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Introduction

Radiomics applies advanced image analysis to extract 
detailed information from high-data content medical 
imaging scans [e.g. ,  computed tomography (CT), 
magnetic resonance imaging (MRI), and positron emission 

tomography (PET). In oncology, radiomic features 
can be developed as imaging biomarkers to potentially 
capture a variety of tumor and disease-related radiologic-
based characteristics. These signatures can then be used 
for theranostic, biologic, or pathologic purposes. Most 
radiomic-based investigations require the use of specialized 
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software to mine high-content information followed by 
relatively intense mathematical modeling using distinct 
algorithms and/or statistical and AI/ML (artificial 
intelligence/machine learning) learning approaches to 
derive an imaging signature(s). This has resulted in the 
development of several open source and “black-box” 
methods for both research and commercial purposes. As 
expected, there is a lack of uniform methodology and 
independent validation. Despite these shortcomings 
radiomics continues to hold promise by offering either 
unique and/or supplemental information regarding the 
diseased state beyond the traditional evaluation of cancer by 
tumor stage, histology, and other clinical features. 

Non-small cell lung cancer (NSCLC) is one such tumor 
type in which radiomic signatures have shown the potential 
to predict clinical outcomes and prognosis (Table 1). While 
the conventional methods of tumor staging, histology, 
and mutational characterization remain the mainstay in 
clinical decision making, newer methods (e.g., assessment 
of circulating tumor DNA) are beginning to influence 
treatment recommendations. In addition, the endorsement 
of low-dose CT for the early detection of lung cancer in 
high-risk individuals and the commercial availability of 
Laboratory Developed Tests has the potential to identify 
NSCLC patients at an early stage of diagnosis. Such efforts 
have begun to provide an opportunity to offer surgery at 
centers that promote their usage. What remains unknown 
is which of these patients would benefit from surgical 
resection alone vs. neoadjuvant therapy or require adjuvant 
therapy. Since all patients with NSCLC will undergo at 
least a pre-surgical standard-of-care CT scan (and/or PET 
at certain centers), the radiomic analysis of this patient 
population makes it feasible to discover, validate, and 
deploy specific radiomic signatures that may risk-stratify 
patient(s) for clinical decision-making purposes. Although 
NSCLC radiomics studies have found interesting radiomic 

signatures, most studies use either anecdotal and/or small 
retrospective data sets that may not be generalizable to the 
broader patient population. Therefore, is not surprising that 
a universal radiomic signature for NSCLC prognosis has yet 
to be found nor has there been a prospective, randomized 
control trial(s) to formally test any of the defined radiomic 
signatures. 

In this article, an outline of the essential elements that are 
required for radiomic signature(s) development is presented. 
This is followed by a literature review focusing on radiomics 
to potentially determine disease recurrence in the early-stage 
NSCLC setting. The emphasis on this particular population 
is especially relevant because of the growing use of screening 
methods for early detection in high-risk individuals. 
However, the early detection of NSCLC has begun to raise 
several questions regarding the risk/benefit of additional 
treatments (either neoadjuvant or adjuvant therapy) versus 
active surveillance in which radiomics may have a role to 
play. Finally, the future of radiomics in NSCLC will be 
discussed in the context of its use for patient care. This 
article is presented in accordance with the Narrative Review 
reporting checklist (available at https://tlcr.amegroups.com/
article/view/10.21037/tlcr-23-5/rc).

Methods

A search of the PubMed database using the following 
terms was conducted by one of the authors (AL). The key 
inclusion and exclusion terms used is included in Table S1. 
Each resulting paper was then reviewed for appropriateness 
based upon study population, patient number (n>50), use 
of well described radiomic methodologies, suitable model 
building features, and well-defined testing/training and 
validation when feasible. Final inclusion of an article for 
review was determined in consensus by the three authors. A 
total of 41 articles were identified (Table S2), and 13 studies 

Table 1 Application of radiomics in NSCLC

Risk stratification scenarios for radiomics in NSCLC

• Distinguishing benign from malignant disease

• Determining biologic drivers of tumor histology (e.g., tumor mutation status, tumor mutational burden, etc.)

• Assessing the risk of nodal and metastatic involvement in patients without advanced disease on imaging

•  Predicting treatment response to a variety of regimens (i.e., chemoradiation, targeted therapy, immune therapy, and other rational 
combinations

• Evaluating prognosis (e.g., recurrence-free survival, progression-free survival, overall survival)

NSCLC, non-small cell lung cancer.

https://tlcr.amegroups.com/article/view/10.21037/tlcr-23-5/rc
https://tlcr.amegroups.com/article/view/10.21037/tlcr-23-5/rc
https://cdn.amegroups.cn/static/public/TLCR-23-5-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-23-5-Supplementary.pdf
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were considered suitable for inclusion in this review based 
upon the process (Table 2). 

Background

In the United States, the 5-year relative survival rate for 
people diagnosed with NSCLC between 2011 and 2017 
was approximately 26% (ranging from 64% in early-stage 
disease to just 8% for patients with distant metastatic 
tumors [see SEER (Cancer.org)]. Despite recent advances 
in the treatment of NSCLC with targeted therapies, 
radiotherapy and immunotherapies, NSCLC remains 
one of the most challenging cancers to treat. At present, 
the TNM staging of NSCLC, based in part upon clinical 
imaging, has been widely used to predict prognosis and 
guide therapy. The high incidence and mortality rates of 
NSCLC demonstrates the need for better diagnostic and 
treatment strategies, as well as ways to monitor response to 
therapy. However, even patients with the same TNM stage 
may have different prognoses due to tumor heterogeneity. 
Molecular characterization of NSCLC may also factor 
into determinations of patient prognosis and outcomes in 
the near future, though the majority of focus is currently 
centered on advanced stage disease (14). In early-stage 
NSCLC, a major concern is that the risk of recurrence 
remains high (approximately 18–20% within 2–3 years from 
start of initial therapy) (15). Identification of these patients 
with increased risk of recurrence following definitive 
surgical resection is therefore an unmet need. Radiomics 
may be uniquely equipped to handle this problem. The 
section below provides a summary of radiomic methodology 
and analysis. This is followed by a review of the current 
radiomic signatures that may define recurrence in early-
stage NSCLC disease.

