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Abstract: Iberian dry-cured ham has great value in a traditional Spanish diet, although experts
have recommended its consumption should be reduced because of its high salt content and link to
cardiovascular diseases. Eighteen boneless Iberian hams (RIB), eighteen boneless white commercially
crossed pig hams (RWC), and eighteen traditionally salted and processed Iberian hams (TIB) were
manufactured to check whether the breed (RIB vs. RWC) or the processing (RIB vs. TIB) affects
their physical–chemical and sensory characteristics. Moisture, protein, total nitrogen, nonprotein
nitrogen, proteolysis index, NaCl, and ash contents were higher in RWC, contrary to the fat values,
which were more than double in RIB. All macrominerals, except Ca, were affected by the processing
stage and breed, whereas only the micromineral Zn was higher in RWC. The breed did not affect
the free amino acid content; however, the total content was slightly higher in RWC. Regarding the
manufacturing process, the deboning of RIB allowed the reduction of salt by over 30%. However, the
microbiological stability was not affected, resulting in a safe product. Although deboning and salt
reduction significantly affect the hardness, adhesiveness, deformation, and elasticity of dry-cured
hams, consumers value all sensory parameters with higher scores in RIB.

Keywords: Iberian dry-cured ham; salt reduction; deboned ham; food labeling; proteolysis

1. Introduction

Iberian dry-cured ham is considered one of the important products of the Spanish
meat industry. It is a quality product known worldwide, which has different organoleptic
characteristics from other meat products, which make its consumption palatable. It is recog-
nized for its high biological value because of its rich composition of proteins, unsaturated
fatty acids, iron, zinc, and vitamin B, among others. In addition, it has a high economic
value [1].

Despite having these nutritional characteristics, its consumption has traditionally been
limited in at-risk populations, due to its high salt content [2]. High blood levels of sodium
cause greater renal perfusion, increasing the excretion of sodium (Na+) and water. This
compensatory mechanism produces normal blood pressure but is progressively depleted,
losing self-regulation. Therefore, high sodium intakes predispose hypertension and the
appearance of cardiovascular diseases [3].

The increase in sodium consumption and the need to reduce the prevalence of asso-
ciated diseases has caused the food industry to develop several methods to reduce the
sodium added to products [4]. However, salt is an essential ingredient in meat products
because it is responsible for the decrease in water activity, delaying and inhibiting microbial
growth, and prolonging their useful life. In addition, salt influences the final texture of
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the products and provides a characteristic flavor that differentiates them from others [5].
The reduction of salt in dry-cured ham can have direct and indirect consequences, as the
biochemical reactions that occur during the ripening period are affected. Salt influences the
behavior of the muscular proteolytic system by acting on enzymes such as cathepsins and
calpains. These play a very important role during ripening, since they contribute to the
appearance of free amino acids and peptides responsible for developing the aroma, smell,
and texture of the dry-cured ham [6]. An excessive hydrolysis of proteins by cathepsin
B and B + L have been described as responsible for the softness and adhesiveness in the
texture profile and the bitter taste of dry-cured ham [7,8]. Furthermore, the sensory study
data of the acceptance of hams and the presence of some amino acid derivatives and small
peptides have been correlated as components to distinguish defective and normal hams. [9].

Among the strategies for salt reduction, the most studied has been the total or partial
substitution of NaCl with other salts. With dry-cured ham obtained from white pig crosses,
Frye et al. [10] described the partial reduction of NaCl, by 50% or less, replaced with KCl is
possible while maintaining acceptable physical–chemical and sensory attributes [11]. How-
ever, other studies reported that although salted dry-cured hams with partially replaced
NaCl for KCl were well evaluated, a bitter taste was detected due to potassium [12,13]. Mag-
nesium salts have also been evaluated, but some observed undesirable flavors appeared
in the product and had to use other ingredients to mask those flavors [14]. Furthermore,
Seong et al. [15] described the possibility of using natural halophytes in different types
of dry-cured hams as salt substitutes, obtaining good physical–chemical results. The pos-
sibility of using flavor enhancers as substitutes for salt has also been described in other
derived meat products [16]. The use of ultrasound at the time of salting [17] or the use
of fresh shaped hams are other technological strategies studied to reduce the salt content.
Using fresh shaped hams as a raw material would increase the absorption and the diffusion
phenomenon of NaCl because of the greater contact surface, producing dry-cured hams
with a reduced salt content [18].

To declare that food has reduced sodium, according to European legislation [19], the
reduction must be at least 25% compared to a similar product. This reduction is much
more complex in Iberian dry-cured hams because they have a lower level of salt per se than
dry-cured hams from white commercially crossed pigs. The higher fat content of Iberian
dry-cured ham also makes the reduction of salt in this product more complex because fat
complicates the diffusion of salt through the tissues, resulting in a delay in the balance
of salt inside the ham in the early stages of ripening [20]; in addition, fat could limit the
perception of salinity [21,22]. Furthermore, it has been reported that aroma and flavor
decrease with higher fat content [23]. Finally, the possibility that dry-cured ham cured
using salt substitutes could require a longer processing time in the early stages should be
considered [24].

