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A B S T R A C T   

Lung cancer is a leading cause of death in both men and women globally. The recent development of tumor molecular profiling has opened opportunities for targeted 
therapies for lung adenocarcinoma (LUAD) patients. However, the lack of access to molecular profiling or cost and turnaround time associated with it could hinder 
oncologists’ willingness to order frequent molecular tests, limiting potential benefits from precision medicine. In this study, we developed a weakly supervised deep 
learning model for predicting somatic mutations of LUAD patients based on formalin-fixed paraffin-embedded (FFPE) whole-slide images (WSIs) using LUAD 
subtypes-related histological features and recent advances in computer vision. Our study was performed on a total of 747 hematoxylin and eosin (H&E) stained FFPE 
LUAD WSIs and the genetic mutation data of 232 patients who were treated at Dartmouth-Hitchcock Medical Center (DHMC). We developed our convolutional neural 
network-based models to analyze whole slides and predict five major genetic mutations, i.e., BRAF, EGFR, KRAS, STK11, and TP53. We additionally used 111 cases 
from the LUAD dataset of the CPTAC-3 study for external validation. Our model achieved an AUROC of 0.799 (95% CI: 0.686–0.904) and 0.686 (95% CI: 
0.620–0.752) for predicting EGFR genetic mutations on the DHMC and CPTAC-3 test sets, respectively. Predicting TP53 genetic mutations also showed promising 
outcomes. Our results demonstrated that H&E stained FFPE LUAD whole slides could be utilized to predict oncogene mutations, such as EGFR, indicating that somatic 
mutations could present subtle morphological characteristics in histology slides, where deep learning-based feature extractors can learn such latent information.   

Introduction 

Lung cancer is a leading cause of death in both men and women in 
the world. In 2020, 1.8 million individuals have died from lung cancer, 
and 2.2 million cases are newly diagnosed [1]. Non-small cell lung 
carcinoma (NSCLC) accounts for more than 80% of lung cancer cases, 
and lung adenocarcinoma (LUAD) is one of the most prevalent histologic 
subtypes of NSCLC. The recent development of molecular profiling has 
opened new targeted therapy opportunities for LUAD patients, which 
can improve clinical outcomes and the quality of life of patients. Several 
actionable mutations have been identified for LUAD targeted treatment: 
KRAS, EGFR, ALK, MET, BRAF, RET, ROS1, NTRK, and ERBB2 [2,3]. The 
mutation frequencies and the clinical implications of each mutation in 
NSCLC patients vary. For example, EGFR somatic mutation is present in 
12–15% of the Caucasian population with NSCLC and 47–64% of East 
Asian NSCLC patients. Its reported Overall Response Rate (ORR) to 
Osimertinib, a third-generation EGFR tyrosine kinase inhibitor (TKI), is 
about 80%. In contrast, the reported ORR of KRAS p.G12C mutation 

targeted drug, Sotorasib, is 32% [3]. 
Treatments targeting these mutations have improved the survival 

rate of NSCLC male patients from 26% in 2001 to 35% in 2014 [4]. 
Next-generation sequencing (NGS) testing, which is performed on tumor 
tissue samples to identify somatic mutations, is used in the current 
standard of care for advanced NSCLC patients [5]. In a recent survey in 
the United States, over 75% of oncologists use NGS tests to guide their 
treatment decisions for patients [6]. This survey, however, also revealed 
the low frequency of ordering NGS testing. While the cause of the low 
frequency of NGS testing is not well studied, lack of access, long turn
around time (typically 10–14 days), and the cost of testing could hinder 
the oncologists’ willingness to order NGS testing. There are potentially 
more patients who could benefit from performing tumor molecular 
profiling to decide treatment eligibilities in precision oncology. 