Review of radiomic methodology and analysis 

There are 5 essential steps when providing a radiomic 
analysis of early-stage NSCLC disease for determining 
outcomes as outlined in Figure 1 and described below. 

Step 1: image acquisition and calibration

Radiomics is dependent upon acceptable diagnostic quality 
scans which can be defined as those that maintain image 
consistency while minimizing the impact of scanner 
performance differences, slice thickness variability, 
reconstruction algorithms, and other related issues that 

lead to “image noise”. The use of IV contrast has a critical 
impact on a radiomic signature but such signatures can 
also be obtained from high-quality non-contrast studies. 
Several studies have shown that acquisition parameters are 
a major contributor to the stability and reproducibility of 
a radiomic signature. The impact of these parameters has 
been tested using both phantom and clinically acquired 
scans. For example, using a PET phantom, Galavis et al. 
has demonstrated that up to three-quarters of the radiomic 
signal in PET radiomics are very unstable (16). Similarly, 
using a public database, Zhao et al. looked at the impact of 
slice thickness and reconstruction algorithms in 31 patients 
with NSCLC who had same-day repeat CT scans. Their 
results showed that only 19% of 81 radiomic features 
were repeatable using different acquisition settings and 
the majority of the radiomic features (up to 75%) were 
influenced by respiratory artifacts alone (17). Therefore, 
respiratory gating in lung lesions is critical for obtaining 
a reliable radiomic signature. In another example, using 
CT scans to distinguish malignant from benign pulmonary 
nodules, He et al. retrospectively evaluated solitary 
pulmonary nodules (SPN) from 240 subjects and found 
that differences in three acquisition factors (IV contrast, 
slice thickness, and reconstruction kernels) alone greatly 
influenced the radiomics signature in SPN. Interestingly, 
non-contrast, thin-slice CT reconstructed with a standard 
(soft tissue) convolution kernel-based CT was the most 
predictive of malignancy (2). 

Since it is impractical to control for all of the technical 
acquisition factors, especially when using real-world data, 
there is a growing need to apply calibration and correction 
factors that can correct for acquisition differences between 
patients. This step of “homogenization of the images” 
requires the use of computer algorithms to calibrate and 
normalize the imaging signal within each scan so that 
patients from different institutions can be pooled together. 
Such calibration of scans requires a pre-processing step 
that occurs after image acquisition. Some examples of scan 
calibration include pixel re-sizing, grey-level normalization, 
signal re-sampling processes, filtering to provide histogram 
equalization, de-blurring, and re-sampling. Thus, the 
pre-processing of images following acquisition and 
reconstruction can be one of the most important steps to 
apply to all scans (whether CT, MRI and/or PET) to control 
for inherent inhomogeneities across multi-institutional or 
inter-departmental differences in scanners and acquisition 
protocol, especially when using real-world data to derive 
stable radiomic imaging signatures. Although a consensus 
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Table 2 Selected studies demonstrating radiomic signatures predictive of survival endpoints

Study Population Data sets Survival endpoint Modality Segmentation method
Methodology for radiomic 
feature extraction

Radiomic models Features associated with endpoints
High level radiomic 
features

Reference

1 N=217; AC =41% S:I RFS CECT Semiautomated for 
tumor and automated 
for peritumoral region

PyRadiomics Nearest neighborhood analysis, SVM, RF 13 intratumoral features including two 
1st order, eight 2nd order and three shape 
features. Nine peritumoral features including 
5 1st order and 4 2nd order features. For 
tumors <5 cm peritumoral and combined 
intra/peritumoral features outperformed 
the intratumoral radiomic features. For 
tumors >5 cm intratumoral radiomic features 
outperformed peritumoral and combined 
radiomic features

Shape, 1st, 2nd order (1)

Stage I–IIIA (6th and 7th)

Age =73 years

Males =98%

2 N=461 (268 primary; 193 validation); AC =100% S:I RFS; OS Non-CECT Semi-automated; 
tumor and peritumoral 
region

PyRadiomics GLM, Naïve Bayes, RF, and SVM 5 radiomic features predicted MP vs. So 
patterns and outcomes including Shape_
Surface volume ratio, 1st order_Root mean 
squared GLRLM_Run entropy, GLCM_Joint 
average and GLSZM_Zone entropy

Shape, 1st and 2nd 
order

(2)

Stage = I–IIA (8th)

Age =61 years (P); 60 (V)

Males =44% (P); 48% (V)

3 N=378; AC =94% S:I RFS CECT Manual: tumor PyRadiomics LASSO with l tuning; Cox proportional hazard 
model, KM analysis for RFS

8 radiomic features predicting outcomes 
including entropy, sphericity, maximum 
2D diameter row, gray level non-uniformity 
normalized, long run low gray level emphasis, 
low gray level run emphasis, small area 
emphasis and small dependence emphasis

1st and 2nd order (3)

Stage = IA and 1B (8th)

Age ≤65 years (71%)

Males =68%

4 N=592; AC =83% S:I RFS CECT Manual: tumor, 
and automated for 
peritumoral region

PyRadiomics LASSO; X-tile Multiple features (18 Total) including 
eight intratumoral 3D ROI features, five 
intratumoral 2D ROI features, five peritumoral 
features: Shape, first order, GLCM and 
GLSZM being top 5 features

Shape, 1st and 2nd 
order

(4)

Stage = IA (7th) of So

Age =61 years (O)

Males =55% (O)

5 N=200 (100 Tr, 50 internal V, 50 external V);  
AC =100%

S:I PFS CECT Semiautomated: 
tumor

Radiomics (v1.2.3 Siemens 
Healthineers) based upon 
PyRadiomics

Rad-score using RF; LASSO; KM curve 
with log-rank test and univariate Cox 
proportional-hazards model for outcomes; 
Harrell’s concordance index (C-index) for 
predicting outcomes; DCA for determining 
clinical benefit of the Rad-score