Despite the limitations stated, there is a scarcity of reports that assess the effect of
salt reduction on Iberian dry-cured hams. It is expected that using fresh deboned hams
may improve the salt diffusion, reducing the salting time and therefore reducing the salt
content of the final product. No study has been found on whether deboning the ham would
reduce the salt in the product. Therefore, this work aimed to evaluate the effect of salt
reduction on the physicochemical composition, free amino acids, and sensory quality of
a reduced salt dry-cured boneless ham from an Iberian pig manufactured using a new
process. Furthermore, the effect of breed was analyzed using the same parameters of a
commercially crossed white pig, to compare with the Iberian product.

2. Materials and Methods
2.1. Dry-Cured Ham Preparation and Sample Collection

A total of 54 dry-cured hams were used to carry out this study. A batch of Iberian
dry-cured hams (RIB) and a batch of dry-cured hams from white commercially crossed pigs
(RWC) were produced and supplied by the Spanish meat industry. Fresh raw materials
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were boned and salted using nitrifying salts and sea salt at a rate of 0.8 days/kg, in a
chamber at 3 ◦C.

After salting, pieces were washed with water, and a traditional curing process was
conducted. The resting or postsalting stage started at 3 ◦C, and the temperature gradually
increased to 6 ◦C. This phase was completed when the hams achieved 18% weight loss.
Subsequently, the temperature was increased to 28 ◦C. The process was concluded when
the pieces achieved a loss of 38% of weight. Weight loss was determined by weighing
each sample in triplicate in each of the processing stages. The results were expressed as a
percentage of weight loss, considering the fresh weight of each piece.

Finally, 18 dry-cured hams were selected from each batch (36 hams). Samples were
taken in the following stages: I: Raw muscle; II: Start of post-salting; III: End of postsalting;
IV: Drying stage (33% of weight loss); V: Final product (38% of weight loss). To maintain
the integrity of the piece throughout processing, samples were taken using a 2 cm diameter
stainless steel cylinder, in the area corresponding to the biceps femoris muscle.

Eighteen pieces of Iberian dry-cured hams were manufactured following the tradi-
tional curing process as a control product (TIB) (the time of salting stage was 1 day/kg).
TIB dry-cured hams were processed with bone.

2.2. Physicochemical and Microbial Analyses

Each sample was analyzed in triplicate for each type of dry-cured ham in each of the
physicochemical analyses.

The moisture content was determined by drying 5 g of sample at 105 ◦C for 24 h
following the gravimetric procedure described in the ISO 1442 standard [25]. The method
of Folch [26] was followed to obtain the intramuscular fat values of the dry-cured ham
samples. The ash content was determined using gravimetry, following the AOAC method
920.153 [27].

For the analysis of dry-cured ham salt content, the Volhard method of the ISO 1841-1
standard [28] was modified, adding 2 mL of nitrobenzene to the sample after mineralization
with nitric acid and simultaneous oxidation with potassium permanganate, to eliminate
settling phases.

Total nitrogen (TN) and nonprotein nitrogen (NPN) were determined using the Kjel-
dahl method [29], obtaining the crude protein value by multiplying the TN value by 6.25.
The proteolysis index (PI) was calculated as the percentage ratio between NPN and TN [30].

Microbiological counts were conducted on the dry-cured ham, following the protocol
of Aaslyng, Vestergaard, and Koch [31] with slight modifications. Briefly, 25 g of each
sample was taken in triplicate in the final stage (processing stage V). After serial decimal
dilutions in 0.9% saline (Merck 106404, Darmstadt, Germany) enriched with peptone
to 0.1% (Merck 1.07214.1000), the samples were seeded in Brain Heart Infusion (BHI)
(Oxoid CM1136, Thermo Fisher Scientific, Loughborough, UK)) and All-Purpose Tween
(APT) agar (Merck 1.10453.0500) and incubated for 5 days at 20 ◦C. After incubation,
Listeria monocytogenes was seeded on Oxford agar (Scharlau Chemie SA, Barcelona, Spain),
Salmonella on SS-Agar (Sigma, 85640, Buchs (SG), Switzerland), E. coli on Levine eosin
methylene blue agar (Merck 62087, Darmstadt, Germany), Staphylococcus on Baird Parker
Agar (Scharlau Chemie S.A., Barcelona, Spain), Clostridium on Tryptose Sulphite Cycloserine
Agar (TSC) without egg yolk (SGL Lab, Corby, UK), Mesophilic aerobes on PCA (Merck,
1.15363.0500 Darmstadt, Germany), and Enterobacteria on (3M Petrifilm 6421, Madrid,
Spain).

Mineral composition of samples was determined following the method of Tejada
et al. [32], and the free amino acid content was obtained according to Abellán et al. [33].

2.3. Determination of Instrumental Color and Texture Profile Analysis (TPA)

Instrumental color was determined by colorimetry using a colorimeter (HunterLab,
Colorflex) and the CIELab system. The results were expressed through the coordinates
L*, a*, and b*, representing the luminosity, the red–green index, and the yellow index,
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respectively, and the values of the saturation parameter (chroma) and hue angle (h*). The
results were calculated as the mean values of three measurements.

Instrumental texture was analyzed using a QTS-25 texturometer (Brookfield CNS
Farnell, Borehamwood, Hertfordshire, England) equipped with a 25 kg load cell and a
10 mm diameter probe [34]. The software Texture Pro v. 2.1. was used for data analysis.

