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Abstract
Background and Objective Given that a high intrapatient variability (IPV) of tacrolimus whole blood concentration increases 
the risk for a poor kidney transplant outcome, some experts advocate routine IPV monitoring for detection of high-risk 
patients. However, attempts to estimate the variance of tacrolimus trough concentrations (TTC) are limited by the need for 
patients to receive a fixed dose over time and/or the use of linear statistical models. A goal of this study is to overcome the 
current limitations through the novel application of statistical methodology generalizing the relationship between TTC and 
dose through the use of nonparametric functional regression modeling. 
Methods With TTC as a response and dose as a covariate, the model employs an unknown bivariate function, allowing for 
the potentially complex, nonlinear relationship between the two parameters. A dose-adjusted variance of TTC is then derived 
based on standard functional principal component analysis (FPCA). To assess the model, it was compared against an FPCA-
based model and linear mixed-effects models using prediction error, bias, and coverage probabilities for simulated data as 
well as phase III data from the Astellas new drug application studies for extended-release tacrolimus.
Results Our numerical investigation indicates that the new model better predicts dose-adjusted TTCs compared with the pre-
diction of linear mixed effects models. Estimated coverage probabilities also indicate that the new model accurately accounts 
for the variance of TTC during the periods of large fluctuation in dose, whereas the linear mixed effects model consistently 
underestimates the coverage probabilities because of the inaccurate characterization of TTC fluctuation.
Conclusion This is the first known application of a functional regression model to assess complex relationships between 
TTC and dose in a real clinical setting.  This new method has applicability in future clinical trials including real-world data 
sets due to flexibility of the nonparametric modeling approach.
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1 Introduction

Tacrolimus is widely accepted as a profoundly effective 
immunosuppressive drug. However, shortly after its intro-
duction in the 1990s, strategies to minimize tacrolimus dos-
age were sought as a potential means of improving long-term 
outcomes [1] based on previous reports connecting cyclo-
sporine, another member of the calcineurin inhibitor (CNI) 

class, with the appearance of progressive fibrosis on biopsy 
[2]. Nevertheless, as more studies became available [1, 3, 4], 
it appeared that the lesions commonly associated with CNI 
nephrotoxicity were in fact more frequent in patients who 
were either nonadherent to tacrolimus therapy or who had 
high intrapatient variability (IPV) in tacrolimus levels [5, 
6], implicating fibrosis as a final common pathway resulting 
from both over-as well as under-immunosuppression.

Further studies have suggested an association between 
intragraft inflammation and the development of intersti-
tial fibrosis and/or loss of the allograft [7–12]. Indeed, 
subclinical inflammation appearing early after transplanta-
tion may represent a failure of conventional immunosup-
pression to prevent a resurgence of alloimmunity [3]. In 
such cases, optimizing (rather than minimizing) a patient’s 
exposure to drugs such as tacrolimus may be prudent [1] in 
order to balance the risk of adverse effects with adequate 
protection against the alloimmune response. However, 
in the case of tacrolimus, this could be complicated by 
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Key Points 

Studies have corroborated that high intrapatient vari-
ability (IPV) of tacrolimus whole blood concentrations 
could contribute to graft loss, rejection, antibody forma-
tion, functional decline, and a more rapid progression of 
biopsy lesions in kidney transplant recipients. However, 
no consensus exists for methods of assessing tacrolimus 
IPV, in part because transplant recipients often experi-
ence changes in dosing, especially during the early 
phase after transplantation. This underscores the need to 
develop a robust estimator for IPV that fully accounts for 
the effect of dose changes over time.

The aim of the current study was to develop a dose-
adjusted tacrolimus trough-concentration model as an 
improved estimation method for assessing tacrolimus 
IPV, which relates a tacrolimus trough concentration 
measured at a particular time to a dose assessed at the 
same time using a method derived from functional 
data analysis. The primary focus was to show superior 
performance compared with traditional methods in terms 
of dynamic subject prediction and variance estimation, 
using phase III patient data as a basis for a comprehen-
sive simulation study.

time. Performance of the model was then assessed under 
a variety of conditions using simulated data, as well as 
data from previously conducted phase III clinical trials. 
Simulations were designed to validate the hypothesis that, 
compared with conventional approaches (e.g. prediction 
based on linear mixed-effects models [LME]), this type of 
model can better capture the true dynamics of TTC when 
the knowledge of patients’ past dosing and TTC observa-
tions are available. The ultimate goal of this effort was to 
generate a robust model for predicting dose-adjusted TTC 
that could be further utilized to predict the variance of 
TTC during treatment periods.

2  Methods

2.1  Study Model

The methodology applied in this study assumed that TTC 
variation can be formulated as an unknown function with 
respect to time, with such variances considered as a series 
of covariances defined for each time point. Given that TTC 
fluctuation is high during the early phase after transplanta-
tion, we propose that because this methodology accounts 
for changing IPV and dosing over time, it will allow inter-
pretation of TTC fluctuation patterns in a more clinically 
meaningful way.

A flexible class of functional regression models [26–35] 
was utilized to allow for the correct quantification of the 
complex nonlinear relationship between TTC and patient 
dose over time. The observed data were denoted as 
{(Dij, tij) ∶ j = 1,… ,mi} and {(Yij, tij) ∶ j = 1,… ,mi} , where 
Dij and Yij are tacrolimus dose and TTC, respectively, for the 
i th patient ( i = 1,… , n ) observed at time points {ti1,… timi

}.
Due to the inherent variation in how individual patients 

are monitored, any model must account for the fact that the 
number of observations may be different for each patient, 
and may also be irregularly spaced. Therefore, Yij = Yi(tij) 
was used to express the dependence of TTC on the observed 
time, where Yi(⋅) is a smooth random curve defined over a 
closed and bounded interval, T  . In many observational stud-
ies, covariates can be contaminated with noise as patient-
exposure information may be measured with error or under 
conditions of nonadherence. To accommodate such realis-
tic scenarios, it was further assumed that Dij = Xi(tij) + �ij , 
where Xi(⋅) is a true, latent curve with smooth mean and 
covariance functions, and �ij is white noise with mean zero 
and variance �2

�
 . Therefore, we used the notation Xi

(
tij
)
 for 

the error-free covariate, and Dij for the noisy covariate (i.e. 
observed dose profile).