20 Radiomic features contributed to Rad-
Score; Top 5 performing features include 
Exponential_gldm_DependenceEntropy, 
Log_Sigma_0.5 mm 3D_GLCM_IDM, Log_1st 
Order_mean, Wavelet LLL_GLSZM Large 
area High gray level emphasis, Wavelet LLH 
GLCM_Inverse Variance

1st and 2nd order, 
Wavelet

(5)

Stage = I–IV (8th)

Age =62, 61, 60 years, respectively

Males =52%, 54%, 58%, respectively

6 N=1,058 (754 Tr; 304 V); AC =100% S:I DFS, OS CECT Semiautomated: 
tumor

PyRadiomics Rad-score: LASSO; KM curve with log-rank 
test and univariate Cox proportional-hazards 
model for outcome

Two radiomic features were common 
predictors of DFS and OS: shape_
SurfaceVolumeRatio, first order_90 Percentile

Shape and 1st order (6)

Stage = I–IIIA (7th)

Age =63 years

Males =49%, 51%, respectively

7 N=422; AC =12% M: Lung datasets from 
Maastro (The Netherlands)

OS CECT Manual tumor Matlab, NOS Harrell’s concordance index (C-index) for 
performance and stability; multivariate Cox 
proportional hazards regression model for 
prediction of survival

Four radiomic features for prognosis includes 
statistics energy, shape compactness shape 
compactness, grey level nonuniformity, 
wavelet grey level nonuniformity HLH

Shape, 1sr and 2nd 
order, wavelet

(7)

Stage = I–IIIb (edition NOS)

Age =67 years

Males = NOS

Table 2 (continued)
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Table 2 (continued)

Study Population Data sets Survival endpoint Modality Segmentation method
Methodology for radiomic 
feature extraction

Radiomic models Features associated with endpoints
High level radiomic 
features

Reference

8 N=368 surgical cohort; AC =62% (Tr), 49% (Tu), 
100% (Te)

M: 7 independent 
datasets from 5 
institutions including 3 
surgical data sets from 
Moffitt, MUMC, M-Spore

OS CECT Manual tumor and 
peritumoral

PyRadiomics 3D convolutional CNN derived from radiation 
subjects but then applied to surgical patients

deep learning networks in predicting 2-year 
overall survival of NSCLC patients from CT 
data; specific radiomic features not stated. 
Importance of peritumoral region noted.

Specific classes of 
radiomic features not 
stated

(8)

Stage = I–III (edition NOS)

Age =69 years

Males = not specified

9 N=460 of which 350 from CCF and UPenn, 106 
from TCGA-LUAD and TCGA LUSC, 211 from 
TCIA; AC =79% for CCF and UPenn cohort

M: CCF, UPenn,  
TCGA (LUAD and LUSC) 
and TCIA

TTP, RFS Non-CECT Manual: tumor 
and automated for 
peritumoral region 

Not stated RRS developed from 12 Machine Learning 
twelve machine-learning classifiers from nine 
classifier families; PI-AUC scores for feature 
stability; LDA, LASSO univariant/multivariant 
Cox proportionality for feature reduction and 
K-M survival analysis for outcomes 

Multiple features (46) including Laws and 
Laws-Laplacian, Gabor features of both 
intratumoral and peritumoral regions

Shape, 1st and 2nd 
order

(9)

Stage I–IIA (8th) 

Age =67 years for CCF and UPenn Cohort

Males =49% for CCF and U PENN cohort

10 N=93; AC=62% S:I RFS, OS 18F-FDG-
PET

Automated: tumor Chang-Gung Image Texture 
Analysis toolbox

Feature reduction performed using 
Information gain ratio, Gini index, and chi-
square; Radiomic model building testing for 
best performance with RF, neural network, 
naive Bayes, LR, and SVM

Contrast and busyness texture features from 
neighborhood grey-level difference matrix 
are best predictors of RFS; with RF modeling 
providing the best performance

2nd order (10)

Stage I–IIIa (edition NOS)

Age =63 years

Males =59%

11 N=291 (Tr 145, V 146); AC =78% (Tr), 71% (V) S: I (dataset available  
on TCIA)

DFS for Stage I–
IIIA and PFS for 
Stage IIIB and IV

18F-FDG-
PET 

Semiautomated: 
tumor; automated 
penumbra

Matlab-Quantitative Image 
Feature Engine

LASSO l tuning for risk of recurrence; 
univariant/multivariant Cox proportionality 
with; K-M survival analysis

Stage and MTV-Penumbra (Gray-level 
Cooccurrence Matrix Maximum Probability 
most associated with DFS)

2nd order (11)

Stage I–IIIA (7th; 97%)

Age =69 years (Tr), 71 years (V)

Males =75% (Tr), 60% (V)

12 N=227; AC =79% (Tr); 58% (V) M: TCIA, I DFS 18F-FDG Manual: (I) MTV, (II) 
penumbra (1 cm), 
(III) MTV-penumbra 
combined

Matlab-Quantitative Image 
Feature Engine

LASSO; univariant/multivariant Cox 
proportionality; K-M survival analysis

Several features including, clinical stage, 
BM-Penumbra GLCM sum mean skewness 
energy features, BM-GLCM cluster tendency 
skewness

1st and 2nd order (12)

Stage I–III (7th; 97%)

Age =69 years (Tr); 72 (V)

Males =74% (Tr); 59 (V)

13 N=211; AC =82% S:I (dataset from Stanford 
and Palo Alto VA available 
from TCIA)

OS 18F-FDG 
PET/CT

Semiautomated 
with application of 3 
different image fusion 
techniques: tumor

Standardized Environment for 
Radiomics Analysis Package

7 ML feature selection techniques including 
Cox Proportional Hazard, CoxBoost, 
GLMNET, RF, GLMBoost, GBM, Survival Tree 
4-index and 4 Radiomic feature selection 
including C-Index and three wrapper feature 
selection methods using random forest 
variable selection, with tree minimum depth 
methodology steps. In addition, Combat 
for feature harmonization to remove batch 
effects from multiple types of PET/CT 
acquisitions

Multiple features selected for PET and CT 
with those selected by GLMNET having the 
highest average results

2nd order (13)

Stage I–IV (pathological stage with <1%  
Stage IV)

