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Introduction

Lung cancer is the first leading cause of cancer-related 
deaths worldwide, accounting for almost a quarter of all 
cancer deaths (1). Lung cancer can be classified into two 
types based on histology: small cell lung cancer (SCLC) and 

non-small cell lung cancer (NSCLC); they are responsible 
for 15% and 85% of lung cancers, respectively. Lung 
adenocarcinoma (LUAD) accounts for >40% of lung 
cancers and is the most common type of NSCLC (2). In 
the last decade, immunotherapy has become an effective 
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therapy for several cancers, and LUAD is an immune-
sensitive cancer (3,4). Indeed, the immune status of cancer 
predicts the effectiveness of immunotherapy and is closely 
related to patients’ prognoses (5).

Studies have confirmed that several biomarkers are 
prognostic factors of LUAD, such as the epidermal growth 
factor receptor (EGFR), V-Ki-Ras2 Kirsten rat sarcoma 
2 viral oncogene homolog (KRAS), and ALK receptor 
tyrosine kinase (ALK) (6-8). Many drugs have subsequently 
been developed to target driver gene mutations in these 
genes. Unfortunately, most patients will eventually develop 
resistance to targeted therapies after receiving them. For 
example, patients’ development of resistance to EGFR-
tyrosine kinase inhibitors is part due to a secondary 
mutation in tumors (9). Moreover, changes at the genetic 
level of the tumor occur before the clinical characteristics, 
and patients with the same stage of cancer may have varying 
prognoses. Most patients are at an advanced stage when 
diagnosed and have thus missed the opportunity to undergo 
standard treatment. For these reasons, the 5-year survival 
rate of patients with LUAD is only 23% (10,11). Therefore, 
it is imperative to identify novel diagnostic and prognostic 
biomarkers of LUAD. Then, management schemes can be 
designed for distinct subsets of patients to allow for precise 
treatment.

RNA-binding protein (RBP) is a class of proteins that 
control RNA stabilization, degradation, and modification 
at the post-transcriptional level by selectively binding to 
RNA (12). So far, 1,542 RBP genes have been identified 
by genome-wide screening in the human genome, 
accounting for 7.5% of all protein-coding genes (13). 
Post-transcriptional regulation plays a critical role in 
cellular processes. Therefore, RBP dysregulation might 
lead to abnormal gene expression in cells and eventually 
result in various diseases, including cancer and immune  
disorders (14). For instance, by regulating the translation 
efficiency of Cyclin D1, CDK2, and CDK4, m6A modified 
RBP YTHDF1 deficiency inhibits the proliferation of 
NSCLC cells and the formation of xenograft tumors, and 
YTHDF1 decrease inhibits de novo LUAD (15). RBPs 
play important roles in various cancers (16-19). No study 
has tried to develop a risk signature for LUAD based on 
immune-related RBPs. 

Lately, a study constructed a prognostic signature of 
liver cancer using immune-related RBPs and demonstrated 
good predictive power (20). To the best of our knowledge, 
no research has been reported to construct a risk signature 
for LUAD based on immune-related RBPs. Therefore, 

this study aimed to construct and validate a risk signature 
with predictive power based on immune-related RBPs for 
LUAD patients. Such a risk signature might help provide 
information for accurate prognosis and individualized 
immunotherapy of patients with LUAD. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-22-698/rc).

Methods 

Data sources

We used public data from The Cancer Genome Atlas 
(TCGA) (https://portal.gdc.cancer.gov) and Gene-
Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.
gov/geo) databases to conduct a comprehensive analysis. 
As a training cohort, the expression data and clinical 
information of LUAD patients (486 tumor samples and 
54 normal samples) were downloaded from TCGA, after 
excluding those with unknown survival data, overall 
survival (OS) <30 days, or died from non-cancer causes 
(e.g., myocardial infarction, hemorrhage, infection, etc.). 
GSE68465 from GEO (including 443 LUAD patients) 
was used as a validation cohort (Table S1). Gerstberger  
et al. (13) reviewed the literature to create a census of RBPs 
and identified 1,542 RBPs, which were all examined in the 
present study. Based on the Immunology Database and 
Analysis Portal (immPort) database (https://immport.niaid.
nih.gov), we acquired 2,498 immune genes (IGs) (21). The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Identification of differentially expressed immune-related 
RBPs

