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Abstract: Perinatal brain injury or neonatal encephalopathy (NE) is a state of disturbed neurological
function in neonates, caused by a number of different aetiologies. The most prominent cause of NE
is hypoxic ischaemic encephalopathy, which can often induce seizures. NE and neonatal seizures
are both associated with poor neurological outcomes, resulting in conditions such as cerebral palsy,
epilepsy, autism, schizophrenia and intellectual disability. The current treatment strategies for NE and
neonatal seizures have suboptimal success in effectively treating neonates. Therapeutic hypothermia
is currently used to treat NE and has been shown to reduce morbidity and has neuroprotective effects.
However, its success varies between developed and developing countries, most likely as a result
of lack of sufficient resources. The first-line pharmacological treatment for NE is phenobarbital,
followed by phenytoin, fosphenytoin and lidocaine as second-line treatments. While these drugs are
mostly effective at halting seizure activity, they are associated with long-lasting adverse neurological
effects on development. Over the last years, inflammation has been recognized as a trigger of
NE and seizures, and evidence has indicated that this inflammation plays a role in the long-term
neuronal damage experienced by survivors. Researchers are therefore investigating the possible
neuroprotective effects that could be achieved by using anti-inflammatory drugs in the treatment
of NE. In this review we will highlight the current knowledge of the inflammatory response after
perinatal brain injury and what we can learn from animal models.
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1. Neonatal Encephalopathy and Neonatal Seizures

Neonatal encephalopathy (NE) is a multi-aetiology condition characterised by disturbed
neurological function in the first few days of life for babies past 35 weeks of gestation, and comes with
a high risk of morbidity and mortality [1]. NE affects an estimated 3 to 5 in 1000 births, with higher
incidences observed in lower income countries [1]. Seizures are a common symptom of NE and
a neurological emergency in neonates, strongly associated with mortality and the development of
significant neurodevelopmental disabilities [2]. Although no consensus has been reached on the
definition of neonatal seizures, they are widely accepted to be transient electrographic changes in
the brain resultant of excessive, synchronous or abnormal neurological function, presenting with or
without clinical signs and occurring in the first 28 days of life for a full term neonate, or before 44 weeks
gestational age for a premature neonate [3]. Due to a variety of factors, such as differences in study
methodology, national economic status and inter-observer variation, the incidence of neonatal seizures
varies markedly, ranging from 0.95–5.0 in every 1000 births in high income countries [3,4] to incidences
as high as 39.5 in 1000 births in low income countries [5]. Mortality from neonatal encephalopathy has
decreased in recent decades; however, neurological ramifications are still prevalent [2].
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1.1. Aetiology

A broad range of conditions are responsible for NE onset, such as Hypoxia-Ischemia
Encephalopathy (HIE), which is by far the most common cause, placental abnormalities, maternal factors,
perinatal infections, metabolic disorders and coagulopathies; and in a small number of cases the
exact aetiology is never determined [1]. As the most common cause of NE, HIE is the aetiology of
choice when inducing NE in animal studies, particularly in murine and rat models. It is also the most
common cause of neonatal seizures, with over half of infants with HIE developing neonatal seizures [6].
For the purpose of this review, we will focus on the hypoxia–ischemia (first characterized by Rice and
Vannucci [7]) and hypoxia-only models, the most common causes of NE and the most widely studied.

Classification of Neonatal Seizures in Murine Models of Neonatal Encephalopathy

Two main types of seizures have been observed in the two main murine models of HIE,
the hypoxia–ischemia and hypoxia-only models [8,9]. The first type is defined by a burst of high
amplitude spikes occurring at regular intervals and returning to baseline between discharges [8].
The second type is characterized by spike-and wave pattern increasing up to 1–2 Hz, and it is mainly
observed after reoxygenation or reperfusion [8].

Both types of seizures have been observed in both models, the hypoxia–ischemia and hypoxia-only
models; however, they have different characteristics. In the hypoxic ischemic rat model, the durations
of the events of the high amplitude spikes (first type) were on average 220 s and they started within
30 min of the ischaemic phase [8]. In contrast, in the mouse hypoxia-only model, the high amplitude
spikes lasted for 12.9 s and they started within the 5 min of the hypoxic phase [9]. Importantly, in both
models the seizure-like activity was associated with changes in behaviour. During the discharges in the
rat model, features such as myoclonic jerks, vocalization, head bobbing, and repetitive clonic jerks were
observed [8]. In the hypoxia-only mouse model, the behaviours associated with the discharges included
circling, swimming, pedalling, spasms and shaking [9]. However, these differences in behavioural
seizures could be more related to differences in species than electrographic characteristics of the seizure.
Significantly, we do not know how these types of seizures may contribute to the pathology of neonatal
seizures; to date, no correlations have been seen between the burst of high amplitude spikes and
spike-wave patterns post-insult and molecular markers or neurological outcomes, and how they can
contribute to the re-wiring of the brain.