The muscle biceps femoris was analyzed. It was cut into 10 × 10 × 10 mm paral-
lelepipeds, using three parallelepipeds per sample. The room was maintained at 20 ◦C for
the analyses.

The test was conducted by applying two consecutive cycles at a constant speed of
30 mm/s and subjecting the sample to a 50% compression in a direction perpendicular to
the muscle fibers.

The TPA was performed on hardness, deformation according to hardness, adhesive-
ness, cohesiveness, recoverable deformation, springiness, gumminess, and chewiness.

2.4. Sensory Analyses (Consumers’ Test)

The sensory evaluation of the dry-cured ham samples was conducted by an untrained
panel. A total of 47 participants (53.2% men and 46.8% women) came voluntarily without
having received prior training or information. The age range of the participants was 18 to
52 years. The study was conducted in one session where the TIB, RIB, and RWC samples
were evaluated by the panelists using a questionnaire that included hedonic evaluation of
the appearance, color, odor, texture, salty taste, global taste, and global acceptance. Each
attribute was scored by assigning a numerical value through a verbal hedonic scale between
1 (I dislike very much) and 5 (I like very much). In addition, a preference study was also
conducted.

The samples used for the sensory consumer test were complete slices of a 1 mm thick
cross section of the piece, following the method established in the standards UNE-ISO
6658:2019 [35] and UNE-ISO 4121:2006 [36] and were codified with a random three-digit
number.

The results were obtained by calculating the average score given to each attribute
of the product evaluated by consumers. To determine the preference between the three
samples, the percentage values of choice of the consumer panel were obtained in each type
of dry-cured ham studied.

2.5. Statistical Analysis

The effect of the processing stage and the effect of breed on physicochemical parame-
ters, salt content, and mineral composition were obtained by a two-way analysis of variance
(ANOVA). When the effect of the processing stage or breed was significant (p < 0.05), the
results were compared using the Fisher LSD test.

To assess if salt reduction and deboning affect the free amino acid content and the
sensory quality of Iberian dry-cured ham, a one-way ANOVA was performed. Furthermore,
the effect of breed on free amino acid content and sensory quality was studied in salt-
reduced dry-cured hams from Iberian and white commercially crossed pigs.

3. Results and Discussion
3.1. Effect of Processing Stage and Breed on Physicochemical Parameters, Salt Content, Microbial
Analyses, and Mineral Composition

Table 1 shows the evolution of the physicochemical parameters and salt content of
reduced boneless dry-cured ham obtained from commercial crosses of Iberian and white
pigs at different processing stages.

The processing stage affected all physicochemical parameters studied in boneless
dry-cured ham of different breeds.

The moisture content in the dry-cured RIB ham was significantly reduced (p ≤ 0.001),
mainly between the drying stage and the final product, whereas the intramuscular fat
content increased (p ≤ 0.05), as observed in the protein values. In this parameter, the
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increase was more marked between the raw muscle and the drying stage, without observing
significant differences between the final product (stage V) and the previous processing
stages (p ≥ 0.05); this was observed in both studied breeds. A similar evolution was
observed in the NPN, with significantly increased values mainly between the end of
postsalting (stage III) and the end of processing (stage V) (p ≤ 0.001) in RIB and RWC.
Consequently, PI also increased significantly during processing (p ≤ 0.001). The increase
in proteolytic activity of dry-cured hams during their ripening stage (stages IV and V)
has been related to the rise in temperature that takes place at these manufacturing stages,
resulting in a greater activity of proteolytic enzymes [37]. Physicochemical modifications
were in line with what is observed in other dry-cured hams throughout processing [38,39].

NaCl and ash concentrations increased significantly, mainly at the start of postsalting
stage due to the incorporation of curing salts associated with the manufacturing process
(p ≤ 0.001 in both cases). A marked increase was observed in the NaCl values of both
breeds between stages I (raw muscle) and II (start of postsalting), as well as between the
end of postsalting and the last two phases of the production process, due to the decrease in
moisture, which takes place during the last stages of production. This phenomenon was
also observed in the ash concentration of RWC dry-cured ham (Table 1), which reached its
maximum values in the last two stages of the production process, whereas the ash values
of the RIB dry-cured ham remained stable between the start of the postsalting stage (stage
II) and the final product (stage V). Correct diffusion of salt (NaCl) was achieved with the
processing method, with the concentration in dry-cured RWC of 3.77% and 2.86% in the RIB
final product (processing stage V). Correct diffusion of salt during processing is important
because of the role this ingredient plays. It will not only influence the texture, flavor, and
aroma of the product, but will also ensure an optimal microbiological quality [40].

Regarding breed, moisture (p ≤ 0.001), fat (p ≤ 0.001), protein (p ≤ 0.001), TN
(p ≤ 0.001), NPN (p ≤ 0.001), PI (p ≤ 0.05), NaCl (p ≤ 0.05), and ash (p ≤ 0.001) were
also affected.

Moisture values and protein content were significantly higher in dry-cured RWC
ham (p ≤ 0.001), in all stages of processing, in contrast to the fat values, in which the RIB
dry-cured ham presented more than double the fat content of RWC (p ≤ 0.001), due to the
high adipogenicity of native pig breeds [41]. These differences between breeds in fat and
protein content were like those observed by Lorido et al. [23].