Using Wilcoxon’s test, the R package “limma” was used to 
identify the differentially expressed RBPs and IGs between 
the LUAD and normal samples. The adjusted P value 
<0.05 and |log2 fold-change| >0.5 were considered as the 
thresholds. Based on their expression in LUAD samples, 
Pearson correlation analysis was used to determine the RBPs 
related to IGs. The threshold was set to P value <0.01 and 
|correlation coefficient| >0.5. Genes that met the criteria 
were displayed in a regulatory network using the Cytoscape 
software. Gene Ontology (GO) (http://geneontology.org) is 
an important bioinformatics tool to annotate and illustrate 
genes and their biological process (BP), cellular component 
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(CC), and molecular function (MF) (22). The Kyoto 
Encyclopedia of Genes and Genomes (KEGG) (http://
www.genome.jp/kegg) is a comprehensive database resource 
for the biological interpretation of genome sequences (23). 
The analysis of GO and KEGG pathway enrichment was 
performed in the R package “clusterProfiler” (24).

Screening and analysis of prognostic immune-related RBPs

Univariable Cox regression analyses were used to 
determine the immune-related RBPs that were associated 
with LUAD prognosis. Using the R package “glmnet”, 
Lasso regression analysis was used to exclude genes with 
high correlation, thus reducing the complexity of the risk 
signature (25). Multivariable Cox regression analysis was 
ultimately performed to evaluate the immune-related RBPs 
as independent predictive indicators for LUAD (P<0.05). 
The final immune-related RBPs were defined as risk genes 
for the construction of the risk signature. A series of online 
databases were selected for systematic analysis of the above 
risk genes. First, genetic alteration conditions of risk genes 
in LUAD were downloaded from cBioPortal (http://www.
cbioportal.org) (26). Subsequently, mRNA expression levels 
of risk genes in LUAD and normal tissues were compared 
in the UALCAN (http://ualcan.path.uab.edu/) database (27).  
Finally, we conducted OS analysis using The Gene 
Expression Profiling Interactive Analysis 2 (GEPIA2) 
(http://gepia2.cancer-pku.cn) database (28).

Construction and verification of prognostic risk model

The risk score was derived from the following formula: Risk 
score = Exp1 * B1 + Exp2 * B2 + Expi * Bi. Expi was the 
expression level of risk genes, and Bi was the multivariable 
Cox regression coefficient of risk genes. According to 
the median risk score, LUAD patients were divided into 
the low- and high-risk groups. The R package “survival” 
was used to compare the survival differences between the 
low- and the high-risk groups. External validation of the 
prognostic model was performed using the GEO data set 
GSE68465 to test stability. Group-based survival analyses 
were performed based on age, sex, stage, and TNM to 
determine the predictive power of the risk signature for 
different patients. In order to investigate whether the risk 
signature can be used as an independent prognostic factor, 
we integrated the risk score with clinical parameters for 
univariable and multivariable Cox regression analyses. The R 

package “survivalROC” was used to calculate the area under 
the curve (AUC) to verify the prognostic performance. A 
nomogram was drawn using the R package “rms”.

Assessment of tumor immune microenvironment, stemness 
index, and immune checkpoint

Understanding the tumor immune microenvironment is a 
prerequisite for effective tumor immunotherapy. Using the 
R package “estimate”, the tumor stromal cell and immune 
cell scores were calculated based on the ESTIMATE 
algorithm to analyze the purity of the tumor. A correlation 
analysis between the risk score and DNA stemness score 
(DNAss) and RNA stemness score (RNAss) was performed 
through the Spearman method. Tumor immune evasion is 
involved in immune checkpoint pathways, and anticancer 
immunity can be enhanced by immune checkpoint 
inhibitors (29). Thus, we analyzed the expression differences 
of some common immune checkpoints between low- and 
high-risk groups.

Immune infiltrates analysis

The tumor-infiltrated immune cells are an important 
component of the tumor immune microenvironment. 
The tumor immune estimation resource (TIMER) 
database (https://cistrome.shinyapps.io/timer/) can 
comprehensively analyze the infiltrating immune cells in 
tumors (30). According to the data of immune infiltration 
in LUAD patients in TIMER, we analyzed the correlation 
between risk score and infiltrating immune cells. Based 
on CIBERSORT (http://cibersort.stanford.edu/), the 
deconvolution algorithm was employed to evaluate 
the proportion of 22 immune cell subtypes in LUAD  
patients (31) to compare the differences in immune cell 
subtypes between the low- and high-risk groups, as well as 
the association between immune cells.