Age =68 years

Males =63%

AC, adenocarcinoma; Age, mean age; S, single institution; I, internal healthcare center and/or regional centers; RFS, recurrence-free survival; CECT, contrast enhanced CT; SVM, support vector model; RF, Random Forest; 7th, AJCC Cancer Staging Manual 7th edition; 8th, AJCC Cancer Staging Manual 
8th edit; OS, overall survival; GLM, General Linear Model; MP, micropapillary; P, primary; V, validation; GLRLM, gray level run length matrix; GLCM, gray-level co-occurrence matrix; GLSZM, gray-level size zone matrix; LDA, Linear discriminant analysis; TCGA-LUAD, The Cancer Genome Atlas-lung cancer 
adenocarcinoma; TCGA-LUSC, The Cancer Genome Atlas-lung cancer squamous cell carcinoma; RRS, Radiomic Risk Score; TTP, time to progression; PI-AUC, preparation induced instability score-area under the curve; LASSO, least absolute shrinkage and selection operator; ROI, region of interest; IDM, 
inverse difference moment; LLL, low-pass filter setting-LowLowLow; LLH, low-pass filter setting-LowLowHigh; HLH, high-pass filter setting-HighLowHigh; MUMC, Maastricht University Medical Center; FDG, fluorodeoxyglucose; PFS, progression-free survival; MTV, metabolic tumor volume; So, solid; 
O, overall; DCA, decision curve analysis; DFS, disease-free survival; NOS, not otherwise specified; Tu, tuning; Te, testing; Tr, training; CNN, convolutional neural networks; CCF, Cleveland Clinic Foundation; M, multi-institutional/multiple; LR, linear regression; BM, bone marrow; TCIA, the cancer imaging 
archive; CoxBoost, Cox model fitted by likelihood-based boosting; GLMNET, LASSO and Elastic-Net regularized generalized linear model; GLMBoost, gradient boosting with component-wise linear model; GBM, generalized boosted regression model; PET/CT, positron emission tomography/computed 
tomography.
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on a universal acquisition and calibration standard across 
institutions has yet to be reached, various organizations 
have proposed such using a set standard (18-20).

Step 2: segmentation

The identification and isolation of the tissue/tumor of 
interest for radiomic analysis requires lesion segmentation. 

Segmentation of lesions and/or diseased tissue can be 
obtained by one of three approaches: manual segmentation, 
semi-automated segmentation, and fully-automated 
segmentation. 

Manually segmentation is a time-consuming process that 
requires expert reader placement of a 2D region of interest 
(ROI) or 3D volume of interest (VOI) around the tissues 
or tumors of interest. These ROIs/VOIs serve to define 

Figure 1 This figure illustrates the steps required to generate a radiomic signature. Starting with image acquisition and processing (step 1), a 
region of interest [e.g., organ, tissue and/or lesion(s)] is segmented either manually or through assisted-automated devices (step 2) to isolate 
the targeted area(s) of interest. Modality specific signal intensities (step 3) are extracted that includes a multitude of features (typical example 
feature sets for non-small cell lung cancer are indicated in this figure) using non-semantic and/or semantic outputs. Radiomic imaging 
signatures are then derived from these extracted feature output datasets through a variety of statistical and/or AI/ML driven models (step 4).  
The resultant imaging signature are fine-tuned though additional testing and training processes for cross-validation and independent data 
set validation (step 5) to determine diagnostic performance. CT, computed tomography; GCLM, grey-level co-occurrence matrix; LR, 
logistical regression; MRI, magnetic resonance imaging; PET, positron emission tomography; ROC, receiver operating characteristic; AL/
ML, artificial intelligence/machine learning.  
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the Cartesian coordinates (in the x, y, z planes) of tissue/
tumor located in anatomic space. The resulting ROIs/
VOIs are then used as a template or “mask” for extracting 
signal within those defined regions to derive a radiomic 
signature. The use of several general purpose open source 
tools (e.g., ITK-SNAP: http://itksnap.org) to provide easy-
to-use lesion segmentation are readily available for deriving 
accurate ROIs/VOIs from different data sets and image 
modalities (21). In addition to providing manual ROI/VOIs 
for determining derived mathematical values (i.e., non-
semantic features), the reader may also provide qualitative 
(visual) descriptions of the tumor and surrounding tissues 
(i.e., sematic features). For example, when determining 
whether a lesion is malignant or benign, the mean and range 
of pixel density measurement of a tumor on CT (i.e., the 
non-semantic features) along with a semantic description of 
the tumor margins by the reader (e.g., either the presence 
of spiculation or smooth margin) may be very important. In 
addition to whole tumor analysis, there are circumstances 
whereby understanding regional radiomic differences 
within and/or surrounding a lesion may be important (e.g., 
peritumoral vs. intratumoral vs. distant structures); manual 
segmentation can be quite flexible in these circumstances. 
A common drawback for using manually drawn ROIs/VOIs 
is the imprecision of reader placement of such boundaries 
around the lesion(s)/tissue(s). Manual segmentation can 
be quite variable and dependent upon the expertise of the 
reader. Therefore, when manual segmentation processes are 
utilized in a radiomic study, a measure of inter- and intra-
reader variability of the specific radiomic features may be 
necessary to determine which particular feature(s) show 
the greatest degree of variability due to human decision 
making. Nevertheless, manual segmentation is the most 
commonly performed process for lesion segmentation and 
is a necessary method used for studies in which automated 
methods of lesion segmentation are being developed and 
tested against the truth-standards of expert readers. 