The role of inflammation in neonatal seizures is not fully understood. We know that targeting
inflammation before hypoxia reduced the number of seizure events and the duration of seizures [10,11].
The mechanism by which this targeting of inflammation reduces seizure activity will require further
investigation. Evidence from in vivo experiments supports the role of the cytokine IL-1β signalling
in hyper-excitability, as intracerebral injections of IL-1β exacerbate the seizure phenotype of the
pro-convulsant agents kainic acid (kainic-acid receptor agonist) and biccuculine (GABA-A receptor
antagonist) [12,13]. Furthermore, in transgenic mice, overexpression of IL1-receptor was protective
against seizure onset [13]. The underlying mechanism of how IL-1β regulates seizure activity is not fully
understood. Evidence from the febrile rat model and adult epilepsy shows that regulation of NMDA
receptor activation via IL-1β may be the responsible for the increase seizure activity [12]. Similarly,
another pro-inflammatory cytokine, TNFα, increases AMPA-receptor density on the membrane,
contributing to the hyper-excitability [14].

In summary, evidence for experimental models shows that anti-inflammatory treatment could
reduce seizure activity and cytokines may regulate the activity of AMPA and NMDA receptors,
but further studies will be necessary to identify the mechanisms underlying those processes in the
immature brain.
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1.2. Current Treatments for Neonatal Encephalopathy

Babies suffering from neonatal encephalopathy and seizure require urgent treatment to improve
their conditions and reduce mortality and morbidity. Currently, the main treatments for neonates with
suspected NE are therapeutic hypothermia and phenobarbital (PhB). Therapeutic hypothermia is the
only approved non-drug treatment for infants with NE, despite its low response rate. Hypothermia
only works in infants with moderate hypoxia and is only effective in reducing the duration of seizures
(without reducing the number of ictal events). In the moderate to severe cases (babies suffering
from moderate to severe hypoxia), hypothermia is the only therapy option, despite its limited effect,
and 50% of children require a second intervention [6]. Importantly, hypothermia does not improve the
neurological outcomes after NE [6].

Phenobarbital (PhB), a positive allosteric modulator of GABA-A receptors, is the first line drug
for the treatment of neonatal seizures. PhB has a response rate of 50%, and exacerbates the seizure
phenotype in the remaining cases [15,16]. This effect of PhB is based on its mechanisms of action and
the specific nature of the immature neurons. In immature neurons, activation of the GABA-A receptor
results in an increase of intracellular Cl− levels. The high intracellular concentration of Cl− causes
neurons to depolarise (activate) rather than hyperpolarise—the typical inhibitory effect of GABA in the
mature brain [17].

Challenges of Current Drug Treatments in the Clinic

Although PhB has a poor therapeutic profile, it is still recommended as a first-line treatment
by the World Health Organisation (WHO), with phenytoin and midazolam as second-line therapies.
However, the current anti-convulsant drugs (ACDs) in the clinic present two main risks:

1. Preclinical models have shown that ACDs can induce neurotoxicity and neuronal apoptosis
in the immature brain [18–20]. With similar results to those observed in a mouse model of
hypoxia, PhB itself induces neuronal damage in neonates; and when given as a treatment for
hypoxia-induced seizures, it exacerbates the damage [20].

2. Current ACDs affect neurogenesis, synaptogenesis and synaptic plasticity, resulting in unwanted
neuropsychiatric outcomes [20–22]. Indeed, P7 mice pups receiving PhB presented anxiety-like
behaviour and detrimental hippocampal function in adulthood [20]. Furthermore, PhB given
as a treatment for neonatal seizures does not improve the lasting anxiety-like behaviour and
hippocampal-dependent memory of the hypoxic mice [20]. Supporting the pre-clinical animal
model, infants treated with PhB show a strong decrease in cognitive and motor scores at 24 months
of age compared to untreated infants [23].

Similarly to current ACDs, poor results were found in the last clinical trial for the treatment
of neonatal seizures using the new drug bumetanide (NEMO1; NCT01434225) [24]. Bumetanide,
a blocker of the potassium co-transporters (NKCC1 and NKCC2), was observed to reduce seizures in a
kainic-acid animal model [18]. Years later, two clinical trials were initiated to establish the safety and
efficacy of bumetanide in infants. However, both trials concluded due to the toxic effects of the drug
(dehydration, hypotension and permanent hearing loss) and limited evidence of seizure reduction [24].
These studies show the need for understanding the mechanisms underlying neonatal encephalopathy
and investigating inflammation as a novel therapeutic target.