Consistent with the methodology proposed by Kim et al. 
[35], the TTC at a particular time was modeled using an 
unknown bivariate function that depended on the value of 

intrapatient fluctuations in therapeutic tacrolimus blood 
concentrations [6], potentially exposing patients to peri-
ods of over- as well as under-immunosuppression [13–15], 
as discussed above. Such IPV, which can originate from 
a number of biological sources or from medication non-
adherence [6, 16–18], has been shown to predict poor 
transplant outcomes. Associations with chronic allograft 
nephropathy and donor-specific antibody formation in 
renal transplant recipients are well-documented. High IPV 
has also been linked to allograft dysfunction, decreased 
patient and graft survival, and acute rejection in both renal 
and nonrenal allografts [6, 13, 16, 19–25].

Although the relationship between tacrolimus IPV and 
transplant-related outcomes is being increasingly recog-
nized, IPV calculation has, to date, relied on fixed-dose 
assumptions and linear modeling [6, 25]. While such an 
approach may be useful for research purposes, it cannot be 
used with predictive intent due to real-world dosing require-
ments, the nonlinear complexity of biological systems, and 
because such models fail to fully account for the changing 
variability of the tacrolimus trough concentration (TTC) 
over time. A method that accounts for higher levels of com-
plexity is therefore needed to achieve true clinical utility.

As such, we adopted a flexible class of functional 
regression models [26–35] to account for the complex 
nonlinear relationship between TTC and patient dose over 
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the drug dosing at that time, as well as the time point itself. 
For illustration, we posit a model of the type:

where F (⋅, ⋅) is a smooth and unknown bivariate func-
tion defined on ℝ ×T  (ℝ: a set of real numbers), and �i(⋅) 
is an error process independent of the covariate Xi(t) . It is 
assumed that error process �i(⋅) has mean zero and unknown 
autocovariance function G(⋅, ⋅) . These types of models are 
often called nonlinear functional concurrent models (FCM) 
[32, 35] and are considered part of function-on-function 
regression models [29–31, 36]. The form F (⋅, ⋅) quantifies 
the unknown dependence between the TTC and the dose at 
any time t without limiting the level of complexity in their 
relationship. In principle, this model allows us to extend the 
effect of the covariate beyond standard linearity assumptions.

The model shown in Eq. (1) has two unknown compo-
nents: the bivariate function,F(⋅, ⋅) , and the autocovariance 
function, G(⋅, ⋅) . In a practical situation where only the noisy 
covariate, Dij , is observed, one also needs to recover the true 
error-free covariate, Xi(tij) , before estimating the unknown 
model components, and then follow the estimation proce-
dure using the recovered covariate [35]. We describe the 
main steps and estimation of G(⋅, ⋅) in the Electronic Sup-
plementary Material (Online Resource 1).

2.2  Model Comparisons

To formally assess the effect of dose heterogeneity on TTC, 
both a simulation study and a phase III data analysis com-
pared the predictive accuracy of our approach with two alter-
natives: (1) LME as the comparator; and (2) a functional 
principal component analysis (FPCA)-based model as a 
positive control (Table 1).

The FPCA procedure examines the main directions of 
variability within the curves as a method for understanding 
the major sources of variability in the data, and facilitates 
reconstruction of full trajectories based on a few observation 
points [34, 37, 38]. Due to theoretical properties, the FPCA-
based model can predict the outcome variables with minimal 
loss of information, and the estimated/predicted results were 
therefore expected to be excellent. However, this approach 
does not incorporate the tacrolimus dose as a covariate in the 
analysis, and therefore functioned only as a positive control.

2.3  Simulation Study

We first investigated the finite sample performance of 
our model through Monte Carlo simulation. The model 

(1)Yi(t) = F{Xi(t), t} + �i(t),

performance was assessed by generating 1000 samples 
each, under a variety of conditions. The steps followed in 
our Monte Carlo simulation experiments are illustrated in 
Table 2. For each sample, we generated training sets of size 
Ntrain�{100, 200, 300} and a test set of size Ntest = 100 . The 
training sets included two different sampling designs for t
(dense and sparse). The dense design assumed that each 
patient had 131 TTC assessments equally spaced in time 
over 171 days, i.e. 

{
tj ∶ j = 1,… , 131

}
∈ [1, 171] , while 

the sparse design assumed that each patient had 10 − 35 
randomly selected TTC assessments over 171 days, i.e. 
{tij ∶ j = 1,… ,mi}�[0, 171] with mi = 10 − 35 for each i.

Using these six combinations of scenarios, we investi-
gated the amount of information lost when the sample size 
is small, as well as when there is a large amount of ‘missing-
ness’ in the covariate and response. Fitting Eq. (1) requires 
preprocessing steps because of the skewness in the response 
and the proposed estimation procedure [35]. As such, we first 
(1) log-transformed the outcome variable, y ↦ log(y + 1) ; 
(2) applied a pointwise centering and scaling transformation 
(i.e. standardization) to the covariate function; and then (3) 
smoothed out the dose profile using FPCA [35].

The primary measure of model performance is predictive 
accuracy, and this was assessed by in-sample and out-of-
sample root mean squared prediction error (RMSPE); both 
are commonly used to assess goodness-of-fit and predictive 
accuracy, respectively. The in-sample RMSPE is given by:

(2)√
MSPEIN =

�
1

1000 ⋅ Ntrain

1000�
r=1

Ntrain�
i=1

1

mi

mi�
j=1

{Y
(r)

i,train

�
tij
�
− Ŷ

(r)

i,train
(tij)}

2

� 1

2

,

Table 1  List of regression models considered in simulations and 
phase III data analysis

FPCA functional principal component analysis, LME linear mixed-
effects model

Model Form

LME Yij = �0i + �1itij + �ij

with �0i = �00 + b0i +
(
� + �i

)
Xij and 

�1i = �10 + b1i
Here, �00, �10, and � are the unknown fixed 

parameters, 
(
b0i, b1i, �i

)T are the random 
parameters distributed as N(0,R) , where R is 
an unknown covariance, and �ij are the inde-
pendent and identically distributed random 
errors with unknown variance �2

�

FPCA-based model 
(positive control)

Yi(t) = �Y (t) +
∑
k≥1

�ik�k(t) + �i(t) where �Y (t) is 

the population mean at each time point, �ik is 
the functional principal component scores for 
the k th component and i th subject, �k(t) is the 
k th eigenfunction, and �i(t) is the white noise 
process with mean zero and variance �2

�
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where Y (r)

i,train
(⋅) and its estimate Ŷ (r)

i,train
(⋅) are from the rth 

Monte Carlo generation, the measure depending on the 
distance between the actual and predicted responses in the 
training set.

The out-of-sample RMSPE denoted by 
√
MSPEOUT is 

defined similarly. For the LME, we report similar meas-
ures using Y (r)

ij,train
 and Ŷ (r)

ij,train
 in place of Y (r)

i,train
(tij) and 

Ŷ
(r)

ij,train
(tij) , respectively.