There has been a new interdisciplinary development at the inter
section of clinical oncology and machine learning research to predict the 
actionable mutations in cancer tissues based on formalin-fixed paraffin- 
embedded (FFPE) whole-slide images without the need for molecular 
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profiling tests for colorectal cancer [7], gastric cancer [8], breast cancer 
[9,10] and lung cancer [11–13]. Coudray et al. applied a convolutional 
neural network (CNN) to predict ten major mutations and demonstrated 
that predicting the mutation status of STK11, EGFR, FAT1, SETBP1, 
KRAS, and TP53 is a feasible task [11]. In recent work, Chen et al. 
presented a two-stage CNN model to predict EGFR and KRAS mutations 
and achieved an AUC of 0.683 and 0.545 for EGFR and KRAS on their 
test set, respectively [14]. Another study by Huang et al. achieved an 
AUC of over 0.750 for predicting FGFR1, FGFR2, HRAS, and MET mu
tations on a TCGA-based test set using a CNN [15]. In this study, we set 
up a novel weakly supervised framework to train a deep learning model 
for patient-level somatic mutation prediction with validation on both 
internal (DHMC) and external (CPTAC-3) datasets, adding new meth
odological improvements and experimental evidence to the existing 
body of work to advance this field. We hypothesize that LUAD 
subtype-related histopathology features extracted using a CNN could be 
utilized to further predict the oncogene mutations. To this end, we 
develop a new weakly supervised deep learning model for predicting 
somatic mutations based on FFPE whole-slide images (WSIs) of LUAD 
patients. Ultimately, the successful development of such algorithms to 
identify oncogene mutations based on whole slide images would be a 
great benefit for both patients and healthcare systems by providing a 
triaging method that could be utilized before performing time-intensive 
and expensive molecular testing to screen patients for clinically 
actionable mutations and identify and prioritize those cases that likely 
benefit from targeted treatments in a more timely manner. 

Methods 

Datasets 

A total of 747 hematoxylin and eosin (H&E) stained FFPE lung 
adenocarcinoma (LUAD) whole-slide images and their corresponding 
genomic profile were collected from 232 patients who were treated at 
the Dartmouth Hitchcock Medical Center between 2018 and 2019. We 
included all the H&E stained FFPE tumor slides available for each pa
tient in our dataset for this study. Of note, most patients had less than 
five slides in our dataset, while a few patients had more than ten slides. 
These H&E-stained slides were digitized by an Aperio AT2 scanner 
(Leica Biosystems, Wetzlar, Germany) at 40x magnification (0.25 µm/ 
pixel). The genetic mutation data was generated by next generation 
sequencing (NGS) as part of routine patient treatment at DHMC. The 
NGS panel used for these samples covered hotspot mutation regions in 
50 cancer related genes. These 50-gene hotspot regions cover the most 
relevant genetic information for precision-medicine lung-cancer man
agement. These regions and their relevance to lung cancer were estab
lished through a rigorous independent research and selection process, 
which included a systematic review (by multiple domain expert 
genomic, pathology, and oncology researchers at DHMC and Norris 
Cotton Cancer Center) of the most prominent NSCLC knowledge bases, 
such as the National Comprehensive Cancer Network (NCCN) Clinical 
Practice Guidelines in Oncology, My Cancer Genome: Genetically 
Informed Cancer Medicine, COSMIC: Catalogue of Somatic Mutations in 
Cancer, ClinVar National Center for Biotechnology Information, dbSNP 
National Center for Biotechnology Information, and literature searches 
using PubMed [16–23]. Curation of these hotspot regions and determi
nation of their clinical importance are previously published and estab
lished [16–22]. 