NPN values were significantly higher in RWC dry-cured ham (p ≤ 0.001) throughout
the manufacturing process. As expected, the PI was significantly lower in RIB (p ≤ 0.05),
due to the higher calpains and cathepsins activity in the dry-cured hams of commercially
crossed white pigs [42]. In contrast, Córdoba et al. [43] described that proteolysis in Iberian
hams could be higher than other types of dry-cured hams, such as Parma ham, due to the
longer ripening time and the higher temperatures reached during the process. The PI in
both breeds was lower than values reported by Schivazzapa and Virgili [44] in reduced salt
Italian dry-cured hams obtained from pig crosses of Large White, Landrace, and Duroc.

The PI observed in the TIB final product (18.58%; value not included in Table 1), was
slightly lower than RIB and was like those described in other dry-cured hams [45].

An adequate control of the ripening phase of reduced salt dry-cured hams is essential
to assess the prolongation of this processing stage, to avoid texture or aroma problems [46],
because free amino acids—resulting from the intense proteolysis the product undergoes
during manufacturing—will contribute greatly to developing the sensory characteristics of
the final product [47].

NaCl and ash concentrations were also higher in RWC dry-cured ham (p ≤ 0.001) for
all the processing stages. Consistent with salt reduction, the NaCl content in RIB and RWC
was less than the values reported by some authors for dry-cured ham from commercial
crosses of Croatian white pigs (between 5.76% and 7.01%) [48] and other native breeds
(5.75%) [49] for the final product (processing stage V).

The average NaCl concentration was 4.11% in the traditionally manufactured Iberian
dry-cured hams, thus a reduction of 30% compared to RIB. In RWC dry-cured hams, a
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reduction of 27.5% was reached, with an average value considered of 5.20% in traditional
white dry-cured ham [50]. According to the Annex of Regulation (EC) No 1924/2006 [19],
the claim ‘Reduced in salt’ could be included in the labeling of these products, because the
indicated 25% reduction has been exceeded. Pinna et al. [51] also achieved a considerable
reduction in salt content in typical Italian dry-cured hams by modifying salt added and the
salting time.

Despite reducing the salt content of dry-cured hams, it does not compromise the
stability and safety of the final product, as they meet the required microbiological conditions
established. In this way, the counts of Listeria monocytogenes (in 25 g), Salmonella (in 25 g),
E. coli (cfu/g), Staphylococcus (cfu/g), Clostridium (cfu/g), Mesophilic aerobes (cfu/g),
and Enterobacteria (cfu/g) complied with the limits established by Regulation (EC) No
2073/2005 [52], relative to the microbiological criteria applicable to food products.

Table 2 includes the evolution of the mineral composition of reduced boneless dry-
cured ham obtained from commercial crosses of Iberian and white pigs throughout pro-
cessing.

The processing stage (p ≤ 0.001) and breed (p ≤ 0.001) significantly modified the
concentration of Na, K, Mg, and P. The amount of Zn was only significantly affected
(p ≤ 0.001) by the processing stage, showing higher values in the final stages. Na values
increased from the beginning of postsalting (processing stage II) and were always higher in
RWC than in RIB, as was observed for NaCl (Table 1). The concentration of the rest of the
minerals did not change significantly (p > 0.05). The concentration of K, Mg, P, Fe, and Zn
was higher than observed in a previous study [53], whereas Na and Mn were lower. Ca
values were similar; however, no references could be found for B and Cu.

Table 1. Effect of processing stage and breed on the physicochemical parameters and salt content of
boneless dry-cured ham. Results are expressed in g/100 g of product (means values ± SEM).

Processing Stage p-Value

I II III IV V Processing Stage Breed Interaction

Moisture
RIB 53.12 ± 1.31 a 52.82 ± 1.77 a 47.12 ± 2.11 a 37.35 ± 1.83 b 31.59 ± 1.26 b

0.000 0.000 0.000
RWC 57.82 ± 6.93 a 56.65 ± 1.58 a 53.49 ± 1.71 a 52.08 ± 1.29 a 51.46 ± 0.64 a

Fat
RIB 25.00 ± 1.43 bc 21.10 ± 2.32 abc 22.77 ± 2.37 abc 27.42 ± 2.00 cd 33.87 ± 1.94 d

0.028 0.000 0.007
RWC 17.34 ± 4.54 abc 16.18 ± 1.00 ab 17.61 ± 1.43 ab 16.72 ± 1.01 ab 15.99 ± 0.46 a

Protein
RIB 15.00 ± 0.35 b 16.48 ± 0.90 ab 19.53 ± 0.30 ac 22.32 ± 0.73 c 22.13 ± 1.19 c

0.000 0.000 0.001
RWC 16.10 ± 1.53 ab 17.92 ± 0.10 ab 20.43 ± 0.50 ac 28.31 ± 0.55 d 29.68 ± 0.52 d

Total
Nitrogen

RIB 2.40 ± 0.06 b 2.63 ± 0.14 ab 3.13 ± 0.05 ac 3.57 ± 0.12 c 3.54 ± 0.19 c

0.000 0.000 0.001
RWC 2.57 ± 0.25 ab 2.87 ± 0.02 ab 3.27 ± 0.08 ac 4.53 ± 0.09 d 4.75 ± 0.08 d