Estimation accuracy was further assessed using the bias 
and variance of the estimated TTC. We used the integrated 
s q u a r e d  b i a s  ( I s B i a s ) ,  d e f i n e d  b y 
IsBias = ∫

X

∫
T

�
1

1000

∑1000

r=1
F̂(r)(x, t) − F(x, t)

�2

dxdt  ,  as  a 

summary measure of bias, where F̂(r)(x, t) is the estimated 
bivariate function obtained from the rth simulation. The 
domain of the covariate is fixed as X = {x|x ∈ [0, 40]} 
throughout the simulations, to be consistent with the range 
of patients’ dose profiles in the actual phase III clinical 
data.

The performance of the pointwise prediction intervals 
(PIs) was evaluated in terms of average coverage probabil-
ity (ACP), a measure that can inform how reliable the pre-
dicted TTC variance is across the simulations. To compute 
the ACP, the 100(1 − �)% pointwise PIs C(r)

1−�,i
(t) for the 

TTC from the test set, Y (r)

i,test
(t) , obtained at the rth Monte 

Carlo generation, was first calculated. Specifically, we 
defined the 100(1 − �)% PI for the ith patient by C(r)

1−�,i
(t) =

Ŷ
(r)

i,test
(t) ± z𝛼∕2

[
∧
var{Y

(r)

i,test
(t) − Ŷ

(r)

i,test
(t)}

] 1

2 , where z�∕2 is the 
�∕2 upper quantile of the standard normal distribution and 
Ŷ
(r)

i,test
(t) is the predicted TTC from the rth simulation [39]. 

The ACP at the (1 − � ) level can then be approximated by 

ACP(1 − �) =
1

1000⋅Ntest

1000∑
r=1

∑Ntest

i=1
∫
T

I

{
Y
(r)

i,test
(t) ∈ C

(r)

1−�,i
(t)
}
dt , 

where I(⋅) is the indicator function (i.e. Kronecker delta). 
Again, for the LME, we report a similar measure using 
Y
(r)

ij,test
 and Ŷ (r)

ij,test
 in place of Y (r)

i,test
(tij) and Ŷ (r)

i,test
(tij) , respec-

tively. Note that best model performance is indicated with 
the nominal coverage probability equal to the estimated 
coverage probability (e.g. perfect ACP for a 95% PI would 
be 0.95).

2.4  Phase III Data Analysis

We used tacrolimus whole blood concentrations and dosing 
collected during the first 6 months following transplantation 
in the phase III registration studies for extended-release tac-
rolimus (Astagraf  XL®; Astellas Pharma Inc., Tokyo, Japan; 
also known as  Advagraf®,  Graceptor®, and  Prograf® XL). 
Studies 02-0-158 (NCT00064701) [40], FG-506E-12-03 
(NCT00189839) [41], and PMR-EC-1210 (NCT00717470) 
[42] included data from a total of 960 patients who received 
at least one oral dose of extended-release or immediate-
release tacrolimus  (Prograf®; Astellas Pharma Inc., Tokyo, 
Japan) within 48 h after kidney transplantation.

All studies were conducted in accordance with the Dec-
laration of Helsinki, Good Clinical Practice, and the Inter-
national Council for Harmonisation guidelines. Each study 
was approved by the Independent Ethics Committee or Insti-
tutional Review Board at each study site, and all patients 
provided written informed consent before enrollment.

Between October 2003 and May 2004, a total of 6499 
TTC (ng/mL) and drug dose (mg/day) measurements were 
collected at each follow-up time after transplantation 
( mi = 1 − 10measurements per patient) (Fig. 1). To investi-
gate the performance of the model, we first randomly split 

Table 2  Steps followed in Monte Carlo simulation experiments

FCPA functional principal component analysis, N number of patients in the simulated data, TTC  tacrolimus trough concentration

1. Estimate mean and autocovariance functions of dose by applying the FPCA to the dose profile {Dij ∶ i = 1,… , 960} . The results are used 
to approximate the distribution of the true covariate Xi(⋅) in Eq. (1)

2. Fit Eq. (1) using TTC observations {Yi(tij) ∶ i = 1,… , 960}and dose profile { Dij ∶ i = 1,… , 960 } from phase III data by applying our 
estimation procedure to obtain a model fit, Ŷi(tij)

3. Compute residuals by êij = Yi(tij) − Ŷi(tij) for all i and j , and employ the FPCA to the residuals. The results are used to approximate the 
distribution of the error process �i(⋅) in Eq. (1)

For r = 1 to Nsim = 1000:
4a. Generate a set of covariate functions {X(r)

i
(⋅) ∶ i = 1,… ,N} using the mean and covariance functions estimated in Step 1, in order to make 

sure that the patterns of simulated data are reasonably close to the patterns of the actual observed dose profile
4b. Generate error process {�(r)

i
(⋅) ∶ i = 1,… ,N} using the mean and covariance functions estimated from Step 3

4c. Generate a set of functional responses {Y (r)

i
(⋅) ∶ i = 1,… ,N} using Y (r)

i
(t) = F̂{X

(r)

i
(t), t} + 𝜖

(r)

i
(t) , where F̂(⋅, ⋅) is obtained from Step 2

End for:
5. Repeat fitting Eq. (1) using each of the simulated sets {Y (r)

i
(⋅) ∶ i = 1,… ,N} and {X(r)

i
(⋅) ∶ i = 1,… ,N} and obtain estimates of the model 

parameters, 
{
F̂(r)(⋅, ⋅)

}1000

r=1
 and 

{
Ĝ(r)(⋅, ⋅)

}1000

r=1
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the dataset into a training set with Ntrain = 860 patients, and 
a test set with the remaining Ntest = 100 patients.

We then fitted each of the nonlinear FCM and two alterna-
tive models for two different durations of follow-up (short- vs. 

long-term). The long-term follow-up period considered the 
full data of 171 days, tij ∈ [0, 171] , while the short-term case 
used the first 50 days post-transplantation, tij ∈ [0, 50] . The 
primary reason for examining these two follow-up periods 
was to explore patterns of TTC fluctuations that were more 
complex during the early days following transplantation rather 
than the later days. This was illustrated by examining the out-
of-sample predictive accuracy from the short-term and long-
term cases. To fit the nonlinear FCM, TTC assessments were 
log-transformed using previously proposed methods [35]. 
However, to aid interpretation, we compared the estimated/
predicted TTC with the TTC observations in the original 
scale. For simplicity, the predictive accuracy evaluated from 
the log-transformed data and the original observed data is 
indicated by ‘log scale’ and ‘original scale’, respectively, 
throughout this paper.