2. Experimental Animal Models of Hypoxia and Hypoxia–Ischemia

Much research has been conducted to develop different animal models of hypoxia and
hypoxia–ischaemia with the aim of finding models which are as reflective as possible of the human
condition following neonatal hypoxia. The first model for hypoxia–ischemia in neonates was developed
by Rice-Vannucci in 1981 [7]. While this is a very valuable model, it has been associated with high
variability in infarct area and symptoms. Modifications of this original model have been developed to
reduce variability (Table 1). The most common modifications for this model include levels of oxygen



Cells 2020, 9, 2640 4 of 19

administered during the hypoxia treatment period and the postnatal day at which the treatment is
administered, resulting in slightly different phenotypes. Importantly, independent of the modifications
to the original model by Rice-Vannucci, all of the hypoxia–ischemia models present with the same set
of symptoms, including seizure, memory impairment and hyperactivity.

Table 1. Rat and mouse models for hypoxia–ischaemia. The experimental designs employed, along with
the resultant behavioural characteristics and O2 levels.

O2 Levels Age Duration Common Reported Behaviour References

Rat

0% P0–P11 5–30 min
Hyperactivity in open field,

impaired memory,
increase anxiety

[25–44]

2.5–5% P0–P10 15–30 min Seizures during hypoxia,
worse water maze performance [44–52]

5–8% P7–P10 15 min–3 h Increase susceptibility to chemical
induced seizures at adulthood [53–62]

10% P7–P9 30 min–6 h Hyperactivity in novel object task [63–65]

Mouse

0% P0–P15 20–25 min Hyperactivity and seizures [66,67]

5% P1–P7 15 min–2 h Seizures, impaired learning [9,68]

More recently, a model of hypoxia-only has been developed in mice, to mimic the mild–moderate
neonatal encephalopathy more commonly caused by birth asphyxia. Similarly to the hypoxia-ischemia
murine models, different levels of oxygen, ages and durations have been used (Table 2).

Table 2. Experimental design for the hypoxia-only mouse models, along with the resultant
behavioural phenotypes.

Species O2 Partial
Pressure

Age
(Postnatal Day) T (◦C) Duration of

Hypoxia
Reported Behavioural

Phenotype References

C57 Mouse 0% P3–15 RT 20 min
Electrographic seizures

without clinical
manifestations.

[67]

Mouse 0% P0 33, 37, 39 25 min

Both open-field
stress-induced and

spontaneous motor activity
reduced. Hyperactive in

the plus maze test.
Behavioural disturbances

were prevented by the body
temperature of 33 ◦C.

[66]

C57 Mouse 5% P7 34 15 min
Seizures in pups, reduced
curiosity in novel object

test, weight loss.
[9]

Mouse 5% P1 - 2 h
Melatonin improved

learning and memory in the
Morris water maze.

[68]

Nevertheless, the symptoms observed in the hypoxia–ischemia and the hypoxia-only models are
related to seizure, memory impairment and hyperactivity, demonstrating that similar mechanisms are
probably activated independently of the original insult. Interestingly, the model outlined by Wang and
colleagues [68] (Table 2) noted that treatment with melatonin post-hypoxia improved performance in
the Morris water maze regarding learning and memory, which could possibly have been due to the
melatonin having an anti-inflammatory effect [68].
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In summary, we can conclude that the hypoxia–ischaemia and the hypoxia-only models have
similar long-lasting neurological outcomes, including hyperactivity and memory impairment. They also
show that the dose of oxygen administered, along with the duration of the treatment, play integral
roles in the behavioural characteristics seen post-hypoxia.

3. Inflammation in Neonatal Encephalopathy

Neuroinflammation caused by hypoxia or hypoxic ischemia during the perinatal period
contributes to increased risk for neurological deficits and long-term disabilities in children [69].
Inflammation induced by injury results in activation of the resident and peripheral immune cells
and production of cytokines. In recent years, inflammation has been implicated in neonatal brain
damage following perinatal stress. Induction and activation of microglia and astrocytes are hallmarks
of neuroinflammation, which occurs in response to hypoxia and hypoxic ischemia in neonates [11,70].
Studies have shown that exposure of the neonatal brain to hypoxia, thereby causing an inflammatory
response, is associated with long-lasting changes to neuronal morphology within the hippocampus
and other vulnerable structures of the brain [71]. Circulating cytokines and neuroimmune cells such as
microglia are the targets of several studies that are investigating the potential use of these components
as biomarkers for neonatal brain injury. Additionally, targeting inflammation improves acute and
long-lasting effects after hypoxia and hypoxic ischemia in mice [11,70].

Studies into the inflammatory response post-hypoxia have revealed that HIE is a sexually
dimorphic disease, with male infants being far more vulnerable to ischaemic insults. Male infants are
also significantly more at risk of suffering from long-term cognitive deficits when compared to female
infants with comparable brain damage [72]. In fact, the microglial anti-inflammatory response was
more robust in females than in males [72]. More infiltration of peripheral lymphocytes, along with
upregulated TNFα and IL10, were observed in males when compared with females. It was also
noted that neurogenesis was more highly induced in female HIE brains versus male HIE brains.
The conclusions drawn from this study were that the pro- and anti-inflammatory responses are indeed
dichotomous with respect to sex, which is integral to the sex-specific chronic HIE outcomes, and that
increased induction of neurogenesis in females also contributes to this sex-specific difference [72].