Semi-automated methods provide the placement of a 
ROI/VOI around lesions/tissues using computer algorithms 
that have predefined rules for determining the boundaries 
of a lesion. Semi-automated methods often require manual 
adjustments to reduce false edges and over segmentation 
once an ROI/VOI is defined. Boundary detection 
algorithms have been developed based upon thresholding 
techniques that define a range of pixel that should be 
included (or excluded) in the ROI/VOI along with edge 
detection rules for selecting pixels that should belong to a 
lesion vs. adjacent tissue signals. Semi-automated methods 

can also use a regional seed growing processes that starts 
with a reader defined pixel value on single slice which 
then grows until all user-defined ranges of pixel values 
are selected. The use of advanced methods such as fuzzy 
c-means, fuzzy hidden Markov chains, fuzzy locally adaptive 
Bayesian (FLAB) segmentation algorithms and watershed 
segmentation programs are becoming more popular because 
they can better define the edges along the interface between 
normal tissue and diseased sites. Semi-automated methods 
have the advantage of speed and repeatability compared 
to manual segmentation. For example, Balagurunathan 
et. al. demonstrated high reproducibility using seed-based 
image analysis program with segmentation performed by a 
single reader (22). Others have shown better reproducibility 
with semi-automated approaches compared to manual 
segmentation when multiple readers are involved (23,24). 

Fully automated methods using either convolutional 
neural networks (CNN) or deep neural networks (DNN) 
have been receiving great interest in lesion segmentation 
and other outcome predictions. In this method, the scans 
are “fed” into a CNN or DNN algorithm (either supervised 
or unsupervised) in order train the system to recognize 
the lesion(s) boundaries. This machine learning approach 
relies on a stacked neural network structure that undergo 
image transformation, pooling, activation, full connection, 
and batch normalization to derive a best-fit solution. The 
advantages of automated methods include speed reliability, 
reproducibility, and the capability to learn non-linear 
complex relationships beyond what is achievable by an 
expert reader. One of the main drawbacks of CNN and 
DNN approaches however, is the large number of examples 
required to train the data. As a proof of using automated 
segmentation, Lustberg et al. developed a CNN approach 
to automatically segment organs at risk in lung cancer 
radiotherapy which outperformed manual segmentation (25).

Step 3: feature extraction

Radiomic features can be described as either qualitative 
(semantic) or quantitative (non-semantic). Most radiomic 
studies focus upon the later since it can be standardized. 
Although semantic features are difficult to convert into 
mathematical equations, nonetheless, they can provide 
valuable information. For example, Liu et al. defined a 
number of semantic features that predicted epidermal 
growth factor receptor (EGFR) status in lung cancer 
patients (26). 

In general, radiomic features can be grouped into four 

http://itksnap.org
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main categories: (I) lesion shape, (II) first order features, 
(III) second order features, and (IV) higher order features 
(e.g., wavelet). The shape of a lesion can provide insight 
into the nature of the tumor, its outcome and predictable 
behavior when subjected to treatment. Shape can be 
defined according to how similar a lesion is to a sphere 
(e.g., sphericity). Other properties of lesion shape (e.g., 
spiculation, lobulation, smoothness) can be very important 
for determining malignancy. 

First order features refer to measures of signal intensity. 
First order features are usually represented by a histogram 
frequency curve (HFC) in which the signal intensity of 
a lesion (x-axis) is plotted against the frequency of its 
occurrence (y-axis). Several features contained within the 
HFC can be derived, including mean pixel signal (density, 
signal intensity, or radioactivity for CT, MRI, and PET, 
respectively), standard deviation, skewness, kurtosis, and 
entropy or uniformity (measure of heterogeneity). First 
order features are very sensitive to contrast enhancement 
effects and slice thickness. The generation of these 
parameters usually requires some type of voxel re-spacing 
into an isotropic space (pixel dimension is identical in the 
x, y, z direction) to make each pixel invariant to rotational 
effects. Additional adjustments may require the removal 
of unwanted pixel values (e.g., from air), filtering (e.g., 
gaussian, Laplacian filters) and discretization of the pixel 
values (i.e., re-binning the data from a wide range of pixel 
values into discrete values) to generate a meaningful HFC. 
First order features generally do not contain information 
regarding the spatial distribution of the pixel intensities. 
Using first-order features from CT scans, we previously 
showed that lower kurtosis and positive skewness were 
significantly associated with K-ras mutations in NSCLC 
and prognostic for overall survival (OS) and disease-free 
survival (DFS) (27).

Second Order features highlight the spatial distribution 
of pixel signals. These features describe the texture of 
a lesion (or tissue) and try to capture the complexity of 
the local signal arrangements. The second order features 
include grey-level co-occurrence matrices (GLCM), 
neighborhood gray-tone difference and neighboring 
grey-level dependence matrices, grey-level run lengths 
and grey-level size zone-based matrices, just to name a 
few. In essence, second order features describe the non-
semantic arrangement or organization of pixels of similar 
(or dissimilar) values at pre-defined distances and direction 
from one-another to depict such textural patterns in 
terms of their homogeneity (or heterogeneity), contrast, 

variance, coarseness, complexity, sameness, run-lengths, 
connectedness, etc. 

Higher order features include radiomic properties using 
wavelet band pass filtering and deep learning methods. 
Wavelet based methods work by deconvoluting an image to 
extract first and second order features at different frequency 
bands of different weights. Such methods have been used 
successfully in determining the risk for developing lung 
metastasis in patients with soft tissue sarcomas (28). Deep 
learning methods, on the other hand, use multi-layer feed-
forward neural networks. Various feature variables are 
used to learn (train) highly discriminative images features 
for a particular desired outcome. This approach has the 
advantage of handling large data sets in an efficient manner 
for machine learning processes to produce stable and 
sustainable radiomic signatures. 

Step 4: model building

Modeling building tasks may apply statistical and/or 
ML approaches to extracted features using supervised, 
semi-supervised or unsupervised learning strategies. In 
supervised learning, the inputs are well labeled. This 
allows classification of data from previous experience. 
Supervised learning classifiers include generalized linear 
models, random forests, support vector machines, least 
absolute shrinkage and selection operator (LASSO)-
logistical regression and neural networks that can parse the 
information efficiently into designated outcome variables. 
As an example, Parmar et al. applied 14 different feature 
selections and 12 different classification methods on 
retrospective CT images from 484 NSCLC subjects to 
determine the variability and stability of both classifiers 
and feature selections on radiomic signatures. Amongst 
the different combination tested, they found that the 
dominate source of variation was dependent upon the 
applied classification models while feature selection had less 
impact. In their study random forests methods resulted in 
low total variance of a signature (29). Thus, the selection of 
the optimal model is critical for generating stable clinically 
relevant radiomic signatures. 