Statistical analysis was implemented in the computing 
environment R (R Core Team, 2016) using the functions 
of the Mixed GAM Computation Vehicle (mgcv) package 
(version 1.8–2.3) [43] and the programming code provided 
by Kim et al. [35].
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Fig. 1  Observed tacrolimus dose (left) and trough concentrations 
(right) obtained from phase III patient data. The time domain on 
the horizontal axis represents the evaluation time of each data point, 
defined as (blood drawn date) to (first dosing date) + 1. Three subjects 
have been highlighted to emphasize the complexity of observed pat-
terns with the same color. TTC  tacrolimus trough concentration

Table 3  Summaries of 
√
MSPEIN , 

√
MSPEOUT , IsBias, and ACP based on 1000 simulated data sets

ACP average coverage probability, FCM functional concurrent models, IsBias integrated squared bias, LME linear mixed-effects model, MSPE 
mean squared prediction error
a To highlight the predictive performance of nonlinear FCM, the out-of-sample prediction errors are shown in bold font

(Ntrain,Ntest) Method
√
MSPEIN

√
MSPEOUT

IsBias ACP (0.85) ACP (0.90) ACP (0.95)

Sampling design: dense (no missing observations for all patients)a

(100, 100) Positive control 0.237 (0.002) 0.238 (0.002) – – – –
LME 0.264 (0.003) 0.421 (0.020) 0.391 0.803 0.859 0.919
Nonlinear FCM 0.323 (0.007) 0.338 (0.023) 0.319 0.842 0.893 0.945

(200, 100) Positive control 0.237 (0.001) 0.238 (0.002) – – – –
LME 0.264 (0.002) 0.419 (0.018) 0.390 0.804 0.859 0.919
Nonlinear FCM 0.325 (0.005) 0.332 (0.009) 0.347 0.846 0.896 0.948

(300, 100) Positive control 0.223 (0.002) 0.224 (0.003) – – – –
LME 0.253 (0.002) 0.408 (0.018) 0.392 0.803 0.858 0.918
Nonlinear FCM 0.314 (0.004) 0.319 (0.009) 0.307 0.846 0.896 0.948

Sampling design: sparse ( m
i
= 10 ∼ 35 observations per patient)a

(100, 100) Positive control 0.227 (0.005) 0.231 (0.006) – – – –
LME 0.258 (0.005) 0.379 (0.015) 0.446 0.809 0.864 0.924
Nonlinear FCM 0.323 (0.009) 0.334 (0.009) 0.330 0.839 0.890 0.943

(200, 100) Positive control 0.226 (0.003) 0.228 (0.004) – – – –
LME 0.258 (0.003) 0.378 (0.014) 0.446 0.809 0.864 0.924
Nonlinear FCM 0.326 (0.006) 0.331 (0.009) 0.345 0.844 0.895 0.946

(300, 100) Positive control 0.211 (0.005) 0.213 (0.005) – – – –
LME 0.258 (0.005) 0.364 (0.013) 0.426 0.808 0.863 0.922
Nonlinear FCM 0.314 (0.005) 0.318 (0.009) 0.347 0.844 0.895 0.946
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3  Results

3.1  Simulation Study

Table 3 shows the RMSPE, IsBias, and ACP for the nominal 
levels of 85%, 90%, and 95% when the number of patients 
in the training and test sets was Ntrain = 100, 200, 300 and 
Ntest = 100 , respectively. The results indicate that the non-
linear FCM Eq. (1) outperforms the standard LME in terms 
of predicting TTC and estimating its variance. This is true 
irrespective of whether there is a large amount of ‘missing-
ness’ in the covariate and response. The relative percentage 
gain in prediction with respect to LME was:

where 
√

MSPENFCM
OUT

and 
√

MSPELME
OUT

 were the out-of-sam-
ple prediction errors obtained by fitting Eq. (1) and LME, 
respectively. Values close to zero imply that both methods 
have similar performance, whereas larger values are indica-
tive of greater improvement. Based on the results from 
Table 3, our model showed an average 16.5% improvement 
in prediction with respect to LME (range 11.9–21.8%).Com-
pared with the bias obtained from the nonlinear FCM, the 
LME tended to produce a larger bias irrespective of the sam-
ple sizes and sampling designs. An investigation of coverage 
for predicted TTC showed that the nonlinear FCM achieved 
nominal coverage as the information increased. This could 
be explained by the observation that even a small sample 
size (i.e. Ntrain = 100 ) resulted in coverage probabilities 
approaching nominal levels. The LME consistently under-
estimates the coverage probabilities over different sample 
sizes and sampling designs. This is a poor characteristic of 
any estimation method as it does not improve with increased 
information in the data (i.e. nonconsistent statistical 
estimation).

Figure 2 shows the 95% prediction band obtained from 
a selected case in the simulation study. Note that predicted 
TTC from the LME is ‘off-centered’ from the data, as seen 
in the absence of observed data in the upper bound of the PI 
and lack of smooth estimates over time relative to the non-
linear FCM. Further investigation (although results for all 
other cases are not shown in this article) indicated that, on 
average, the nonlinear FCM provided reasonable confidence 
bands, and the results were remarkably robust to the choice 
of sample size and sampling design in the setting considered 
here. This implies that the undercoverage of the prediction 
bands from the LME is in fact a result of inaccurate charac-
terization of TTC fluctuation, possibly caused by the strict 
linearity assumption imposed in the model.

(3)100 ×

⎛
⎜⎜⎜⎝
1 −

�
MSPENFCM

OUT�
MSPELME

OUT

⎞
⎟⎟⎟⎠
,

The standard LME can be extended to account for a possi-
ble nonlinear relationship by incorporating additional effects 
of dose and time. To provide some insight, we investigated 
the finite sample performance of mixed effects models by 
incorporating a quadratic time effect; simulation results 
are displayed in Sect. C of the Electronic Supplementary 
Material. We found that the predictive performance and the 
coverage at different nominal levels did not improve across 
different simulation scenarios. Nevertheless, it is worthwhile 
noting that this may not always be the case in other clinical 
studies, depending on the actual data used in the analysis.