It has been long established that infants born prematurely are more vulnerable to the effects of
asphyxia and developing adverse sequelae. Acute asphyxia at birth followed by HIE is more frequently
seen in infants born prematurely than infants born at term, and is highly associated with the onset of
adverse neurological outcomes [73]. Several studies have found that while HIE still only occurs in a
minority of preterm births, it is a significant contributor to severe disability [74–76]. Mild HIE in preterm
infants can result in white matter injury, even in the absence of abnormalities in neurological exams at
discharge [75]. The pattern of injury onset can be more prolonged in preterm infants; in some patients
who develop cerebral palsy, there are no white matter lesions; however, long-term studies showed that
it may be delayed onset demyelination [77]. As a result of this white matter injury, even in mild cases,
the resultant adverse outcomes can be attributed to impaired global and regional connectivity between
cortical and subcortical grey matter structures [78]. Evidence has also shown a correlation between
preterm births and stunted cortical plasticity in adolescents [79]. Extensive evidence from preclinical
studies has strongly implicated CNS and peripheral immune responses in the pathogenesis of HIE
and preterm brain injury [69]. Various clinical and human post-mortem studies have shown that
chronically upregulated systemic and CNS cytokines and gliosis show strong associations with adverse
neurological outcomes [80,81]. Evidence has shown that systemic upregulation of TNFα and IL1β in
premature infants is associated with impaired neural functions in the first 72 h of life, followed by
cognitive impairment at 2 to 3 years of age [81].

It is clear from both human and animal studies that inflammation and the immune response are
key to many aspects of the pathogenesis and pathophysiology of HIE and neonatal brain damage.
However, further studies will be necessary to elucidate the underlying mechanisms associated with
neonatal brain damage.
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3.1. Pathogen-Associated Molecular Patterns (PAMPS) and Damage-Associated Molecular Patterns (DAMPS)

Pathogen-associated molecular patterns, or PAMPs, are normally conserved microbial products
such as lipopolysaccharides which activate pattern recognition receptors (PRRs. such as Toll-like
receptors (TLRs)) after a bacterial or viral infection. PRR signalling pathways have been shown to
initiate cascades that lead to immune cells recruitment to the site of an infection [82]. In contrast to
this, danger-associated molecular patterns, or DAMPs, are molecular patterns associated with sterile
inflammation, or inflammation instigated without introduction of a pathogenic microbe, as seen after
neuronal necrosis. These molecular patterns are released in response to tissue damage, with the same
innate pattern recognition systems used in the detection of microbes initiating this sterile inflammatory
response [82]. This inflammatory response, followed by tissue repair, is dependent on microglia
migration to and from the site of injury [83]. Studies show that DAMPs and PAMPs induce distinctly
different inflammatory responses in the neonatal brain (Figure 1). Lalancette-Hebert and colleagues [84]
studied the difference between these responses with respect to toll-like receptor 2 (TLR2) expression.
It was found that a neonatal mouse model of infection induced TLR2 expression and secretion of
inflammatory mediators. Contrasting results were seen in the two neonatal mouse models of sterile
inflammation (IL-1β injection and MCAO), which showed decreased induction of TLR2 and reduced
production of inflammatory cytokines [84]. This study highlights the existence of scenario-specific
innate immune responses, depending on the presence of either infections or sterile inflammation,
and the necessity of looking for specific therapeutic strategies depending on the original insult. In the
following sections we will examine the activation of the most studied family of receptors in hypoxia
and hypoxia–ischemia murine animal models.

Figure 1. Intracellular pathways activated by DAMPS and PAMPS. DAMPS and PAMPS will bind
to the membrane receptors, e.g., TLR and P2X7. This activation will trigger a series of intracellular
events resulting in an increase of inflammation. Note: the red arrows represent experiments which
have blocked the actions of the elements they are pointed at.
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3.2. Toll-Like Receptors in Neonatal Encephalopathy

Upregulation of pattern-recognition receptors, such as TLRs, has been shown after perinatal
brain injury. The Toll like receptor (TLR) family consists of nine subtypes (TLR1–9). They recognize
a variety of pathogen-associated molecular patterns (PAMPS), including LPS, bacterial DNA and
double stranded RNA. The role of TLR in perinatal brain injury has been extensively studied. TLR1,
2 and 7 are up-regulated 24 h after hypoxic ischemia in pups. TLR5 is downregulated and TLR3, 4,
6, 8 and 9 do not change expression. Interestingly, when KO mice for TLR 1 and 2 were subjected to
hypoxic ischemia, TLR2 KO improved the infarct volume after hypoxic ischemia, but TLR1 KO did
not have an effect. This data showed that TLR2 plays a role in initiating inflammation after perinatal
brain injury [85,86]. Supporting this data, the use of Candesartan Cilexetil, a drug which reduces
levels of TLR2, has been shown to improve neuronal damage after hypoxia in mice, and also improve
the long-lasting neurological outcomes [11]. Importantly, the response of TLR2 to sterile (e.g., HI)
or non-sterile inflammation (e.g., LPS to mimic bacterial infection) differs on the pre-clinical model [84].
Suggesting that, deeper knowledge of the pathways underlying TLR2 is important for developing new
pharmacological treatments.