Nonprotein
Nitrogen

RIB 0.25 ± 0.06 a 0.18 ± 0.07 a 0.30 ± 0.07 a 0.48 ± 0.31 ab 0.74 ± 0.16 bc

0.000 0.000 0.001
RWC 0.34 ± 0.09 ab 0.26 ± 0.11 a 0.33 ± 0.13 a 1.25 ± 0.42 d 1.04 ± 0.18 cd

Proteolysis
Index

RIB 10.54 ± 0.86 a 6.73 ± 1.42 a 9.50 ± 1.10 a 13.88 ± 3.62 ab 20.90 ± 1.24 bc

0.000 0.012 0.071
RWC 13.45 ± 2.24 abc 9.01 ± 1.87 a 10.07 ± 1.97 a 27.85 ± 5.82 c 22.02 ± 1.59 bc

NaCl
RIB 0.51 ± 0.27 d 1.96 ± 0.69 a 1.99 ± 0.17 a 2.79 ± 0.14 abc 2.86 ± 0.21 abc

0.000 0.016 0.176
RWC 0.16 ± 0.02 d 2.33 ± 0.08 ab 2.43 ± 0.13 ab 3.64 ± 0.18 bc 3.77 ± 0.20 c

Ash
RIB 2.21 ± 0.51 c 5.58 ± 1.65 abc 5.59 ± 0.68º abc 5.44 ± 0.48 ab 5.68 ± 0.85 ab

0.000 0.000 0.012
RWC 2.39 ± 0.44 bc 8.81 ± 0.88 ad 6.84 ± 0.61 ad 10.92 ± 0.85 d 10.41 ± 0.40 d

Two-way ANOVA. a,b,c,d Values within a row with different superscripts differ significantly at p ≤ 0.05 (Fisher
LSD Test). SEM: standard error of the mean; RIB: reduced Iberian dry-cured ham; RWC: reduced dry-cured ham
from white commercial pig crosses; I: Raw muscle; II: Start of postsalting; III: End of postsalting; IV: Drying stage;
V: Final product.
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Table 2. Effect of the processing stage and the breed on the mineral composition of boneless dry-cured ham.

Processing Stage p-Value
RDA

I II III IV V Processing Stage Breed Interaction

Na 1
RIB 0.23 ± 0.08 a 0.83 ± 0.32 b 0.81 ± 0.11 b 1.01 ± 0.11 bc 1.13 ± 0.14 c

0.000 0.000 0.072 0.006
RWC 0.15 ± 0.00 a 1.24 ± 0.14 c 1.16 ± 0.11 c 1.75 ± 0.17 de 1.54 ± 0.08 d

K 1
RIB 0.23 ± 0.04 a 0.28 ± 0.03 a 0.30 ± 0.02 a 0.33 ± 0.03 a 0.45 ± 0.03 ab

0.000 0.000 0.000 2000
RWC 0.28 ± 0.05 a 0.34 ± 0.01 a 0.39 ± 0.02 a 0.96 ± 0.04 b 0.64 ± 0.02 b

Ca 1
RIB 0.02 ± 0.01 a 0.01 ± 0.00 a 0.02 ± 0.00 a 0.01 ± 0.00 a 0.01 ± 0.00 a

0.536 0.673 0.675 800
RWC 0.01 ± 0.00 a 0.01 ± 0.00 a 0.02 ± 0.00 a 0.01 ± 0.00 a 0.02 ± 0.01 a

Mg 1
RIB 0.02 ± 0.00 a 0.02 ± 0.00 a 0.02 ± 0.00 a 0.02 ± 0.00 a 0.03 ± 0.00 ab

0.000 0.001 0.061 375
RWC 0.02 ± 0.00 a 0.02 ± 0.00 a 0.03 ± 0.00 a 0.04 ± 0.00 b 0.04 ± 0.00 b

P 1
RIB 0.15 ± 0.05 a 0.16 ± 0.01 a 0.18 ± 0.01 a 0.20 ± 0.01 a 0.23 ± 0.02 a

0.000 0.000 0.000 700
RWC 0.16 ± 0.03 a 0.19 ± 0.01 a 0.23 ± 0.01 a 0.34 ± 0.01 b 0.31 ± 0.01 b

Fe 2
RIB 9.66 ± 0.56 a 6.75 ± 0.80 a 5.69 ± 1.05 a 14.13 ± 5.48 a 11.66 ± 1.03 a

0.133 0.737 0.978 14
RWC 8.06 ± 1.68 a 7.75 ± 0.60 a 8.33 ± 1.60 a 14.26 ± 2.78 a 13.02 ± 3.83 a

Cu 2
RIB 1.39 ± 0.57 a 1.06 ± 0.26 a 0.70 ± 0.14 a 3.86 ± 1.96 a 1.5 ± 0.27 a

0.577 0.537 0.509 1
RWC 0.32 ± 0.12 a 1.62 ± 0.69 a 1.41 ± 0.14 a 1.24 ± 0.59 a 1.79 ± 0.23 a

Mn 2
RIB 0.62 ± 0.38 a 0.15 ± 0.02 a 0.27 ± 0.04 a 0.29 ± 0.05 a 0.10 ± 0.03 a

0.478 0.541 0.673 2
RWC 0.31 ± 0.17 a 0.21 ± 0.08 a 0.20 ± 0.04 a 0.12 ± 0.05 a 0.26 ± 0.011 a