3.2  Phase III Data Analysis

The in-sample and out-of-sample RMSPE (Eq. 2) for the 
nonlinear FCM, LME, and FPCA-based model are sum-
marized in Table 4. As expected, the FPCA-based model 
(positive control) always provided the smallest in-sample 
and out-of-sample prediction errors. The nonlinear FCM 
showed a dramatic improvement in out-of-sample predic-
tion over the LME in all cases. For the long-term analysis, 
the nonlinear FCM had a relative percentage gain (Eq. 3) of 
16.1% (log-scale analysis) over the LME. In the short term, 
the percentage gain was 20.4% (log-scale analysis). There-
fore, the results corresponding to the early period tij ∈ [0, 50] 
showed more improvement than those in the long term (i.e. 
tij ∈ [0, 171] ), indicating that the TTC fluctuates a great deal 
during the early period.

The performance of nonlinear FCM was assessed through 
replication, such that we randomly split the data set into 
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Fig. 2  Individual-specific TTC prediction (on log scale) and point-
wise PI fitted by the estimation procedure of nonlinear FCM (left 
panel) and the LME (right panel). Results were obtained for the case 
of Ntrain = 100 and sparse sampling design from the simulation study. 
The black dots are the observed TTC (on log scale) from a simulated 
test set. The red dashed lines and blue solid lines are the predicted 
TTC (on log scale) and the 95% prediction band obtained by fitting 
the nonlinear FCM and the LME, respectively. FCM functional con-
current model, LME linear mixed-effects model, PI prediction inter-
vals, TTC  tacrolimus trough concentration
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training and test sets 100 times and computed the out-of-sam-
ple RMSPE for each split. The boxplots in Fig. 3 (first row) 
show the sampling distribution of the RMSPE, indicating that 
fitting the nonlinear FCM preserves greater predictive accu-
racy than fitting the standard LME in the current data setting. 
This could be further illustrated by the estimated sample mean 
and sample standard deviation of the RMSPE presented in 
the figure. The bottom row of Fig. 3 shows the predicted TTC 
(left) given a dose profile (right) for a randomly selected single 
patient from the test data. This figure illustrates how the LME 
simply mirrors the dose profile without making allowances for 
the required, more complex, dose adjustment, thereby resulting 
in the loss of predictive accuracy.

In summary, the results from Table 4 and Fig. 3 indicate 
that the LME could not capture the true underlying relation-
ship between TTC and dose because of the nonlinear complex-
ity of TTC in relation to tacrolimus dose.

Finally, Fig. 4 represents the estimated variance of log-
scaled TTC, {Var{Yi(t)|Xi(t)} (top-left panel), and the esti-
mated three-dimensional (3D) surface of F(⋅, ⋅) from different 
viewpoints (top-right, bottom-left, and bottom-right pan-
els). The estimated variance displayed in the top-left panel 
indicates that the variability of TTC is high during the first 
50 days following transplantation. The estimated 3D surface 
typically aids in understanding the overall trend of TTC along 
the values of dose and time. The thick red line in the 3D sur-
face highlights the estimated curve on particular days. When 
t = 10(i.e. on day 10), the amount of curvature was relatively 
large, indicating a strong nonlinearity between the dose and 
TTC (top-right and bottom-left panels). When t = 100(i.e. on 
day 100), the amount of TTC fluctuation was relatively low 
(bottom-right panel).

4  Discussion

The current study used an analytical method based on 
functional data analysis [26–28] to describe the relation-
ship between TTC and dose over time (not assuming a lin-
ear relationship). This model assumed that both TTC and 
tacrolimus dose are the functional response and functional 
covariate, respectively, with their relationship described 
using a flexible class of nonparametric functional regres-
sion models [26–35]. This framework does not include 
serial relationships of dosing changes based on preceding 
TTC values. While it is possible that this kind of relation-
ship could be modeled with time-series methods (among 
others), doing so would be outside the current scope of 
effort evaluating the dose-adjusted IPV of TTC.

In a recent study, Ben Fredj et al. [44] developed a 
population pharmacokinetic model to describe the evolu-
tion of dose-adjusted TTC according to the time elapsed 
since transplant. They used a nonparametric adaptive grid 
approach to better detect outliers and unsuspected sub-
populations. Although their model implicitly assumes 
that TTC and dose are linearly associated, the benefits 
of a nonparametric approach improved the prediction of 
dose-adjusted TTC over time. In contrast to our model, 
their model is suited for detecting changes in tacrolimus 
clearance and volume of distribution. Our framework is 
centered on calibrating the TTC fluctuation after making 
a proper dose adjustment.

The functional concurrent regression [32, 35] used in 
our model represents the relationship between TTC and 
dose using an unknown bivariate function F(⋅, ⋅) to model 
the response based on the covariate and the time point. 
The bivariate function F(⋅, ⋅) allowed for the description 
of a possibly complex nonlinear relationship between 
TTC and dose, and thus had the potential to improve pre-
dictive accuracy, especially when the data had a highly 
complex dependence structure. In this model, the linear 

Table 4  Summaries of (1) √
MSPEIN and (2) 

√
MSPEOUT 

obtained from phase III data 
analysis

Data presented in bold highlight the predictive performance of FCM
FCM functional concurrent models, LME linear mixed-effects model, MSPE mean squared prediction error
a The log scale y ↦ log(y + 1) was used for analysis, and the results obtained from the log-transformed data 
are indicated by ‘log scale’
b The root mean squared prediction errors computed from the data in the original scale are indicated by 
‘original scale’

Case: tij ∈ [0, 171] Case: tij ∈ [0, 50]

Log  scalea Original  scaleb Log  scalea Original  scaleb

Model (1) (2) (1) (2) (1) (2) (1) (2)

Positive control 0.287 0.296 4.111 4.425 0.285 0.299 3.827 4.035
LME 0.308 0.514 4.332 7.169 0.301 0.573 4.444 8.233
Nonlinear FCM 0.414 0.431 5.677 6.047 0.430 0.456 6.044 6.537
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Fig. 3  Results of out-of-sample predictive performance obtained 
from phase III data analysis. The first row displays the out-of-sam-
ple root mean squared prediction errors obtained from the log-trans-
formed data (left panel) and from the original observed data (right 
panel) for the case of tij ∈ [0, 171] . The second row displays the 
individual-specific TTC prediction (left panel) and the correspond-

ing dose profile (right panel) from a randomly selected patient. FCM 
functional concurrent model, FPCA functional principal component 
analysis, LME linear mixed-effects model, MSPE mean squared pre-
diction error, SD standard deviation, TTC  tacrolimus trough concen-
tration
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dependence was a special case of their assumed relation-
ship: F

{
Xi(t), t

}
= �0(t) + �1(t)Xi(t), where �0(t) and �1(t) 

were the unknown time-varying coefficients.
Knowing this, the model in Eq. (1) could be viewed as 

a member of this wider class of functional regression mod-
els. Indeed, these constructs may be more appropriate to 
use in our data setting because of difficulties in subscribing 

strict linearity to the relationship between TTC and dose. In 
addition, our model framework was appealing in our data 
setting because the model in Eq. (1) did not impose a spe-
cific form of covariance structure, such as working inde-
pendence or nonstationary error covariance structures, and 
could accommodate any type of structure. The proposed 
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model estimation of the variance of Yi(t) was therefore free 
of standard assumptions and could account for within-sub-
ject correlations in estimation and inference.