TLR4, another receptor implicated in DAMP and PAMP functions, has also been studied,
due to observations that its inhibition has neuroprotective effects in neonatal brain damage [87].
TLR4 inhibition shortly after injury reduced activation of hippocampal glial cells improved hippocampal
neuronal loss later in life and resulted in less severe long-term neurological outcomes [87]. These studies,
by targeting receptors which mediate the effects of DAMPs and PAMPs, show the important roles
played by these molecules in the mediation of the neuroinflammatory response following hypoxic
ischaemic brain injury. Further studies are needed to fully understand these interactions in the neonatal
brain post-injury.

3.3. Purinergic Signalling Activation after Neonatal Encephalopathy

Extracellular adenosine triphosphate (ATP) is a typical DAMP which acts as a glio- and
neurotransmitter in the CNS to modulate functions such as brain excitability and neuroinflammation [88].
It is considered to be a co-transmitter in most neurons of the central and peripheral nervous system,
and is released from astrocytes and neurons to act as either a co-transmitter or a sole transmitter [89].
The P2X class of ionotropic receptors, made up of seven distinct receptors, mediates the rapid effects
of extracellular ATP by gating sodium and calcium entry into cells [90]. The P2X7 receptor (P2X7R)
modulates cytokine production, glial activity and neurotransmitter release following brain injury [90].
P2X7R activation is seen in instances of pathologically high extracellular ATP levels, the likes of
which are seen during seizures and brain injury. Downstream signalling of the P2X7R results in
microglia activation and the release of interleukin 1β (IL-1β), which is a pro-convulsive inflammatory
cytokine [91–93]. Evidence has shown that P2X7R is expressed by neurons and acts as a modulator
of neurotransmitter release [94,95]. Similarly, each member of the P2Y class of eight purinergic
metabotropic receptors is stimulated by ATP, and they are generally associated with slower presynaptic
functions, and mediation of trophic signalling in cell differentiation, proliferation and death during
development [89]. During epileptic seizures, large quantities of nucleotides enter the extracellular
space from neurons and glia due to metabolic limitations [96]. These activate the P2X and P2Y receptors,
including P2X7 and P2Y1, which are expressed on both embryonic and adult neural progenitor cells
(NPCs). These two receptors regulate NPC functions, causing necrosis and apoptosis, and proliferation,
differentiation and migration [97,98]. In a study by Rozmer and colleagues [99], patch-clamp recordings
were carried out on hippocampal brain slices from neonate and adult transgenic nestin reporter mice
which underwent pilocarpine-induced status epilepticus. This study detected the presence of P2X7R in
NPCs in the subgranular zone of the dentate gyrus. Upon activation of these receptors, inward current
was recorded near the resting membrane potential of the NPCs. P2Y1 receptor activation, on the other
hand, initiated outward current close to the reverse potential of the P2X7R current [99]. It was also noted
that the sensitivity of these two receptors was invariably increased. In this model, status epilepticus
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was preceded by a latency of 5 days after treatment with pilocarpine, and recurrent epileptic fits
occurred during this period. Blockade of central P2X7Rs increased the number of seizures experienced,
along with their severity. Rozmer and colleagues [99] hypothesised from these results that P2Y1
receptors increase proliferation and migration of NPCs, while P2X7R mediated necrosis and apoptosis
may counter these effects, which would otherwise result in chronic recurrent epileptic seizures.

Experiments have been carried out to block the P2X7R in order to fully understand the role of
this receptor in perinatal stress and subsequent brain injury. P2X7R is over-expressed in a neonatal
mouse model of global hypoxia, and targeting of P2X7R with A-438079, a receptor antagonist of P2X7R,
can reduce the number of post-hypoxia neonatal seizures [10]. These results corroborated an earlier
study by Mesuret and colleagues [100], which used the same inhibitor to investigate the effects of P2X7R
antagonism on early-life seizures in rats. This study also found that P2X7R blockade by A-438079
improved neonatal seizures, and suggested A-438079 could be used as a treatment for neonatal seizures
or paediatric status epilepticus [100]. Similarly, Brilliant Blue G (BBG), a P2X7R-specific inhibitor,
inhibits LPS-induced IL-1β release in mouse models of intrauterine inflammation [101], resulting in
perinatal brain injury. P2X7R blockade resulted in reduced preterm birth rates, dendritic arborisation
and density of cortical neurons, and improved performance for offspring in neuromotor tests [101].
These results supported the role of IL-1β as a key mediator of perinatal brain injury. Further studies
corroborated the neuroprotective effects of P2X7R blockade, with da Silva and colleagues [102]
showing that in a neonatal rat model of LPS-induced inflammation, pharmacologic blockade of P2X7R
in the neonatal period using BBG has neuroprotective effects that persist into adulthood [102].