Zn 2
RIB 21.64 ± 1.80 ab 15.91 ± 7.80 a 16.56 ± 2.42 a 21.53 ± 2.70 ab 24.59 ± 1.74 bc

0.000 0.169 0.251 10
RWC 16.47 ± 3.22 a 19.76 ± 2.53 a 18.83 ± 2.44 a 26.69 ± 1.58 bc 29.76 ± 2.90 c

B 2
RIB 0.78 ± 0.53 a 0.36 ± 0.06 a 0.18 ± 0.06 a 0.34 ± 0.06 a 0.47 ± 0.08 a

0.882 0.538 0.598 Not
declaredRWC 0.14 ± 0.06 a 0.21 ± 0.06 a 0.36 ± 0.01 a 0.38 ± 0.19 a 0.51 ± 0.15 a

Two-way ANOVA. a,b,c,d,e Values within a row with different superscripts differ significantly at p ≤ 0.05 (Fisher LSD Test). 1 Results are expressed in g/100 g of product (means values ±
standard error of mean). 2 Results are expressed in mg/100 g of product (means values ± standard error of mean). RIB: reduced Iberian dry-cured ham; RWC: reduced dry-cured ham
from white commercial pig crosses; I: Raw muscle; II: Start of post-salting; III: End of post-salting; IV: Drying stage; V: Final product; RDA: Recommended Daily Allowances of minerals.
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3.2. Free Amino Acids

Results for the effect of Iberian dry-cured ham type and the effect of breed on free
amino acid (FAA) content in the final product (processing stage V) are shown in Table 3.

Table 3. Effect of Iberian dry-cured ham type (processing) and effect of breed on free amino acid
content (FAA). The results are expressed in g/kg of dry matter as mean values ± SEM.

FAA
Dry-Cured Ham Type p-Value

TIB RIB RWC Processing Breed

Asp 2.08 ± 0.06 2.05 ± 0.54 1.94 ± 0.74 0.962 0.921
Glu 3.98 ± 0.11 4.26 ± 1.04 4.87 ± 0.92 0.809 0.706
Ser 1.51 ± 0.05 1.34 ± 0.21 1.83 ± 0.47 0.530 0.443
His 0.91 ± 0.02 1.00 ± 0.25 1.17 ± 0.25 0.760 0.677
Gly 1.23 ± 0.01 1.42 ± 0.40 1.79 ± 0.37 0.685 0.566
Thr 1.45 ± 0.03 1.32 ± 0.28 1.81 ± 0.30 0.685 0.352
Arg 1.75 ± 0.16 1.06 ± 0.02 1.32 ± 0.22 0.051 0.368
Ala 4.02 ± 0.14 4.70 ± 1.06 5.67 ± 0.46 0.590 0.489
Tyr 0.70 ± 0.01 0.89 ± 0.16 1.44 ± 0.47 0.377 0.384
Cys nd nd nd - -
Val 2.10 ± 0.05 2.22 ± 0.53 2.51 ± 0.53 0.847 0.732
Met 0.53 ± 0.21 0.64 ± 0.23 0.79 ± 0.01 0.764 0.580
Phe 1.42 ± 0.15 1.56 ± 0.38 1.82 ± 0.35 0.765 0.669
Ile 1.48 ± 0.09 1.64 ± 0.44 1.90 ± 0.42 0.760 0.706

Leu 2.43 ± 0.19 2.65 ± 0.71 3.21 ± 0.79 0.786 0.654
Lys 3.73 ± 0.10 4.13 ± 1.15 5.00 ± 1.17 0.766 0.649
Pro 1.87 ± 0.01 1.96 ± 0.40 2.18 ± 0.25 0.837 0.688

Total FAA 31.19 ± 0.38 32.84 ± 7.76 39.26 ± 7.71 0.852 0.617
TIB: traditional Iberian dry-cured ham; RIB: reduced Iberian dry-cured ham; RWC: reduced dry-cured ham
from white commercial pig crosses; SEM: standard error of the mean; p-value Processing: One-way ANOVA
between TIB and RIB; p-value Breed: One-way ANOVA between RIB and RWC (p-value significant at p ≤ 0.05);
nd: nondetected.

None of the FAA studied was affected by the processing of different Iberian dry-
cured ham (traditional and reduced salt boneless manufactured) (p > 0.05). The same
was observed regarding the total FFA (p > 0.05). Therefore, peptidase activity was not
significantly affected (p > 0.05) by salt reduction (30%) although total FAA content was
slightly higher in RIB. These findings disagreed with the study by Cittadini et al. [54], in
which an increase in proteolytic phenomenon was observed as the NaCl content decreased.

Abellán et al. [55] described that the concentration of amino acids reflects the prote-
olysis achieved during the ripening stage of dry-cured meat products. Considering the
data obtained in PI, NPN (Table 1), and the total FFA (Table 3), the proteolysis of dry-cured
Iberian ham followed an expected evolution, despite the reduction in salt content. Accord-
ing to Lorenzo et al. [56], the proteolytic reactions are promoted in meat products with a
partial replacement of sodium.

The differences in amino acid concentration of boneless dry-cured ham of different
breeds were not significant (p > 0.05). Krvavica et al. [57] also found no effect of breed on
the FFA content in two types of dry-cured Croatian ham obtained from different genotypes
of commercial white pig crosses.