While the present study enlisted a previously described 
modeling procedure of nonlinear FCM [35] to analyze the 
complex nonlinear relationship between TTC and dose over 
time, it differed significantly from traditional TTC IPV 
models, which embrace an arbitrarily chosen stable dose 
as an important consideration. In contrast, the new, nonlin-
ear FCM can accommodate a variety of realistic settings, 
such as nonlinear complexity between variables, continu-
ously changing variability over time, sparse and irregular 
observations per patient, and data that are contaminated 
with measurement errors. However, it should be noted that 
preprocessing steps should be followed in order to deal with 
sparse and noisy functional data [35].

When testing our model against a simulated data set and 
phase III patient data from a large kidney transplant develop-
ment program [40–42], our numerical investigation provided 
greater insight into the expected accuracy of nonlinear FCM. 
In cases where tacrolimus blood concentrations are predicted 
based on patients’ previous TTC and tacrolimus dose infor-
mation, there was a 16.5% improvement in prediction using 
the nonlinear FCM versus the LME. This was largely due 
to the tendency of the LME model to improperly adjust 
estimates of TTC based on dosing due to the prespecified 
linearity assumption. In contrast, the flexibility of the new 
model accurately accounted for the variance of TTC during 
the periods of large fluctuations in dose. A 16.5% improve-
ment in the prediction of TTC suggests that the nonlinear 
FCM has an enhanced ability to adjust the estimates of TTC 
to time and dose profiles. From a clinical perspective, since 
tacrolimus has a narrow therapeutic range, small changes in 
blood concentration can mean the difference between over-
immunosuppression and its related adverse effects, such as 
susceptibility to infection, or under-immunosuppression, 
leading to graft rejection [45, 46]. The more accurate pre-
diction of TTC and its variance with this robust analytical 
method could therefore be used to better inform treatment 
decisions.

The IPV function over time showed a noticeable increase 
around day 100 and a decrease in the following days (Fig. 4, 
top-left panel), possibly overlapping with recovery of a 
patient’s post-transplant hematocrit and albumin, and/or the 
minimization/discontinuation of corticosteroids, frequently 
observed around this time. Such an aspect is in line with 
several previous studies that discussed the effect of changes 
in hematocrit and albumin, or corticosteroid discontinuation 
on tacrolimus clearance in pharmacokinetic models [47–49]. 
Future research will not only focus on replicating the results 
of this model in an external, real-world data set but will also 
seek to confirm whether these observations persist.

Surprisingly, despite knowing that TTC variability 
experiences temporal fluctuation, there have been no prior 
attempts to quantify TTC variance as a function of time. 
From a methodological standpoint, building more generaliz-
able and robust models would thus allow more accurate pre-
dictions of future TTC fluctuations. In view of that, before 
testing any association between tacrolimus IPV and trans-
plant outcome, developing a robust estimator for describing 
TTC variance would allow for more effective detection of 
high-risk patients. Future research on this important topic 
is clearly warranted.

In the meantime, building more easily interpretable and 
robust models is essential, and the current study demon-
strated such aspects through the phase III data analysis with 
the estimated 3D graph (Fig. 4). The estimated result could 
be interpreted in two different ways: (1) by fixing time; this 
graph helps understand how TTC is associated with the dose 
at a particular moment in a patient’s post-transplant course; 
and (2) by fixing dose; changes in TTC over time can be bet-
ter understood. As this is a population-level estimation, the 
results provide information on how groups of patients may 
be affected by current therapy.

Although the proposed methodology is not new from an 
analytical standpoint, it is a novel application within the 
therapeutic area and can be applied to randomized phase III 
data. Additionally, the nonlinear relationship between TTC 
and dose is the first known example of applying nonlinear 
FCM in a real-world setting to recover complex relationships 
within a data set. In the present case, it has revealed that the 
true relationship underlying the response and covariate vari-
ables is in fact complex and nonlinear.

Predicting the appropriate tacrolimus dose to achieve a 
desired tacrolimus whole blood concentration is one future 
application for this model. Another application is a more 
accurate understanding of the effects of within-patient 
variability on transplant outcomes compared with standard 
LMEs. The influence of baseline covariates (e.g. age, sex, 
race) and time-dependent covariates (e.g. liver and renal 
function tests) can be better understood by additively incor-
porating relevant predictors in the nonlinear functional con-
current model (NFCM) framework, leading to more tailored 
immunosuppressive strategies. Given that nonparametric 
modeling allows for additive (multiple) covariates on a given 
response, this topic can be further addressed by extension of 
our tacrolimus model in a manner that has been discussed 
and investigated previously [35].

5  Conclusion

To overcome the limitations associated with linear models, 
we have applied a flexible functional regression model to 
quantify the complex nonlinear relationship between TTC 
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and tacrolimus dose over time. This model has been vali-
dated using simulation analyses and assessed directly using 
extensive phase III clinical trial data from kidney transplant 
patients. Our model accurately accounted for TTC vari-
ability during periods of large dose fluctuations, such as is 
frequently encountered at an early stage following kidney 
transplantation.

This is the first known application of a functional regres-
sion model to assess complex relationships impacting TTCs 
in a clinical setting. This method has applicability in the con-
text of future clinical trials, including real-world data sets, 
and will be featured as an outcome measure in the ongoing 
 ASTOUND™ donor-specific antibody phase IV clinical trial. 
Future refinement of this approach may improve post-trans-
plant treatment by predicting the dose required to achieve 
desired TTCs, thus helping to reduce within-patient vari-
ability and the associated risk of poor transplant outcomes.

Acknowledgements This study was funded by Astellas Pharma Global 
Development, Inc. Cello Health MedErgy (Europe) assisted in editing 
the initial version of this manuscript under the direction of the authors, 
and provided editorial support throughout its development. Editorial 
support was funded by Astellas Pharma, Inc.

Author Contributions All authors contributed sufficiently to this sci-
entific work and therefore share collective responsibility and account-
ability for the results. Study design: JK, SW, NAU, RMK, JJS; Con-
duct and acquisition of data: JK, SW, NAU, RMK, JJS; Analysis and 
interpretation of data: JK, SW, NAU, FS, RMK, JJS; Writing of the 
manuscript: JK, JJS; Revising and final approval of the manuscript: JK, 
SW, NAU, FS, RMK, JJS.