3.4. Cytokines and Chemokines in Neonatal Encephalopathy

Cytokines and chemokines, such as tumour necrosis factor α (TNFα) and interleukin 1β (IL1β),
are released by microglia and astrocytes in response to hypoxic ischaemic injury, amplifying
inflammatory cascades that recruit monocytes and neutrophils to the site of injury [103]. Studies have
demonstrated an association between more adverse outcomes following perinatal brain damage and
pro-inflammatory cytokines, such as TNFα, IL1β and IL6 [104]. These cytokines are released by
astrocytes, neurons and microglia and are associated with HIE. A study by Liu and colleagues [104]
demonstrated this by studying the peripheral blood levels of TNFα and IL1β of human neonates
with HIE and control neonates. It was found that neonates with HIE consistently had higher levels
of TNFα and IL1β, and there was a positive correlation between IL1β levels and HIE severity [104].
Chemokines also play a pivotal role in the inflammatory response following NE or HIE, due to
their roles in inflammatory cell trafficking and leukocyte activation [105]. When HIE is modelled
in rats [106], upregulation of alpha-chemokines such as macrophage inflammatory protein 2 (MIP2)
and beta-chemokines such as MIP1α, MIP1β and CCL5 is induced, followed by the expression of
lymphocyte markers in the site of infarction. This inflammatory response persisted beyond the
neonatal period in this rat model, indicating that this acute inflammation may trigger a chronic
inflammatory response [106].

3.4.1. Interleukin 1β, IL1β

There is no doubt that IL-1β levels are increased after neonatal brain injury. Hypoxic ischemia
and hypoxia-only both cause acutely increased IL1β levels after the original insult [10,11]. However,
it is not clear whether this increase of IL1β is sustained over time. Results from the hypoxia–ischemia
model showed increases in IL1β 6 days and 14 days after reperfusion. However, in the hypoxia-only
model, IL1 β levels returned to normal levels after 72 h [11].

Supporting the role of IL1 β in ischemia, administration of type 1 interleukin receptor (IL1R1)
antagonist or blocking antibodies ameliorates damage induced by excitotoxicity and/or ischemia.
IL1β knockdown by lentivirus in vivo can also improve the damage caused by neonatal HI [10].
Further analysis will be necessary if these results can be reproduced on the hypoxia-only model where
the induction of IL1β is transient.
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3.4.2. Interleukin-6, IL6

IL6 has been shown to have a dual function, having beneficial and/or detrimental effects depending
on the context. In adult rodents, IL6 has an inflammatory effect in the acute phase, but during the
chronic phase, IL6 acts as a neurotrophic factor [70].

In the neonatal brain, IL6 is increased transiently in the first hours after ischemia. Blockers of IL6
have a neuroprotective effect after the ischemic insult. However, no differences were observed between
the ipsilateral (hypoxic-ischemic side) and the contralateral side (hypoxic only side), making it difficult
to determine the role of IL6 in the neonatal brain. Further studies will be necessary to fully elucidate
the role of IL6 during neonatal brain injury.

3.4.3. Tumour Necrosis Factor, TNFα

It is clear that TNFα is increased after neonatal brain injury; however, its role is not clear.
TNFα binds to TNF-R1 and TNF-R2. Activation of TNF-R1 activates a caspase signalling pathway,
resulting in cell death. In contrast, activation of TNF-R2 induces cell proliferation via the survival Akt
signalling pathway. In neonatal hypoxic ischemia in rats, an increase of TNF-R1 has been observed in
oligodendrocytes, suggesting that TNFα may play a role in the apoptosis and delayed myelination
observed in neonatal brain injury. The role of TNFα will require further analysis to clarify its beneficial
or detrimental effect [107].

4. Contributions of Central and Peripheral Cells to Neonatal Encephalopathy

Both central and peripheral immune cells contribute to the damage induce after hypoxia-ischemia
and hypoxia. In this section, we will discuss how the different cells types contribute to the damage
after NE (Figure 2).