Principal component analysis (PCA) and gene set 
enrichment analysis (GSEA)

PCA was used to show the distribution patterns of different 
groups. The 3-dimensional graph was plotted by the R 
package “pca3d”. GSEA was used to assess whether there 
were differences in immune-related pathways between low- 
and high-risk patients. GSEA was used to analyze the KEGG 
enrichment pathways in the low- and high-risk groups. Each 
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analyzed genome was repeated 1,000 times (32).

Drug sensitivity

Finally, we wanted to explore which drugs were sensitive to 
the immune-related RBPs constructed in the risk signature. 
Drug sensitivity processed data was obtained from the 
CellMiner database (https://discover.nci.nih.gov/cellminer/
home.do). According to the analysis results, the top 16 
sensitive drugs were selected for display using the R package 
“ggplot2”.

Statistical analysis

Unless otherwise specified, P<0.05 was considered 
statistically significant. All analyses were performed using R 
software (version 4.0.4), as described above.

Results

Differentially expressed genes

First, the differentially expressed RBPs and IGs between 
LUAG and normal samples were identified. Based on 
the threshold, 245 up-regulated and 139 down-regulated 
differentially expressed RBPs were identified (Figure 1A). 
In addition, 484 up-regulated and 337 down-regulated IGs 
were identified (Figure 1B).

Co-expression regulatory network and enrichment analysis

Then, the role of the RBPs in the immune system was 
examined. A total of 278 pairs of interacting genes were 
identified through Pearson correlation analysis, among 
which the number of immune-related RBPs was 91 (90 
significantly up-regulated genes, and one significantly 
down-regulated gene). A co-expression regulatory network 
was constructed to show the regulatory relationship between 
differentially expressed RBPs and IGs by Cytoscape 
(Figure 1C). GO enrichment (Figure 1D) and KEGG 
pathway (Figure 1E) analysis of immune-related RBPs were 
performed to understand their roles better. GO enrichment 
analysis indicated that the BPs were mainly associated with 
the non-coding RNA (ncRNA) metabolic process and 
RNA splicing. The CCs were abundant in the external side 
of the plasma membrane and spliceosomal complex. The 
MFs were most significantly enriched in catalytic activity, 
acting on RNA and nuclease activity (Table S2). Moreover, 

the KEGG pathways analysis showed that the RBPs were 
mainly enriched in cytokine-cytokine receptor interaction 
and viral protein interaction with cytokine and cytokine 
receptor (Table S3).

Prognostic immune-related RBPs

Univariable Cox regression was used to analyze genes 
associated with OS. From 91 immune-related RBPs, we 
identified 15 RBPs with prognostic value (Figure 1F and 
Table S4). After lasso Cox regression and multivariable 
Cox regression analysis, we finally got four independent 
prognostic RBPs (Figure 1G and Table S5). Then the risk 
genes were validated from multiple angles. First, gene 
mutations of the risk genes were detected in the cBioPortal 
database. Risk genes expression patterns were altered 
in 23% of 586 LUAD patients. EXO1 had the highest 
mutation rate of 10%. The most common forms of genetic 
alterations were amplification and missense mutations 
(Figure S1A). Next, we verified the differences in the 
expression of risk genes between tumor and normal tissues. 
Based on UALCAN database, the mRNA expressions of 
OAS3 and EXO1 in tumor tissues were increased while 
the mRNA expressions of PCF11 and TLR7 were opposite 
(Figure S1B). Based on the GEPIA2 database, we compared 
the prognosis of high and low expression of risk genes 
in LUAD patients (Figure S1C). We can see that the 
expression of risk genes and the results of their survival 
analysis were consistent with the effect of the signs of these 
coefficients. This validated our previous analysis.