Compliance with Ethical Standards 

Funding This study was funded by Astellas Pharma Global Develop-
ment, Inc. Editorial support was funded by Astellas Pharma Inc.

Conflict of interest Janet Kim, Sam Wilson, Nasrullah A. Undre, Fei 
Shi, Rita M. Kristy, and Jason J. Schwartz are employees of Astellas 
and have received a salary from Astellas.

Data Availability Statement Access to anonymized individual partici-
pant-level data will not be provided for this trial as it meets one or more 
of the exceptions described on the http://www.clini calst udyda tareq uest.
com website under ‘Sponsor Specific Details for Astellas’.

Ethical Approval All procedures performed in studies involving human 
participants were in accordance with the ethical standards of the insti-
tutional and/or national research committee and with the 1964 Helsinki 
declaration and its later amendments or comparable ethical standards.

Informed Consent Informed consent was obtained from all individual 
participants included in the study.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution-NonCommercial 4.0 International License 
(http://creativecommons.org/licenses/by-nc/4.0/), which permits any 
noncommercial use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the 

source, provide a link to the Creative Commons license, and indicate 
if changes were made.

References

 1. Myers BD, Ross J, Newton L, Luetscher J, Perlroth M. Cyclo-
sporine-associated chronic nephropathy. N Engl J Med. 
1984;311:699–705.

 2. Matas AJ, Gaston RS. Moving beyond minimization trials in kid-
ney transplantation. J Am Soc Nephrol. 2015;26:2898–901.

 3. Stegall MD, Gaston RS, Cosio FG, Matas A. Through a glass 
darkly: seeking clarity in preventing late kidney transplant failure. 
J Am Soc Nephrol. 2015;26:20–9.

 4. Gaston RS, Cecka JM, Kasiske BL, Fieberg AM, Leduc R, Cosio 
FC, et  al. Evidence for antibody-mediated injury as a major 
determinant of late kidney allograft failure. Transplantation. 
2010;90:68–74.

 5. Lerut E, Kuypers DR, Verbeken E, Cleutjens J, Vlaminck H, 
Vanrenterghem Y, et al. Acute rejection in non-compliant renal 
allograft recipients: a distinct morphology. Clin Transplant. 
2007;21:344–51.

 6. Vanhove T, Vermeulen T, Annaert P, Lerut E, Kuypers DRJ. High 
intrapatient variability of tacrolimus concentrations predicts accel-
erated progression of chronic histologic lesions in renal recipients. 
Am J Transplant. 2016;16:2954–63.

 7. Shishido S, Asanuma H, Nakai H, Mori Y, Satoh H, Kamimaki 
I, et al. The impact of repeated subclinical acute rejection on the 
progression of chronic allograft nephropathy. J Am Soc Nephrol. 
2003;14:1046–52.

 8. Cosio FG, Grande JP, Wadei H, Larson TS, Griffin MD, 
Stegall MD. Predicting subsequent decline in kidney allograft 
function from early surveillance biopsies. Am J Transplant. 
2005;5:2464–72.

 9. Moreso F, Ibernon M, Gomà M, Carrera M, Fulladosa X, Hueso 
M, et al. Subclinical rejection associated with chronic allograft 
nephropathy in protocol biopsies as a risk factor for late graft loss. 
Am J Transplant. 2006;6:747–52.

 10. Heilman RL, Khamash HA, Smith ML, Chakkera HA, Moss 
AA, Reddy KS. Delayed allograft inflammation following alem-
tuzumab induction for kidney transplantation. Clin Transplant. 
2013;27:772–80.

 11. Naesens M, Kuypers DRJ, De Vusser K, Vanrenterghem Y, Eve-
nepoel P, Claes K, et al. Chronic histological damage in early indi-
cation biopsies is an independent risk factor for late renal allograft 
failure. Am J Transplant. 2013;13:86–99.

 12. Park WD, Griffin MD, Cornell LD, Cosio FG, Stegall MD. Fibro-
sis with inflammation at one year predicts transplant functional 
decline. J Am Soc Nephrol. 2010;21:1987–97.

 13. O’Regan JA, Canney M, Connaughton DM, O’Kelly P, Williams 
Y, Collier G, et al. Tacrolimus trough-level variability predicts 
long-term allograft survival following kidney transplantation. J 
Nephrol. 2016;29:269–76.

 14. Taber DJ, Su Z, Fleming JN, McGillicuddy JW, Posadas-Salas 
MA, Treiber FA, et al. Tacrolimus trough concentration variabil-
ity and disparities in African American kidney transplantation. 
Transplantation. 2017;101:2931–8.

 15. Damon C, Luck M, Toullec L, Etienne I, Buchler M, de Hurault 
Ligny B, et al. Predictive modeling of tacrolimus dose require-
ment based on high-throughput genetic screening. Am J Trans-
plant. 2017;17:1008–19.

 16. Rodrigo E, Segundo DS, Fernández-Fresnedo G, López-Hoyos M, 
Benito A, Ruiz JC, et al. Within-patient variability in tacrolimus 
blood levels predicts kidney graft loss and donor-specific antibody 
development. Transplantation. 2016;100:2479–85.

http://www.clinicalstudydatarequest.com
http://www.clinicalstudydatarequest.com


212 J. Kim et al.

 17. de Jonge H, Vanhove T, de Loor H, Verbeke K, Kuypers DRJ. 
Progressive decline in tacrolimus clearance after renal transplan-
tation is partially explained by decreasing CYP3A4 activity and 
increasing haematocrit. Br J Clin Pharmacol. 2015;80:548–59.

 18. Lieber SR, Volk ML. Non-adherence and graft failure in adult 
liver transplant recipients. Dig Dis Sci. 2013;58:824–34.

 19. Borra LCP, Roodnat JI, Kal JA, Mathot RA, Weimar W, Van 
Gelder T. High within-patient variability in the clearance of tac-
rolimus is a risk factor for poor long-term outcome after kidney 
transplantation. Nephrol Dial Transplant. 2010;25:2757–63.

 20. Sapir-Pichhadze R, Wang Y, Famure O, Li Y, Kim SJ. Time-
dependent variability in tacrolimus trough blood levels is 
a risk factor for late kidney transplant failure. Kidney Int. 
2014;85:1404–11.

 21. Hsiau M, Fernandez HE, Gjertson D, Ettenger RB, Tsai EW. 
Monitoring nonadherence and acute rejection with variation in 
blood immunosuppressant levels in pediatric renal transplantation. 
Transplantation. 2011;92:918–22.