4.1. Microglia

Microglia are dynamic cells that maintain neurons and neural circuits, and are responsible for
mediating the immune response within the brain once activated. When microglia are activated
following injury, their roles include cytokine and chemokine release, phagocytosis and antigen
presentation. Microglia undergo morphological transformation into their activated state following
HIE. Microglial aggregation and activation have been established as pathological markers for HIE,
as activated microglia are believed to contribute to HIE and excitotoxic injury [70]. Winerdal and
colleagues [107] investigated long-term local and systemic inflammation in a mouse model of HIE.
The study showed that in the months following the initial HIE event, the mice showed elevated activation
of local and systemic inflammatory response, and suggested that this prolonged inflammation also
contributes to potential brain damage following HIE [107]. Another study by Serdar and colleagues [83]
investigated microglial phenotypes in the early stages of hypoxic-ischaemic brain injury using a rat
model of inflammation-sensitised HI brain injury. This study identified microglia as key mediators
of the inflammatory response following injury, with a predominantly pro-inflammatory phenotype
adopted in the 24 h post-hypoxia [83]. Studies of this nature open doors for new treatment options to
be explored which target microglial processes and morphology to prevent the injurious inflammatory
response post-hypoxia.

4.2. Astrocytes

Astrocytes are the most abundant of the glial cells in the mammalian brain, and provide many
functions within the CNS, including regulation of the extracellular environment, removing excess
neurotransmitters and provision of metabolic and structural support for neurons [108,109].
Excessive glutamate release occurs following HIE, leading to overstimulation of the glutamate receptor
N-methyl-D-aspartate (NDMA). This overstimulation triggers the excito-oxidative injury cascade
by causing excessive Ca2+ influx to the cytosol, resulting in apoptotic cell death in neurons [110].
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Contributing to the pathology after hypoxic ischemia, astrocytes have a diminished capacity for
glutamate uptake caused by mitochondrial failures [111]. Interestingly, mitochondrial failure was
found to be a sexually dimorphic; male pups have a stronger acute response than females, and female
pups have a longer reduction in function than males [111].

Figure 2. Summary of the inflammatory processes that occur following neonatal encephalopathy (NE),
highlighting the cell types involved from both the CNS and peripheral immune response along with
the ramifications of NE that persist long after this inflammatory response abates.

Wang and colleagues [112] investigated the role of TRVP1 translocation in astrocytic membranes at
the onset of HIE-induced epilepsy, potentially identifying this receptor channel protein as a therapeutic
target. TRVP1 is a member of the vanniloid transient receptor potential (TRVP) channel family, and is a
Ca2+ permeable channel, previously studied for its role as a pain receptor in sensory neurons [113].
Using a mouse model, this study ascertained the importance of TRVP1 in the promotion of astrocyte
migration, which in turn encourages the infiltration of pro-inflammatory cytokines to the vicinity of
neurons and promotes the onset of epilepsy. The results of this study rationalise the potential of TRVP1
as an anti-epileptogenic therapeutic target after HIE [112].

Evidence implicates astrocytes at the onset of damage post-HIE; however, astrocytes and their
responses to certain cytokines are also associated with having certain neuroprotective effects.
IL-10 released from astrocytes suppressed neuronal apoptosis in response to HIE via the TLR2/NFκB
pathway in a rat model of hypoxia-ischemia [114]. Similarly, the astrocyte-derived IL-33 following HIE
is upregulated in the first 24 h post-HIE, and the ST2 receptor, the receptor for IL-33, was shown to be
upregulated in astrocytes post-HIE [115]. Importantly, exogenous delivery of IL-33 via intraperitoneal
injection alleviated the resultant brain injury 7 days post-HIE. Conversely, deficiency of the ST2 receptor
exacerbated brain damage and neurological sequelae post-HIE. When mice were treated with IL-33
post-HIE, astrocyte apoptosis was attenuated, and astrocyte response was improved through the ST2
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pathway, including released neurotrophic factors essential for neuronal survival against oxygen and
glucose deprivation.

The role of IL-6 is HIE is not clear (see section above, “Interleukin-6, IL6”); however, IL-6 has
been found to be neuroprotective after HIE due to its effects on astrocytes. Overexpression of IL-6 via
mesenchymal stem cell transplantation alleviates neurological sequelae following HIE. The mechanism
of this neuroprotective action is not fully understood; however, it has been observed that IL-6
suppresses apoptosis of injured astrocytes [116] and reduces proliferation of reactive astrocytes induced
by HIE [117].

4.3. Oligodendrocytes

Neurons and oligodendrocytes during development have high metabolic rates, making them
more vulnerable to anoxia. During development, grey and white matter injuries have been associated
with sub-acute and chronic hypoxia-ischemia. Importantly, white matter injury is common in pre-term
babies; however, results are contrasting in term babies, in whom white matter injury has been
linked with chronic hypoxia, but not in areas of high metabolic activity like the thalamus [118].
These differences in white matter injury in pre-term and term babies may be a reflection on the
maturation of oligodendrocytes in pre-term and full-term babies [69].

The degree of damage on premature neonates correlates with a predominance of late oligodendrocytes
progenitor cells (OPCs) in the immature brain. The observed hypomyelination may be due to the death of
OPC, stopping oligodendrocyte maturation, and depletion of the number of OPCs [119,120].