Validation of the immune-RBP-based prognostic risk 
model for LUAD

According to the expression of the risk genes and 
regression coefficients, the formula for constructing a risk 
signature was: risk score = (OAS3*0.185096492873965) +  
( P C F 1 1 * − 0 . 3 8 7 1 9 8 8 6 5 6 5 6 3 8 4 )  +  ( T L R 7 * − 
0.15166316298057) + (EXO1*0.214581605857755). The 
training group consisted of 486 LUAD patients from 
TCGA, then divided into low- and high-risk groups based 
on the median risk score. The median value of TCGA was 
between 0.987 and 0.935. The median value of GEO was 
between 0.986 and 0.988. Then, the risk score range of 
TCGA patients was 0.303 to 3.045, and the risk score range 
of GEO patients was 0.248 to 3.306. Compared with the 
high-risk group, OS was significantly higher in the low-risk 
group (Figure 2A). The AUC of the training group model 
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was 0.731 (Figure 2B). We analyzed the survival distribution 
among patients in the low- and high-risk groups and 
observed that mortality increased with the increase in risk 
score (Figure 2C). Finally, a heat map showed the expression 
changes of risk genes in different groups (Figure 2D). 

Independent external verification was performed using 
GSE68465 from the GEO database, which contains a total 
of 443 LUAD patients. The above formula was used again 
to obtain a risk score for each patient. The low-risk group 
also showed a better prognosis (Figure 3A). The AUC of 
the test group model was 0.707 (Figure 3B). Besides, the 
survival overview and gene expression heat map were shown 

in Figure 3C,3D. Therefore, the above validation results 
proved the stability of the model prediction and its good 
predictive ability of LUAD patients’ OS. Finally, we further 
analyzed the relationship between the risk signature and 
the grouping of patients with different clinical parameters. 
Except for metastasis, all the others showed significant 
differences (Figure 3E).

Construction of a nomogram for clinical practice

The prognostic value of the risk model was further 
evaluated using hazard ratios (HRs) of the risk scores in 

Figure 1 Differentially expressed genes in LUAD patients. (A) Heatmap and volcano plot of differentially expressed RBPs in LUAD 
patients. (B) Heatmap and volcano plot of differentially expressed IGs in LUAD patients. (C) Regulatory network and functional enrichment 
analysis. The regulatory network of RBPs and IGs. GO (D) and KEGG (E) enrichment analyses of the immune-related RBPs. (F) 
Univariable Cox regression analyses. (G) Multivariable Cox regression analysis. LUAD, lung adenocarcinoma; RBP, RNA-binding protein; 
IG, immune gene; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; FC, fold change; ncRNA, non-coding RNA; 
UTR, untranslated region; BP, biological process; CC, cellular component; MF, molecular function; FDR, false discovery rate.
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Figure 2 Construction of the prognostic model in the TCGA cohort based on risk scores. (A) Overall survival of the low- and high-risk 
groups. (B) ROC curve of the TCGA cohort. (C) The risk score distribution and survival status of LUAD patients. (D) Heat map of risk 
genes expression. AUC, area under the curve; TCGA, The Cancer Genome Atlas; ROC, receiver operating characteristic; LUAD, lung 
adenocarcinoma. 

univariable and multivariable Cox regression analyses 
(Figure 4A,4B, and Table S6). The HRs were 2.11 and 1.86 
in the univariable and multivariable Cox regression analyses, 
respectively (P<0.001). This means that the risk signature 
can be used as an independent prognostic factor, and the 
higher the risk score, the worse the prognosis. ROC curves 
were used to evaluate the specificity and sensitivity of our 
risk signature, and the AUC was 0.733, suggesting the risk 
signature for LUAD was highly reliable (Figure 4C). We 
used four immune-related RBPs to construct a nomogram 
for predicting prognosis, which can easily calculate the OS 
of LUAD patients at 1, 3, and 5 years (Figure 4D).

Tumor immune microenvironment, stemness index, and 
immune checkpoint

We performed risk signature analysis on tumor immune 
microenvironment,  Stemness index,  and immune 
checkpoints. The result showed that stromal cell score 
(R=−0.29, P<0.001) and immune cell score (R=−0.35, 
P<0.001) were negatively correlated with a risk score. 

Moreover, the risk score was positively correlated with 
DNAss (R=0.21, P<0.001) and RNAss (R=0.55, P<0.001) 
(Figure 5A). Cancer stemness represents the similarity 
of cancer cells with stem cells. Immune checkpoints 
are proteins involved in tumor immune escape. Among 
t rad i t iona l  immune  checkpoint s  such  a s  PD-L1  
(Figure S2A), PD-1 (Figure S2B), and CTLA4, only CTLA4 
(P=0.046, Figure 5B) showed significant differences. Still, 
other potential emerging immune checkpoints under 
investigation all showed significant differences. For 
instance, LAG3 (P=0.0044), TIGIT (P=0.04), and TIM3 
(P=0.0015) (Figure 5B). 