The differences in the PI between the two breeds studied (Table 1) could be explained
by a higher protease activity (calpain and cathepsins) of RWC dry-cured hams. However,
no differences in FAA concentration were observed, probably because the breed did not
affect peptidases activity.

3.3. Instrumental Color and Texture Profile

Table 4 shows the effect Iberian dry-cured ham type and the effect of breed on the
instrumental color.
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Table 4. Effect of Iberian dry-cured ham type (processing) and effect of breed on instrumental color.
Results are expressed as mean values ± SEM.

Color Parameter
Dry-Cured Hams p-Value

TIB RIB RWC Processing Breed

Lightness (L*) 47.22 ± 4.23 53.03 ± 1.79 57.88 ± 0.85 0.165 0.164
Redness (a*) 24.70 ± 2.96 23.36 ± 1.62 20.72 ± 1.06 0.692 0.392

Yellowness (b*) 27.34 ± 5.26 28.46 ± 1.24 31.09 ± 3.19 0.758 0.363
Chroma (C*) 37.26 ± 4.61 37.09 ± 1.30 37.47 ± 2.70 0.961 0.891

Hue angle (h◦) 47.01 ± 6.44 50.75 ± 2.52 55.99 ± 3.04 0.519 0.298
TIB: traditional Iberian dry-cured ham; RIB: reduced Iberian dry-cured ham; RWC: reduced dry-cured ham from
white commercial pig crosses; SEM: standard error of the mean.

The instrumental color parameters were not affected by different processes for Iberian
dry-cured ham (p > 0.05 in all cases), agreeing with the data obtained by Lorenzo et al. [58],
who studied the effect of partial replacement of NaCl with other salts on dry-cured lacón.
In contrast, Tejada et al. [32] observed an effect of different salt formulation on the color
parameters of another derived meat pig product (Spanish chorizo) describing a higher
luminosity value (L*) in the product cured with a traditional formulation (with NaCl as
the main ingredient), as well as higher values of b*, C*, and h*. No breed effect on color
parameters was observed (p > 0.05 in all cases). The range of L*, a*, and b* values obtained
in the two types of Iberian dry-cured ham studied (TIB and RIB) and in the reduced salt
dry-cured ham, obtained from white commercial pig crosses, were higher than dry-cured
ham obtained from the Celta pig by Bermúdez et al. [38].

Table 5 shows the effect Iberian dry-cured ham type and breed on the instrumental
texture.

Table 5. Effect of Iberian dry-cured ham type (processing) and effect of breed on instrumental texture.
Results are expressed as mean values ± SEM.

Texture Parameter
Dry-Cured Hams p-Value

TIB RIB RWC Processing Breed

C1 Hardness (N) 6.89 ± 0.95 8.61 ± 0.31 5.84 ± 0.54 0.041 0.000
C1 Hardness deformation 2.95 ± 0.07 2.97 ± 0.00 2.93 ± 0.05 0.684 0.179

C1 Adhesiveness (mJ) 0.72 ± 0.09 1.03 ± 0.39 0.57 ± 0.09 0.249 0.121
C2 Cohesiveness 6.10 ± 0.74 7.93 ± 0.38 4.99 ± 0.03 0.021 0.000

C2 Recoverable deformation (mm) 0.53 ± 0.05 0.60 ± 0.03 0.56 ± 0.02 0.091 0.152
C2 Springiness 0.95 ± 0.19 1.14 ± 0.10 1.10 ± 0.01 0.122 0.558

C2 Gumminess (N) 1.56 ± 0.03 2.12 ± 0.08 1.81 ± 0.04 0.000 0.000
C2 Chewiness (mJ) 3.11 ± 0.36 5.16 ± 0.39 3.59 ± 0.60 0.000 0.023
C2 Hardness (N) 5.42 ± 0.90 10.97 ± 0.87 6.03 ± 0.23 0.001 0.000

TIB: traditional Iberian dry-cured ham; RIB: reduced Iberian dry-cured ham; RWC: reduced dry-cured ham from
white commercial pig crosses; SEM: standard error of the mean; N: Newton; mJ: millijoules; mm: millimeters;
p-value Processing: One-way ANOVA between TIB and RIB; p-value Breed: One-way ANOVA between RIB and
RWC (p-value significant at p ≤ 0.05).

The processing of Iberian dry-cured ham and the breed had a significant effect on C1
hardness, C2 cohesiveness, C2 gumminess, C2 chewiness, and C2 hardness (Table 5). All
cited texture profile parameters were higher in RIB compared to TIB. Despite the differences
observed in the TPA, consumers did not report an effect of processing between the two
Iberian dry-cured hams studied (Table 6). Although the TPA confirmed the differences
found in the sensory analysis regarding breed, where consumers scored RIB texture better
than RWC’s (Table 6).
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Table 6. Effect of Iberian dry-cured ham type (processing) and effect of breed on consumer accept-
ability by a consumer panel. Results are expressed as mean values ± SEM *.