It is not clear what the mechanism underlying the damaging of OPCs is in premature babies;
evidence has shown that OPCs express the calcium-permeable AMPA receptor. Glutamate activates the
AMPA receptor, inducing an increase of intracellular Ca2+, resulting in Bax activation, translocation of
Bax to the mitochondria and activation of caspase-3 and cell death [121].

Supporting the role of inflammation in myelinations, intraperitoneal injections of IL-1β in the
first days of life results in an increase in unmyelinated fibres. Additionally, IL-6 could also induce
cell cycle withdrawal and maturation of OPCs [122]. In fact, transgenic mice which overexpressed
IL-6 had severe neurological symptoms, including ataxia, tremor and seizures; however, white matter
damage was not demonstrated [123].

4.4. Peripheral Immune Cells

Peripheral immune cells can cross the blood–brain barrier (BBB) via a number of BBB portals,
namely, the parenchymal blood vessels, the meningeal vessels and the choroid plexus [124]. In neonates,
low levels of monocytes, macrophages and CD4+ T-cells exist in the CSF of healthy neonates for what
is believed to be immune surveillance purposes [125]. In response to insults such as HIE, the immature
CNS, as seen in neonates, upregulates a number of chemoattractant molecules in response to HIE,
including CCL2, CCL3 and CCL7, resulting in recruitment of monocytes from the bone marrow,
and CXCL1, responsible for recruiting monocytes to inflamed tissues [126,127]. These guide peripheral
immune cells towards the CNS, and as a result, a number of peripheral immune cells infiltrate the CNS
and accumulate within.

Accumulations of neutrophils in the brain’s blood vessels following HIE have been observed in
numerous clinical studies and experimental models; however, they tend to remain largely contained
within the blood vessels [106,128]. It has been hypothesised that neutrophils are implicated in an
early-phase temporary impairment of red blood cell and oxygen flow [124].

Studies of mast cells in neonatal HIE have found that these cells excessively express transforming
growth factor beta (TGF-β), which encourages the onset of excitotoxic brain injury [129]. Mast cell
numbers were also seen to increase in the acute HIE response, with rapid degranulation and release of
TNF-α also being observed. Furthermore, inhibition of mast cell degranulation and activation had
neuroprotective effects [130,131].
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The role of monocytes has been extensively studied in HIE in preclinical models [132].
Significant numbers of peripherally derived MDMs infiltrated and accumulated in the immature CNS
post-HIE, with the majority of this invasion occurring one day post-HIE. They also ascertained that
inhibition of this accumulation of myeloid cells was neuroprotective in male but not female neonatal
mice. This study demonstrated the infiltration of peripheral monocytes, while also supporting the
sexually dimorphic nature of the inflammatory response post-HIE.

T cells generally do not cross the BBB; however, higher CD4+ T cell numbers is a characteristic of
the post-HIE immune response [106]. Maximal CD4+ T cell numbers were observed 7 days post-HIE,
and these cells persisted within the CNS up to 35 days post-HIE. This recruitment of CD4+ T cells
attract the recruitment of CD8+ T cells in a rat model of HIE. Importantly, these cells persisted in the
CNS 3 months post-HIE [107]. Supporting this data, Albertsson and colleagues [133] demonstrated in a
mouse model that this CD4+ influx was biphasic, with this influx occurring 1 day and 7 days post-HIE.

Immune cell infiltration has been shown to have an important role in neonatal brain injury,
with elements from both the innate and adaptive immune systems recruited to the CNS following
neonatal HIE. This also shows the complexity of the inflammatory response that is triggered in both
the acute and chronic responses to HIE.

5. Conclusions

The merits of using anti-inflammatory drugs as treatments for neonatal encephalopathy have
been extensively studied. Mounting evidence has shown that the inflammatory components within the
brain, such as microglial activation and cytokine signalling, play pivotal roles in the pathophysiology
of HIE and neonatal seizures [11,71]. Several studies have investigated the effects of anti-inflammatory
drugs as treatments for HIE and neonatal seizures, particularly small molecule drugs, as these are more
likely to successfully cross the blood-brain barrier. Thus far, these studies have shown the beneficial
neuroprotective effects of these anti-inflammatory molecules in animal models [10,11]. However,
several questions remain unanswered regarding the nature of the main inflammatory response induced
by perinatal stress. Research so far has been unable to ascertain whether the activated immune
cells seen in the post-hypoxia response are central immune cells or are recruited from peripheral
tissues. Additionally, research into the effects of anti-inflammatory therapeutics has yet to determine
whether the long-term outcomes resulting from neonatal brain damage can be improved by targeting
inflammation weeks after the original insult. Various inflammatory pathways have been discussed
in this review, particularly the TLR and purinergic pathways which are dictated by DAMPS and
PAMPS activation. Those elements which have not been blocked or antagonised by experiments are
possible targets for future studies, so that we might fully understand their roles in the post-hypoxia
ischemia response.
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