Immune infiltration and immune cell subtypes

Based on the data downloaded from the TIMER database, 
the Spearman correlation test was performed with the R 
software to obtain the correlation between the risk signature 
and the level of immune cell infiltration in LUAD. All 
immune cells were negatively correlated with risk score: 
B cell (Cor =−0.357, P<0.001), CD4+ T cell (Cor =−0.392, 

ROC curve (AUC =0.731)

2.5

1.5

0.5

R
is

k 
sc

or
e

15

10

5

0S
ur

vi
va

l t
im

e,
 y

ea
rs

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

1.0

0.8

0.6

0.4

0.2

0.0

Tr
ue

 p
os

iti
ve

 r
at

e

0.0     0.2    0.4     0.6    0.8     1.0
False positive rate

0    1    2   3    4    5    6   7    8    9  10  11  12  13  14  15  16 17  18  19  20

Time, years

0    1    2   3    4    5    6   7    8    9  10  11  12  13  14  15  16 17  18  19  20

Time, years

Risk        High risk       Low risk

P=5.42e−05

High risk

Low risk

R
is

k

0                        100                        200                       300                       400
Patients (increasing risk score)

High risk

Low risk

Dead

Alive

222 157

223 181 79

71 36 18 12

50 34 24 14

8 7 4 3 3 3 3 3 2 2 2 2 1 0 0

9 7 5 4 3 3 2 1 1 1 1 1 0 0

OAS3

PCF11

TLR7

EXO1

3

2.5

2

1.5

High
Low

TypeType

A B

C D

https://cdn.amegroups.cn/static/public/TCR-22-698-supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-22-698-supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-22-698-supplementary.pdf


Translational Cancer Research, Vol 11, No 8 August 2022 2597

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2022;11(8):2591-2606 | https://dx.doi.org/10.21037/tcr-22-698

Figure 3 Validation of the prognostic model in the GSE68465 cohort based on risk scores. (A) Overall survival of the low- and high-risk 
groups. (B) ROC curve of the GSE68465 cohort. (C) The risk score distribution and survival status of LUAD patients. (D) Heat map of risk 
genes expression. (E) The association between risk score and clinical parameters (age, gender, stage, T, N, and M). AUC, area under the 
curve; ROC, receiver operating characteristic; LUAD, lung adenocarcinoma.
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P<0.001), CD8+ T cell (Cor =−0.195, P=0.004), dendritic 
cells (Cor =−0.380, P<0.001), neutrophil (Cor =−0.284, 
P<0.001), and macrophage (Cor =−0.303, P<0.001)  
(Figure 5C). Using CIBERSORT, we further assessed 

whether there were differences in the abundance of 22 
different immune cell infiltrates based on the risk signature. 
In the relatively high-risk group, B cell memory macrophages 
M2, resting dendritic cells, resting mast cells, and eosinophils 
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Figure 4 Independent prognostic analysis and nomogram for prediction. Univariable (A) and multivariable (B) cox regression analysis. (C) 
Comparison of risk signature and clinical parameters in predicting the prognosis of LUAD. (D) Development of a nomogram for predicting 
1-, 3-, and 5-year OS of LUAD patients. AUC, area under the curve; LUAD, lung adenocarcinoma; OS, overall survival.

were highly expressed in the low-risk group, while natural 
killer cells resting, Macrophages M0 and dendritic 
cells activated were the opposite (P<0.05; Figure 6A).  
Heatmap showed the interaction between different cells 
based on Pearson correlation analysis (Figure 6B). 