 22. Gallagher HM, Sarwar G, Tse T, Sladden TM, Hii E, Yerko-
vich ST, et al. Erratic tacrolimus exposure, assessed using the 
standard deviation of trough blood levels, predicts chronic lung 
allograft dysfunction and survival. J Heart Lung Transplant. 
2015;34:1442–8.

 23. Supelana C, Annunziato RA, Schiano TD, Anand R, Vaidya S, 
Chuang K, et al. Medication level variability index predicts rejec-
tion, possibly due to nonadherence, in adult liver transplant recipi-
ents. Liver Transplant. 2014;20:1168–77.

 24. Pollock-BarZiv SMS, Finkelstein Y, Manlhiot C, Dipchand AI, 
Hebert D, Ng VL, et al. Variability in tacrolimus blood lev-
els increases the risk of late rejection and graft loss after solid 
organ transplantation in older children. Pediatr Tansplant. 
2010;14:968–75.

 25. Shuker N, Shuker L, van Rosmalen J, Roodnat JI, Borra LCP, 
Weimar W, et al. A high intrapatient variability in tacrolimus 
exposure is associated with poor long-term outcome of kidney 
transplantation. Transpl Int. 2016;29:1158–67.

 26. Ramsay JO, Silverman BW. Functional data analysis with R and 
Matlab. 2nd ed. New York: Springer; 2005.

 27. Ferraty F, Vieu P. Nonparametric functional data analysis: theory 
and practice. New York: Springer Science & Business Media; 
2006.

 28. Ramsay J, Hooker G, Graves S. Functional data analysis in R and 
Matlab. New York: Springer; 2009.

 29. Wood SN. Generalized additive models: an introduction with R. 
Boca Raton: CRC; 2006.

 30. Morris J. Functional regression. Annu Rev Stat Appl. 
2015;2:321–59.

 31. Scheipl F, Staicu A-M, Greven S. Functional additive mixed mod-
els. J Comput Graph Stat. 2015;24:477–501.

 32. Maity A. Nonparametric functional concurrent regression models. 
Wiley Interdiscip Rev Comput Stat. 2017;9:e1394.

 33. McLean MW, Hooker G, Staicu A-M, Scheipl F, Ruppert D. 
Functional generalized additive models. J Comput Graph Stat. 
2014;23:249–69.

 34. Yao F, Müller H-G, Wang J-L. Functional linear regression analy-
sis for longitudinal data. Ann Stat. 2005;33:2873–903.

 35. Kim J, Maity A, Staicu A-M. Additive nonlinear functional con-
current model. Stat Interface. 2018;11:669–85.

 36. Kim J, Staicu A-M, Maity A, Carroll RJ, Ruppert D. Addi-
tive function-on-function regression. J Comput Graph Stat. 
2018;27:234–44.

 37. Goldsmith J, Greven S, Crainiceanu C. Corrected confidence 
bands for functional data using principal components. Biometrics. 
2013;69:41–51.

 38. Xiao L, Li Y, Ruppert D. Fast bivariate P-splines: the sandwich 
smother. J R Stat Soc Ser B Stat Methodol. 2013;75:577–99.

 39. Rupper D, Wand M, Carroll R. Semiparametric regression. Cam-
bridge: Cambridge University Press; 2003.

 40. Silva HT, Yang HC, Abouljoud M, Kuo PC, Wisemandle K, 
Bhattacharya P, et al. Erratum: One-year results with extended-
release tacrolimus/MMF, tacrolimus/MMF and cyclosporine/
MMF in de novo kidney transplant recipients. Am J Transplant. 
2007;7:595–608.

 41. Krämer BK, Charpentier B, Bäckman L, Silva HT, Mondragon-
Ramirez G, Cassuto-Viguier E, et  al. Tacrolimus once daily 
(ADVAGRAF) versus twice daily (PROGRAF) in de novo renal 
transplantation: a randomized phase III study. Am J Transplant. 
2010;10:2362–643.

 42. Albano L, Banas B, Klempnauer JL, Glyda M, Viklicky O, Kamar 
N, et al. OSAKA trial: a randomized, controlled trial comparing 
tacrolimus QD and BD in kidney transplantation. Transplantation. 
2013;96:897–903.

 43. Wood S. Package ‘mgcv’: mixed GAM computation vehicle with 
automatic smoothness estimation (version 1.8–2.3). 2018.

 44. Ben Fredj N, Woillard JB, Debord J, Chaabane A, Boughattas N, 
Marquet P, et al. Modeling of tacrolimus exposure in kidney trans-
plant according to posttransplant time based on routine trough 
concentration data. Exp Clin Transplant. 2016;14:394–400.

 45. Wallemacq P, Armstrong VW, Brunet M, Haufroid V, Holt DW, 
Johnston A, et al. Opportunities to optimize tacrolimus therapy 
in solid organ transplantation: report of the European consensus 
conference. Ther Drug Monit. 2009;31:139–52.

 46. Kuypers DRJ, Claes K, Evenepoel P, Maes B, Vanrenterghem Y. 
Clinical efficacy and toxicity profile of tacrolimus and mycophe-
nolic acid in relation to combined long-term pharmacokinet-
ics in de novo renal allograft recipients. Clin Pharmacol Ther. 
2004;75:434–47.

 47. Woillard J-B, Saint-Marcoux F, Debord J, Åsberg A. Pharmacoki-
netic models to assist the prescriber in choosing the best tacroli-
mus dose. Pharmacol Res. 2018;130:316–21.

 48. Saint-Marcoux F, Woillard J-B, Jurado C, Marquet P. Lessons 
from routine dose adjustment of tacrolimus in renal trans-
plant patients based on global exposure. Ther Drug Monit. 
2013;35:322–7.

 49. Undre NA, Schäfer A. Factors affecting the pharmacokinetics of 
tacrolimus in the first year after renal transplantation. European 
Tacrolimus Multicentre Renal Study Group. Transplant Proc. 
1998;30:1261–3.


	A Novel, Dose-Adjusted Tacrolimus Trough-Concentration Model for Predicting and Estimating Variance After Kidney Transplantation
	Abstract
	Background and Objective 
	Methods 
	Results 
	Conclusion 

	1 Introduction
	2 Methods
	2.1 Study Model
	2.2 Model Comparisons
	2.3 Simulation Study
	2.4 Phase III Data Analysis

	3 Results
	3.1 Simulation Study
	3.2 Phase III Data Analysis

	4 Discussion
	5 Conclusion
	Acknowledgements 
	References