Unsupervised learning allows for more complex 
processing but can be more unpredictable. In unsupervised 
learning, the classifier(s) work on its own to discover 
unknown patterns and provide features in real time with 
much less manual intervention. Unsupervised learning 
works by grouping data into clusters-distant measurements 
between samples. Clustering algorithms, such as k-means 
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clustering, fuzzy clustering, and consensus clustering 
are used to arrange the extracted features into clusters 
of sameness or dissimilarity. This approach was more 
effectively than clinical-based metrics in determining the 
treatment response to radiation therapy (30).

One of the major limitations in utilizing each of these 
approaches includes a high degree of dimensionality 
generated by radiomics since the extracted features can 
number into the hundreds and even thousands. As a result, 
many of these features can be interrelated, measuring the 
same information. Therefore, a crucial component of 
model building involves a feature reduction step to avoid 
overfitting. The type of feature reduction techniques 
includes univariate filter-based (e.g., Fisher score and 
Wilcoxon tests), multivariate (e.g., minimum redundancy) 
and principle component analysis. Thus, a multitude of 
features can be reduced to a handful of quintessential 
elements. In early work, Segal et al. demonstrated that 
28 traits can describe up to 80% of the gene expression 
patterns in hepatocellular carcinoma (31).

Finally, semi-supervised learning combines both 
supervised and unsupervised methods. In this approach, 
large data sets can be trained using an unsupervised learning 
to minimize the number of features needed to express an 
outcome. This is followed by a testing a supervised model 
to determine the association of features to clinical labels. 
In this way, high throughput, high dimensionality data can 
be reduced to only a few features for training, testing, and 
validation of viable radiomic signatures.

Step 5: application and validation

Any application of a radiomic signature(s) for clinical care 
purposes must be validated. Not only are there several 
radiomic software programs in use, but it is also difficult 
to compare radiomic outputs from each of these systems 
against one another since the mathematical algorithms 
and outputs behind each system may be quite different. 
A key component of usefulness is scientific validation. 
Almost all radiomic studies must begin with a training step 
that usually consists of a deriving an imaging signature(s) 
from retrospect collections of images using either a single 
institution, multicenter study, or public data bases (e.g., The 
Cancer Imaging Atlas). During training, not all available 
images should be used since a portion of the available scans 
will need to be set aside for validation. A validation step is 
required to understand a signature’s diagnostic performance. 
In most instances, about two-thirds of the available data 

sets are randomly selected to undergo training and testing, 
while one-third are held out for validation when an external 
data set is not available. The highest level of validation 
traditionally employs a prospective, randomized control 
trial design with predefined endpoints. To our knowledge, 
no such trial has been performed for radiomic signature 
validation. 

One of the key consideration to incorporate a radiomic 
signature in a clinical trial or for clinical decision-making 
purposes is to understand how the different aspects of 
features selection methods, classification models, and the 
number of top-rated features will impact the results. One 
critical component for developing a radiomic signature 
is to determine which radiomic feature(s) are reflecting 
measurements related to technical factors (e.g., patient 
preparation and image acquisition/reconstruction) rather 
than physiology, biology, and pathology. Recently, Singh 
et al. (32) applied techniques typically used to remove 
effects of machinery and protocol on gene expression date, 
so-called ComBat (Combining Batches) harmonization 
methods to address this issue. Using two publically available 
image data sets from The Cancer Imaging Archive (Breast 
I-SPY1 and NSCLC IO), they found that heterogeneity-
mitigation using ComBat techniques that addressed voxel 
resampling, voxel spacing, high kernel resolution, pixel 
spacing, and slice thickness provided more stable radiomic 
features compared to raw data without harmonization-
mitigation.

Furthermore, Parmar et al. (29) examined the performance 
and stability of 14 radiomic feature selection methods 
and 12 classification schemes and the number of features 
(ranging between 5–50) in predicting the two-year survival of 
NSCLC in subjects undergoing radiation therapy from two 
independent institutional cohorts. Not surprisingly, there 
was wide variability in the predictive performance based 
upon the selection of different methods used (up to 34% 
variability). The implication of their conclusions was that 
the selection of features and classifiers will have a relatively 
large impact on predicting clinical outcomes and should be 
carefully determined beforehand if used in a clinical trial 
and/or clinical setting. 

Use of radiomics analysis to define disease 
recurrence in early-stage NSCLC undergoing 
surgery

CT based radiomic studies

Table 2 provides a summary of relevant published retrospective 
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studies reporting radiomic signatures using survival 
outcomes in NSCLC patients undergoing surgical 
resection. Although most of the studies listed have shown 
encouraging results, any comparison and aggregation of 
the studies together can be complicated by variabilities 
in radiomic signature stability and reproducibility due to 
inconsistences in patient population (e.g., admixture of early 
and advanced stage disease and lung cancer histologies, 
differences in gender, age, smoking history, country of 
origin, study period, technology advances, etc.), definition 
and timescales to define disease recurrence, presence or 
absence of additional radiologic and/or pathologic features 
known to lead to poor outcomes (e.g., vascular and/or 
pleural invasion), and tumor mutations.

As expected, radiomics of the intratumoral region itself 
in early-stage disease (Stage I−IIIA) is very important for 
outcomes. For example, malignant lesions can be described 
as being either solid or sub-solid (i.e., semi-solid and/
or ground glass opacities) on CT. The latter has been 
associated with better outcomes. Importantly, the solid 
vs. subsolid nature of the tumor may be related to tumor 
histology, which can play an important role in recurrence, 
and thus drive a radiomic signature. For example, the 
presence of micropapillary/solid (MP/S) growth patterns 
by histology (33) may be a poor prognostic indicator. Using 
radiomics, He et al. evaluated 268 patients for a radiomic 
signature that would distinguish MP/S histology from other 
types. Several radiomic features (Table 2) were noted to 
be able to discriminate MP/S histology vs. other subtypes 
{area under the curve (AUC) 0.73 [95% confidence interval 
(CI): 0.62–0.84]} (2). Therefore, ensuring that the different 
histologic subtypes in a patient population have been 
accounted for may be an important factor when considering 
the strengths and limitations of a radiomic signature. 