Comparison of patients in the high- and low-risk groups

We used PCA to show the different distribution patterns 
of the high- and low-risk groups. Based on our immune-
related RBP, the low- and high-risk groups were clearly 
distinguished from each other (Figure 6C). According 
to other standards, such as whole RBPs, whole IGs, and 
whole-genome sets (Figure 6C), all fail to distinguish 
between low- and high-risk groups of patients better. 
Normalized enrichment score (NES) is the standardized 
result, with positive values indicating that the pathway is 
associated with the first phenotype group and negative 

values indicating that the pathway is associated with 
the second phenotype. As shown in Figure 6D, immune 
response [NES =−1.69, false discovery rate (FDR) =0.049] 
and immune system process (NES =−1.71, FDR =0.044) 
were more annotated in the low-risk group. These results 
are consistent with our previous immune-related analyses, 
indicating that the low-risk scores were correlated with the 
enhanced immunophenotype. We further performed GSEA 
on the gene sets of patients in the low- and high-risk groups 
to identify the KEGG pathways involved. The top five 
enrichment pathways were selected to display, respectively. 
The high-risk group was mainly enriched in cell cycle, DNA 
replication, pathways in cancer, p53 signaling pathway, and 
SCLC. The low-risk group was mainly enriched in allograft 
rejection, autoimmune thyroid, B cell receptor signaling, jak 
stat signaling, and natural killer cell-mediated cytotoxicity 
(Figure 6E). Different enrichment pathways of patients in 
low- and high-risk groups may indicate different prognoses 
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Figure 5 Analysis of risk score with the tumor immune microenvironment, stemness index, and immune checkpoint in LUAD. (A) Based 
on the ESTIMATE algorithm, correlation analysis risk score with stromal cell scores, immune cell scores, DNAss, and RNAss. (B) R means 
correlation value. The immune checkpoint gene expression, including CTLA4, LAG3, TIGIT, and TIM3, in the low- and high-risk groups. (C) 
Immune cell infiltration analysis. Correlations between risk signature and immune cell infiltration levels, including B cell, CD4+ T cell, CD8+ 
T cell, dendritic cells, neutrophil, macrophage. LUAD, lung adenocarcinoma; DNAss, DNA stemness score; RNAss, RNA stemness score.
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and appropriate treatment methods.

Drug sensitivity

In order to explore the potential correlation between 

immune-related RBPs in the signature and drug sensitivity, 
we used human cancer cell lines from the CellMiner 
database for correlation analysis. TLR7 was positively 
correlated with alectinib, denileukin diftitox (ontak), 
f luphenazine, isotretinoin, LDK-378, imiquimod, 

Figure 6 Distribution pattern and gene enrichment of low- and high-risk groups. (A) Composition of 22 immune cells in low- and high-risk 
groups. (B) Correlation heat map of 22 immune cells in LUAD. (C) PCA for low- and high-risk groups based on risk genes, whole RBPs, 
whole IGs, and whole genome. (D) GSEA suggested differences in immune response and immune system process. (E) GSEA suggested 
differences in the KEGG pathway between the low- and high-risk groups. LUAD, lung adenocarcinoma; PCA, Principal components 
analysis; RBP, RNA-binding protein; IG, immune gene; GSEA, gene set enrichment analysis; KEGG, Kyoto Encyclopedia of Genes and 
Genomes.
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megestrol acetate, nelfinavir, estramustine, celecoxib, 
dromostanolone propionate, and negatively correlated with 
irofulven. EXO1 was positively correlated with vorinostat 
and 6-thioguanine. PCF11 was positively correlated with 
nelarabine and vorinostat (Figure 7). All these drugs 
modulate the tumor immune microenvironment to induce 
cancer cell death (33-46). 

Discussion

RBPs play critical roles in cancer. Immunotherapy is 
effective in many cancer types, LUAD. This study aimed 
to construct and validate a risk signature with predictive 
power based on immune-related RBPs for LUAD patients. 
The results suggest that the risk signature of immune-
related RBPs established in this study can provide the basis 
for clinical decisions regarding diagnosis, prognosis, and 
immunotherapy in LUAD patients.

