activation images revealed by the gradient-weighted class activation mapping (Grad-
CAM) [28,29] method with the outputs from the third layer convolutional block in Aux-
MVNet and MVNet without the auxiliary classifier; the auxiliary classifier is positioned in
the third convolutional block in the network.

As shown in Figure 5, it was ensured that the network used the auxiliary classifier
that enables it to more effectively activate the areas corresponding to the maxillary sinus
while the MVNet without auxiliary classifier tends to focus on more bony areas that do not
interest us. The corresponding results show that the auxiliary classifier method can train
the MVNet efficiently.

https://www.medcalc.org
https://scikit-learn.org
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Table 3. The evaluation result of Aux-MVNet.

Normal Sinus Sinusitis Level 1 Sinusitis Level 2

Left Sinus

Accuracy 0.676 0.687 0.704

Sensitivity 0.796 0.536 0.700

Specificity 0.536 0.809 0.705

Right Sinus

Accuracy 0.692 0.559 0.712

Sensitivity 0.697 0.622 0.679

Specificity 0.689 0.552 0.734

Total

Accuracy 0.681 0.571 0.724

Sensitivity 0.708 0.656 0.625

Specificity 0.647 0.536 0.770
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4. Discussion

In this work, we developed an auxiliary classifier-based multi-view network, Aux-
MVNet, for classifying sinusitis in PNS view. The proposed network showed better discrim-
inative power for sinusitis than other candidates developed with the same intention. More
specifically, our network perfectly distinguished the entirety of sinusitis levels, with an
average AUC score on the left and right sides of the sinus that was greater than 0.720. Fur-
thermore, we used Grad-CAM to visually reveal the effectiveness of the auxiliary classifier
and analyzed the Grad-CAM output of the third convolutional layer. Examination of the
resulting activated images clearly confirmed that the network with the auxiliary classifier
was focused on the sinus regions. In contrast, the network without the introduction of the
auxiliary classifier, only the bone regions were considered.

Compared with the performance of recent studies [13,14] that reported an AUC of 0.93
and 0.88 for sinusitis classification tasks over a deep neural network, our work showed
a relatively low AUC. However, it should be noted that there are several differences
in the research setting from the previous works. First, the labels for statistical analysis
are dichotomized as normal or sinusitis while in our work each statistical analysis was
performed for each of the three classes. Moreover, our labeling strategy for maxillary
sinusitis was constructed to solve the difficult problems faced by ENT specialists. In the
previous study, level-1 was used for maxillary sinusitis of 4 mm or more, level-2 for air-fluid,
and level-3 for total opacification while we designed class level-1 to be 2~5 mm and level-2
to 5 mm or more. In other words, we divided the classes for maxillary sinusitis thickness
into more finely-grained levels, and specifically excluded air-fluid which can easily be
identified by the conventional technique.

To achieve the best possible results, we had to focus primarily on finding a solver that
solves the inherent problem that makes the straightforward analysis of radiograph images
difficult. Paranasal sinus images taken using X-rays are likely to be shadowed by the skull
and various anatomical structures making it a difficult task to detect paranasal sinusitis
and to extract a salient feature map from X-ray images as opposed to CT. In cases where the
raw data information is scarce and unclear, the introduction of relatively shallow networks
is usually known to be an effective method to prevent overfitting and optimize the models.
However, the approach of simply reducing the depth of the network has obvious limitations
in improving predictive ability; a shallow model may not capture important features of the
image. Accordingly, we sought to improve the model performance by adding an auxiliary
classifier rather than massively simplifying the model’s network.

Considering the characteristics of the dataset determined by the environment de-
scribed above, we postulated that deep supervised learning where auxiliary loss is intro-
duced into a relatively shallow network would be a better strategy for reliable classification
of sinusitis [30,31], rather than designing a deep network model by concatenating possible
modules, i.e., dense or inception blocks. In practice, the auxiliary classifier method has at-
tracted the attention of many researchers interested in improving the convergence of losses
and preventing the gradient from vanishing in deep neural networks [32]. Therefore, we
assumed that this idea is also suitable for our problem since the auxiliary classifier can com-
pensate for valuable information that is missing during the training process and optimize
the network by aggregating pivotal features of the X-ray image in an intermediate layer.

To develop a deep learning network that can reliably diagnose maxillary sinusitis from
X-ray images, we first developed three different models by combining basic convolutional
modules, dense modules, and inception modules to form MVNet. Then, each model was
reproduced in six variations depending on whether the auxiliary classifier is embedded
or not. The models to which the auxiliary classifier method was applied had higher
performance than the models to which the auxiliary classifier method was not applied.
A significant difference was found for Aux-MVNet, while the performance for the other
models increased slightly. Although only Aux-MVNet showed a significant performance
increase, we conclude that these encouraging results have led to the auxiliary approach
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being able to optimize the low-level feature map which plays a vital role in the diagnosis of
PNS using uncleaned radiographs.

It is also worth mentioning that our proposed system is equipped with an end-to-
end detection network to automatically recognize maxillary regions in Waters’ view and
Caldwell’s view. Thanks to the introduction of the detection network, we were able to
evaluate the classification performance by dividing it into left and right maxillary sinuses.
Conventional studies [13] dealing with classification problems in maxillary sinusitis usually
require manual segmentation of the region of interest (ROI) prior to commencing model
training. Reliable automated ROI segmentation is definitely beneficial as it can bypass this
tedious work.

To classify sinusitis into left and right, we took advantage of RetinaNet which can
perform ROI detection and multinomial classification in one step. The results of detecting
the left and right maxillary sinuses using RetinaNet showed APs of 0.960 and 0.970 in
Waters’ view. In Caldwell’s view, the results of left and right maxillary sinus detection were
excellent with APs of 0.882 and 0.872, respectively. The detection of the maxillary sinus
region is not a challenging task, but we demonstrated that the RPN-based detection of the
left and right maxillary sinus regions is reliable.

We performed the statistical analysis of network evaluation separately for the left and
right maxillary sinuses. The Aux-MVNet achieved an AUC of 0.750 in the left maxillary
sinus and an AUC of 0.700 in the right maxillary sinus. However, our study suffered from
the lack of study data and data imbalance problems. In fact, the accuracy for sinusitis
level-1, especially, for sinusitis level-1 in the right sinus was significantly lower than that
of other classes (accuracy < 0.600). Therefore, the proposed approach in all settings is
expected to achieve better classification performance for distinguishing sinusitis level-1
from other classes.

5. Conclusions

We proposed an Aux-MVNet to aid the diagnosis of maxillary sinusitis using Waters’
and Caldwell PNS radiographs. The auxiliary classifier in Aux-MVNet has significantly
improved the classification performance of our model. We also demonstrated that our
cascaded network can provide the estimated region of maxillary sinus and sinusitis levels.
PNS radiographs are still primarily used in the ENT departments to diagnose sinusitis,
so we expect that our network can support clinical decisions in maxillary sinusitis. In
future studies, we plan to improve the clinical decision-making ability of our network by
comparing the proposed method with otolaryngologists.
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