Although most authors have identified tumor shape, and 
1st and 2nd order elements as being important determinants of 
outcomes (Table 2), one surprising finding in recent studies, 
which was ignored in earlier reports, demonstrates the 
importance of including the peritumoral space (i.e., tissue 
surrounding the primary tumor) in radiomic analysis (34).  
Yet, given the potential importance of this region on 
tumor spread and recurrence, a precise definition of 
the peritumoral space has not been optimized, though 
interrogation of the peritumoral space beyond 1.5 cm may 
be of limited value (35,36). Furthermore, the dependency 
of the radiomic signature on the peritumoral region(s) may 
be related to tumor size. For example, Lee et al. (1) showed 

that the intra/peritumoral regions of lesions <5 cm are the 
lesions are needed for a robust radiomic signature while 
tumors >5 cm only needed the intratumoral components. 

In order to risk-stratify patients with early-stage disease, 
Wang et al. was able to successfully assign stage IA patients 
into low-risk (LR) and high-risk (HR) groups (mean follow 
up for recurrence was approximately 69 months). In this 
study of 378 patients who underwent definitive surgical 
resection, 8 top performing radiomic signatures (shape, 
intensity, and texture) were identified on contrast-enhanced 
CT and used to create a rad-score (r-score) (3). When 
applied to solid tumors, Kaplan-Meyer (K-M) analysis 
demonstrated excellent separation in survival between 
HR vs. LR patients (r-score cutoff of 0.579 for HR vs. 
LR; P<0.001), while patients with sub-solid tumor did not 
show as strong a separation using the r-score (P=0.083). 
This lower r-score performance for sub-solid lesions may 
have been related to the already excellent prognosis in 
this patient group. In addition, the radiomic signature for 
patients with sub-solid lesions was an independent predictor 
of survival and performed better than clinical-pathological 
information [Concordance (C)-index: 0.829, 95% CI: 0.787–
0.870 vs. 0.706, 95% CI: 0.648–0.764, P<0.001]. Recently, 
these authors further expanded on their analysis to include 
both intra-tumoral and peri-tumoral radiomic analysis in 
stage IA patients with solid lesions only (n=592) (4). Using 
both internal and external (public) validation sets, a total of 
18 (13 intra-tumoral and 5 peri-tumoral) radiomic features 
were able to distinguish HR from LR patients with similar 
accuracy as previously reported, though the top performing 
features were not exactly the same as in their prior study.

Liu et al. developed a ML-based nomogram to predict 
progression-free survival (PFS) in NSCLC by combining 
both radiomic and clinical pathologic data from 200 
subjects with resectable lung cancer. The lesions were 
further stratified as solid or sub-solid. An r-score was 
created using the top 20 performing radiomic features 
showing the greatest importance (1 wavelet, 2 texture, and 
1 intensity features). The ML-based nomogram showed 
best performance when combined with clinical-pathologic 
data (C-Index: 0.845 combined, 0.781 radiomic, 0.755 
clinical). Included in their clinical-pathologic data was the 
incorporation of EGFR mutation status which had less 
impact than expected (5). Unlike Wang et al., Liu et al. did 
show that the r-score also had good performance for sub-
solid lesions as well. These opposing conclusions may be 
related to more latter stage disease patients in Liu et al.’s 
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study. 
Choe et al. performed a retrospective analysis of 

preoperative CTs in 1,058 patients who underwent definitive 
surgical resection and demonstrated that radiomics was able 
to independently predict DFS [hazard ratio (HR), 1.920; 
P<0.001] (6). They did not address peri-tumoral analysis or 
sub-solid lesions in their analysis. Two radiomic features of 
tumor heterogeneity were found to be top-ranking features. 

In a separate analysis, Aerts et al. (7), evaluated 5 
independent datasets comprised of NSCLC and primary 
head and neck malignancies. The analysis of one of these 
NSCLC datasets (i.e., MAASTRO clinic, The Netherlands; 
n=422 subjects) was used to determine prognosis. Based 
upon feature stability rank and performance, the top four 
radiomic features were most associated with outcomes. 

In one of the largest  radiomic studies to date, 
Hosny et al. (8) used a deep learning (CNN) approach 
on 7 independent contrast-enhanced CT data sets of  
1,194 patients from 5 institutions to evaluate the 2-year 
OS rate in patients with NSCLC. Using an external 
validation set, these authors identified prognostic signatures 
for patients treated with radiotherapy. Then, in a unique 
manner, they used a transfer learning approach to apply 
the radiomic signature to 391 patients treated by surgical 
resection alone and reported good performance for risk 
stratification (AUC =0.71; 95% CI: 0.60–0.82; P<0.001). 
Furthermore, they reported that the peritumoral region, in 
particular high-density signal on CT from the parenchyma 
and pleura, was important in predicting outcomes using 
their CNN method. Although the authors did not report 
on lesions based upon solid vs. sub-solid features, this study 
provides promise in finding common radiomic signatures 
that may be generalizable across multiple populations and 
clinical scenarios. 

Recently, Khorrami et al. (9) sought to determine the 
feasibility of obtaining a generalizable radiomic classifiers 
for disease recurrence in early-stage disease (Stage I−IIA,  
R0 resection) independent on many of the technical 
factors that can give rise to instability and variability in 
radiomic signatures (i.e., batch effect due to differences in 
scanner model, acquisition protocols, and reconstruction 
settings). Selecting radiomic features that are both stable 
and discriminatory, they applied a preparation-induced 
instability score (PI) to eliminate those features that might 
be due to technical differences between scanners and 
imaging acquisition differences. By evaluating 650 patients  
across 4 different settings (2 from large academic centers 

and 2 from public databases) they developed a radiomic 
risk score of the most stable-discriminating features 
that were least affected by technical differences between 
patients. They showed very good performance in predicting 
outcomes compared to discriminatory features alone 
(HR =1.66, C-index of 0.72 vs. HR =1.04, C-index of 
0.62). Similar to other publications, they noted that the 
peritumoral region was an important region for establishing 
a radiomic signature for recurrence. Interestingly, they 
observed that peritumoral features were also relatively more 
stable than intra-tumoral features, possible due to the fact 
that the peritumoral areas demonstrate less variation in CT 
signal from different acquisition settings than the intra-
tumoral regions themselves. 