The expression level of oncogenes and tumor suppressor 
genes can be affected by changes in RBPs expression and 
location. In addition, various cancer-associated phenotypes 
such as metastasis, invasion, aging, angiogenesis, apoptosis, 
and proliferation can be regulated by RBP-mediated 
genes. Therefore, there must be some relationship 
between cancer prognosis and RBP (47). Researchers are 
committed to developing anti-cancer drugs that target 
RBP, which is expected to become a new direction for 
cancer treatment in the future (48). Still, the biological 
roles and mechanisms of most RBPs have not been fully 
elucidated in LUAD. RBPs are also important regulators 
of the immune response. More and more scholars have 
focused on the study of RBP in tumor immunotherapy (49).  
For instance, it has been reported recently that cold-
inducible RBP can enhance immunotherapeutic responses 
against hepatocellular carcinoma (50). The specific deletion 
of RBP PCBP1 in T cells facilitates the differentiation of 

Figure 7 Drug sensitive to risk genes. (A) Alectinib. (B) Denileukin diftitox (ontak). (C) Irofulven. (D) Fluphenazine. (E) Isotretinoin. (F) 
LDK-378. (G) Imiquimod. (H) Vorinostat. (I) Megestrol acetate. (J) Nelarabine. (K) Nelfinavir. (L) Estramustine. (M) 6-thioguanine. (N) 
Vorinostat. (O) Celecoxib. (P) Dromostanolone propionate.
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Treg cells and generates a variety of inhibitory immune 
checkpoints, including VISTA, TIGIT, and PD-1 on tumor-
infiltrating lymphocytes, thereby inactivating anti-tumor  
immunity (51). Nevertheless, many immunomodulatory 
RBPs have not been identified in LUAD. Consequently, we 
aimed to investigate the immune-related RBPs in LUAD 
diagnosis, prognosis, and immunity.

Based on the TCGA and immPort databases, we 
identified 384 RBPs and 488 IGs that were differentially 
expressed in LUAD and normal tissues. Through the 
correlation analysis between IGs and RBPs, 91 immune-
related RBPs in LUAD were identified. GO enrichment 
analysis revealed the immune-related RBPs were primarily 
enriched in ncRNA metabolic process, external side of the 
plasma membrane, catalytic activity, and acting on RNA. 
KEGG enrichment analysis showed that the immune-
related RBPs were mainly enriched in cytokine-cytokine 
receptor interaction.

We eventually identified four independent prognostic 
immune-related RBPs (OAS3, PCF11, TLR7, and EXO1) 
as risk genes to construct the risk signature. The expression 
levels of OAS3 and EXO1 were up-regulated in LUAD, 
while PCF11 and TLR7 were down-regulated in LUAD. 
Simultaneously, higher expression of OAS3 and EXO1 and 
lower expression of PCF11 and TLR7 in LUAD patients 
were associated with worse OS. These results suggest that 
they may become potential biomarkers for the diagnosis 
and prognosis of LUAD. OAS3 (2'-5'-oligoadenylate 
synthetase 3) has an antiviral effect on alphavirus (52). 
Recent study has identified several molecules as inhibitors 
of the OAS family, especially interacting with Tyr230, 
Asp75, Asp77, and Asp75 in OAS3, indicating that OAS3 
could be expected to become a new drug target (53). PCF11 
(PCF11 cleavage and polyadenylation factor subunit) 
directs neural differentiation, apoptosis, proliferation, and 
cell cycle by shaping the inputs that converge on WNT 
signaling. A recent study reported that down-regulation of 
postnatal PCF11 promotes neurodifferentiation, and low 
levels of PCF11 were associated with spontaneous tumor 
regression and good prognosis (54). Toll-like receptor (TLR) 
ligand’s effect on immune activation makes it a drug target 
for treating cancer and infectious diseases (55). Because 
TLRs bind to cell membranes and present a wide range 
of expression patterns. Even local application may cause 
the release of systemic cytokines, resulting in inhibitory 
side effects (56). In contrast, TLR7 has a more limited 
range of action, including only certain types of immune 
cells, and can serve as a treatment target (57). Preclinical 

studies have shown that TLR7 agonists have antitumor 
and immunomodulatory effects. For example, studies have 
demonstrated that the TLR7 agonist R-848 can enhance 
anti-tumor effects in cetuximab-coated colorectal cancer 
(CRC) cell lines through antibody-dependent cellular 
cytotoxicity (ADCC) (58). EXO1 is an evolutionarily highly 
conserved exonuclease (59). Compared with the above 
genes, EXO1 had the highest mutation rate. As previously 
reported, abnormal expression of EXO1 may cause genomic 
instability, including homologous recombination, telomere 
maintenance, and DNA mismatch repair (60-62). Some 
studies claimed that increased expression of EXO1 promotes 
tumor invasion and metastasis, leading to a worse prognosis 
for cancer patients (63,64). In terms of immune infiltrate, 
overexpression of EXO1 might lead to decreased antibody 
diversity and immunoglobulin maturation malfunction, 
lowering the number of infiltrating B cells even further (62). 