Dry-Cured Ham Type p-Value

TIB RIB RWC Processing Breed

Appearance 3.66 ± 0.13 4.17 ± 0.15 2.62 ± 0.16 0.061 0.006
Color 3.83 ± 0.12 4.13 ± 0.13 2.68 ± 0.15 0.159 0.021
Odor 3.55 ± 0.15 3.87 ± 0.13 2.89 ± 0.13 0.200 0.008

Texture 3.81 ± 0.11 3.98 ± 0.14 2.83 ± 0.13 0.232 0.013
Salty taste 3.57 ± 0.13 3.87 ± 0.13 2.87 ± 0.13 0.252 0.001

Global taste 3.96 ± 0.12 4.06 ± 0.10 2.81 ± 0.14 0.224 0.002
Global acceptance 4.00 ± 0.12 4.09 ± 0.12 2.57 ± 0.123 0.220 0.005

* Attributes were scored assigning a numerical value through a verbal hedonic scale between 1 (I dislike very
much) and 5 (I like very much); SEM: standard error of mean; TIB: traditional Iberian dry-cured ham; RIB: reduced
Iberian dry-cured ham; RWC: reduced dry-cured ham from white commercial pig crosses; p-value Processing:
One-way ANOVA between TIB and RIB; p-value Breed: One-way ANOVA between RIB and RWC (p-value
significant at p ≤ 0.05).

The data here are partially consistent with the study of Tejada et al. [32], in which
the authors found an effect of salt reduction on hardness, cohesiveness, gumminess, and
chewiness in another derived meat pig product. However, TPA hardness values where
higher in the NaCl reduced product of the cited study, contrary to the data obtained in
this study, as RIB showed higher values. The authors associated this phenomenon with
the inhibition of cathepsins by NaCl, which reduces the proteolysis activity affecting the
texture of the product. Therefore, we can conclude that proteolysis of RIB was not affected
significantly, considering TPA hardness values (Table 5) and according to data obtained for
the FFA (Table 3). Regarding breed, RIB’s higher hardness values could be related to the
lower moisture content obtained than the RWC dry-cured ham (Table 1).

Cittadini et al. [54] also studied the effect of NaCl replacement by other chloride salts
on TPA parameters (hardness, springiness, cohesiveness, gumminess, and chewiness) of
foal Cecina, a similar dry-cured product, but in contrast to our result, they only found
significant differences in the springiness.

3.4. Consumer Sensory Acceptability and Preference

Table 6 shows the acceptability scores for TIB, RWC, and RIB dry-cured hams given
by the consumer panel.

Regarding the type of processing, the panel of consumers scored all the attributes in
RIB dry-cured ham higher than the TIB dry-cured ham, although none were significantly
different (p > 0.05). Therefore, the consumer acceptability of sensory traits is similar in both
types of dry-cured ham; thus, the reduction of the salt content and the deboning do not
affect the organoleptic characteristics of the Iberian dry-cured ham. The results agree with
other studies of cured meat in which the palatability and texture were not compromised
with the reduction of salt in respect to the traditional method [59]. However, contrasting
results have been reported in cooked ham products, where texture, flavor, and overall
consumer acceptability were significantly affected by salt reduction [60].

In Italian dry-cured ham obtained from white commercial pig crosses, a greater ac-
ceptability was observed in salt-reduced dry-cured ham in respect to the same product
processed after traditional manufacturing [44].

Both types of Iberian ham (TIB and RIB) obtained global acceptance scores above 4 (I
like) on the scale of 1–5, so it can be asserted that the consumer accepts Iberian dry-cured
ham more.

Regarding the effect of the breed on the consumer acceptability of dry-cured ham, all
sensory traits were scored significantly high by the untrained panel in dry-cured RIB ham
compared to dry-cured RWC ham (p ≤ 0.05).

The intramuscular fat content of the product has been described among the main
composition parameters that influence the organoleptic quality in dry-cured products [61].
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As has been described, this parameter was significantly higher in RIB dry-cured ham
compared to RWC dry-cured ham, thus data agreed with other studies on Iberian pig
dry-cured products [62] and other native breeds [63], where it was observed that products
obtained from autochthonous breeds were better valued by consumers.

In the preference study, 6.38% of consumers preferred the RWC dry-cured ham, 63.83%
the RIB dry-cured ham, and 29.79% the TIB. Therefore, from a consumer viewpoint, the
reduction of salt in dry-cured ham improved the perception.

Regarding the preference between the two Iberian products, 70% of the consumers
chose the reduced salt product, although no significant differences were detected in the
evaluation of the acceptance of the salty taste (Table 6).

4. Conclusions

The deboning of the dry-cured ham before processing and the reduction of the salting
time produced dry-cured hams with lower salt content. A greater reduction in salt was
achieved in Iberian dry-cured ham than in that from white commercial pig crosses due to
the different physicochemical and biochemical characteristics of its meat. The decreased salt
concentration achieved allows the inclusion of the nutritional claim “reduced sodium/salt
content” compared to similar products.

The reduction in salt and deboning did not have a negative effect on the proteolysis of
dry-cured ham (both Iberian and white commercial pig crosses), as no differences in FFA
content were observed. Furthermore, the PI increased only slightly (which was higher in
dry-cured hams from white commercial pig crosses).

Reduced salt dry-cured hams have adequate consumer acceptance, adequate instru-
mental color, and texture characteristics. Although the processes modified the texture of
the reduced Iberian dry-cured hams, their sensory characteristics were better valued than
those with bone and following the traditional manufacturing processes.
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