18F-flurodeoxyglucose (FDG) PET based radiomic studies
18F-FDG PET is considered part of the conventional 
staging work up of patients with NSCLC due to the high 
sensitivity of metabolic imaging to detect occult tumors. 
18F-FDG PET can also be useful in NSCLC to detect 
early recurrence and distinguish benign from malignant 
disease in equivocal cases on CT. As expected, most 
radiomic studies focus imaging signatures identified on CT 
rather than 18F-FDG PET. This is due to the less frequent 
global availability of PET and the inherent difference in 
poorer spatial resolution on 18F-FDG PET. However, one 
advantage of PET radiomics over CT is that there more 
consistency in the PET signal produced from different 
scanners and from different reconstruction algorithms 
(37,38). A meta-analysis of several 18F-FDG PET studies 
have shown that the metabolic activity of the primary 
tumor [either through standardized uptake value (SUV) 
or metabolic tumor volume (MTV) measurements] can be 
prognostic of outcomes (39). 

Naturally, there is interest in using PET radiomics to 
predict outcomes in NSCLC patients. However, few studies 
have focused on 18F-FDG PET radiomics in patients 
undergoing definitive surgical resection. As an example, 
Ahn et al. evaluated 18F-FDG PETs in 93 patients with 
early-stage disease (Stage I–III) and found that the radiomic 
features of contrast and busyness texture features from 
neighborhood grey-level matrix differences were the matrix 
the best predictors of disease recurrence (10). However, 
the usefulness of their radiomic signature was diminished 
because it was not a homogenous population as over 50% 
of their patients received adjuvant chemotherapy and an 
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external validation dataset was not available. 
In a more comprehensive study, Mattonen et al. (11) 

investigated the potential of 18F-FDG PET radiomics 
to predict recurrence. They assessed radiomic feature 
of the tumor and penumbra (peritumoral region) of 
the 18F-FDG PET scans from 291 patients obtained at 
multiple institutions (both public and local imaging sites) 
for training and validation. They found that their top 
performing features for predicting recurrence was tumor 
stage and combined metabolic tumor volume-radiomics of 
the penumbra (2nd order features). Interestingly, size, shape, 
and SUV measurements were not top performing features. 
This suggested that the texture-based PET radiomics may 
play an important role for prognosis beyond MTV tumor 
uptake. In a separate evaluation of 227 patients (12) the 
authors included radiomics of the bone marrow signal on 
18F-FDG PET in addition to the tumor and penumbra. The 
consideration of including radiomics of the bone marrow 
on 18F-FDG PET was based upon the hypothesis that 
the bone marrow may serve as a marker of altered serum 
cytokine, C-reactive protein, and hematologic parameters 
that could affect outcomes. The addition of bone marrow 
radiomics was noted to be stable and improved the ability 
to stratify patients into HR vs. LR recurrence groups. A 
top radiomic model containing tumor stage, bone marrow 
radiomic features and tumor with penumbra showed good 
concordance (0.72: 95% CI: 0.64–0.80; P<0.001) and 
good discrimination of HR vs. LR patients (P<0.001) in an 
internal (temporal) validation set. 

Finally,  an across-the-board comparison of the 
performance of various algorithms applied to multimodality 
radiomics models (e.g., PET-CT fused information) are 
still lacking. Amini et al. (13) addressed this shortcoming by 
performed a comprehensive evaluation of combining both 
the anatomic signal from CT and with metabolic signals 
from 18F-FDG PET. They demonstrated which method(s) 
would is most suitable for image fusion, feature selection 
and ML algorithms in a multi-modality approach based 
upon a time to event prediction model. Applying applied 
different multi-level image fusion methods along with 
evaluating 7 ML and 4 feature selection techniques for 
each fusion technique, they found considerable variability 
based upon the techniques used but concluded that were 
some combinations that work best (Table 2). Certainly, as 
PET/CT technology evolves and as more sophisticated ML 
algorithms become available, the optimal combinations may 
change. More importantly, however, this study provided an 
excellent roadmap on how to tackle the challenges of multi-

modality imaging in the future.

Conclusions

Future of radiomics in early-stage NSCLC and conclusions

Here we have highlighted some of the methodologies 
and promise for using radiomic signatures to determine a 
patient’s risk for recurrence following definitive surgical 
resection. However, several substantial challenges remain 
before radiomics can be clinically useful. Indeed, looking 
over the entire publication history of radiomics, Park  
et al. (40) recently reported on the overall scientific quality 
of the published studies and found them wanting. Their 
conclusions were based on low radiology quality scores 
and TRIPOD (Transparent Reporting of a multivariable 
prediction model for Individual Prognosis or Diagnosis) 
reporting due to lack of feature reproducibility and clinical 
utility amongst other factors. 

Despite these drawbacks, several noteworthy observations 
stand out. Since the inception of radiomics, the number 
of accessible publicly-available databases are growing. 
The democratization and public access to both a growing 
number of databases and open-source software platforms 
for radiomics analysis (e.g., PyRadiomcs: www.python.org 
and brain-CaPTk: www.med.upenn.edu/sbia/captk.html) 
is advancing this field. More efforts will need to be placed 
on making additional database available for discovery, 
testing, training, and validation, particularly independent or 
external validation. 

Next, radiomics has shown the feasibility in extracting 
high-content information and correlating it  with 
clinical, pathologic, biologic, prognostic, and predictive 
information and has helped to advance both imaging 
sciences and AI. The next generation of radiomics will 
need to focus its efforts on standardization, stability, 
and generalizability of radiomic features for it to be 
useful for clinical decision making. Although the exact 
biological drivers behind the creation of a radiomic 
signature is largely unknown, it seems that most radiomic 
signatures provide a measure of tumor heterogeneity 
and the importance of the peritumoral region cannot be 
understated (41). With further efforts, radiomics may 
provide clinically meaningful information, leading to new 
areas of discovery and potential curative approaches. 
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