Through gradual screening, a risk signature was finally 
established based on the above four immune-related 
RBPs. According to the median risk score, LUAD patients 
were divided into the high- and low-risk groups. Low-
risk patients had better OS than high-risk patients. It was 
validated in another independent cohort from the GEO 
database. In order to explore the feasibility of the prognostic 
model in clinical application, we compared this prognostic 
model with the clinical parameters of LUAD patients, such 
as age, gender, and pathological stage. After univariable and 
multivariable Cox and ROC analyses, the risk signature 
was an independent prognostic factor of LUAD. To enable 
our prognostic model to gain more reliable and valuable 
predictive power in clinical applications, we developed a 
nomogram that included OAS3, PCF11, TLR7, and EXO1 
to calculate the scores of different patients to predict the 
prognosis.

R e c e n t  s t u d i e s  h a v e  a s s o c i a t e d  t h e  i m m u n e 
microenvironment with the immunotherapeutic response 
of several cancers, including LUAD (65-67). By calculating 
immune scores, we could accurately determine the 
tumor purity and immune cell infiltration in the tumor 
microenvironment. DNAss and RNAss reflect epigenetic 
characteristics and gene expression, respectively (68). They 
were found to be positively correlated with the risk score 
in our analysis. An increase in stemness index indicates that 
the BPs of cancer stem cells were active, which might cause 
the dedifferentiation of differentiated tumors. Interestingly, 
a study found that elevated DNAss in some tumors led 
to decreased PD-L1 expression and leukocyte fraction, 
including BLCA, HNSC, LUSC, and GBM. Because 
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of inherent down-regulation of the PD-L1 pathway or 
insufficient immune cell infiltration of tumors, such tumors 
were expected to be less susceptible to immune checkpoint 
blockade (68), supporting the present study. 

With the successful application of immunotherapy, 
immune checkpoints have become the new focus of 
molecular oncologists.  Although anti-cytotoxic T 
lymphocyte-associated protein 4 (anti-CTLA4) and anti-
PD-1 therapies have achieved initial success, limitations 
were also exposed, such as the emergence of drug resistance 
in most patients. Other immune checkpoints that have 
the potential to become targets for immunotherapy have 
aroused the interest of researchers and were under study, 
such as TIM3, LAG3, and TIGIT (69). Coincidentally, 
our results suggested significant differences in immune 
checkpoints between the high- and low-risk groups, 
especially emerging immune checkpoints.

Based on the CellMiner database, we explored drugs with 
higher sensitivity to immune-related RBPs. Drug sensitivity 
was proportional to the amount of gene expression. Among 
them, TLR7 showed a close correlation with various drugs, 
and recent study has shown a link. For example, studies 
indicated that imiquimod, as a TLR7 agonist, promotes 
the immunogenicity of mesenchymal stem cells (70). In 
addition, EXO1 was positively correlated with vorinostat 
and 6-thioguanine. PCF11 was positively correlated with 
nelarabine and vorinostat. Of course, we only selected the 
top 16 sensitive drugs, and there are still many sensitive 
drugs worth exploring. Therefore, detecting the expression 
of TLR7 ,  EXO1 ,  and PCF11  has a certain guiding 
significance for selecting clinical drugs.

As far as we know, this is the first study to establish a risk 
signature based on immune-related RBPs in LUAD. This 
risk signature should be examined in the future for guiding 
immunotherapy in patients with LUAD. Nevertheless, 
several limitations of this study should also be noted. First, 
patient information was taken from the TCGA and GEO 
databases, and more sufficient clinical samples were needed 
for verification. Second, transcriptome analysis can only 
reflect certain aspects of the immune status and lacks overall 
changes. Third, this study was a retrospective study, and 
prospective studies were needed to confirm our conclusions. 

In conclusion, this study identified differentially 
expressed and prognostic immune-related RBPs and 
used them to construct a risk signature of LUAD. Low-
risk LUAD patients showed a better prognosis and better 
immunotherapy responses than high-risk patients. This 
study provided several biomarkers and a potential model for 

the prognosis and individualized immunotherapy of LUAD 
patients.
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