We binarized the NGS data for these 50-gene hotspots to indicate 
whether a mutation for each gene was present. We considered five 
genes, BRAF, EGFR, KRAS, STK11, and TP53, in this study because those 
were the genes that were mutated in at least five percent of all patients in 
our dataset. Three oncogenes, BRAF, EGFR and KRAS, are typically 
mutually exclusive. However, we identified two cases in our dataset 
with mutations in both BRAF and KRAS. This overlap has also been re
ported in previous studies on these mutations in NSCLC patients [24]. Of 

note, two tumor suppressor genes, TP53 and STK11, can overlap with 
the oncogenes, particularly TP53. In our dataset, we found 24 
co-occurrences of mutations in KRAS and TP53, 7 co-occurrences of 
mutations in BRAF and TP53, 6 co-occurrences of mutations in KRAS 
and STK11, 4 co-occurrences of mutations in KRAS, STK11, and TP53, 2 
co-occurrences of mutations in BRAF, KRAS, and TP53, and 1 
co-occurrence of mutations in EGFR and STK11. We randomly parti
tioned the slides stratified by patient into train, validation, and test set, 
containing 471, 97, and 179 cases, respectively. Due to the heteroge
neous distribution of genetic mutations in our dataset, we ensured each 
partition included at least one patient with mutation for these five genes. 
Table 1 summarizes the distribution of patients and their genetic mu
tation status in our dataset. 

Additionally, we collected 140 H&E stained FFPE slides and corre
sponding genetic mutation data of 111 lung cancer patients from the 
Clinical Proteomic Tumor Analysis Consortium 3 (CPTAC-3), as external 
validation [25]. CPTAC-3 dataset has up to two tumor slides for each 
patient, which are all included in our analysis. This study and the use of 
human participant data in this project were approved by the 
Dartmouth-Hitchcock Health Institutional Review Board (IRB) with a 
waiver of informed consent. The conducted research reported in this 
study is in accordance with this approved Dartmouth-Hitchcock Health 
IRB protocol and the World Medical Association Declaration of Helsinki 
on Ethical Principles for Medical Research involving Human Subjects. 

Data preprocessing 

Since digitized slides consist of multi-million pixels, which current 
common computational hardware cannot easily process at once, we 
preprocessed each whole-slide image in our dataset and extracted 
smaller fixed-size patches for our analysis. For this preprocessing, we 
first down-sampled each whole-slide image by a factor of eight (i.e., 
converted the images to 5x magnification or 2.0 µm/pixel), removed 
background and artifacts, and generated patches of 224 × 224 pixels 
using a sliding window approach [26] with an overlapping factor of 1/3 
from these down-sampled whole-slide images. 

We applied patch filtering with a CNN model pre-trained on a LUAD 
dataset for histologic subtype classification task [26] to remove an 
overwhelming number of patches with normal tissue and focused on 
LUAD-related regions of the whole slides. For this filtering, we applied 
the aforementioned pre-trained model [26] to predict the histological 
subtype of the patch (i.e., acinar, lepidic, micropapillary, papillary, 
solid, or normal), and removed patches predicted as normal. The patch 
filtering method removes normal patches that have less to no informa
tion about the tumor and effectively accelerates the model training by 
reducing the number of training samples. In addition, since we used a 
weakly supervised framework for CNN model training, removing normal 
patches was an essential preprocessing step for noise reduction. 

Deep neural network based models 

We took a bottom-up approach to analyze whole-slide images, where 
a set of fixed-size (i.e., 224 × 224 pixels) tissue patches from a digitized 

Table 1 
The distribution of patients and their mutation status in our datasets.   

DHMC  CPTAC-3    
Training Set Validation Set Test Set 1 Total Test Set 2 

No. of Patients 148 24 60 232 111 
Mutations      
KRAS 63 14 21 98 34 
TP53 60 5 25 90 59 
STK11 12 3 4 19 20 
BRAF 9 1 3 13 6 
EGFR 17 1 9 27 37 
No. of Slides 471 97 179 747 140  
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slide are fed to a CNN-based image feature extractor. Extracted features 
are aggregated and analyzed to predict the genetic mutation for a pa
tient. To achieve an accurate whole-slide-based prediction of genetic 
mutation, we considered two types of image features: 1) LUAD subtype- 
specific features and 2) generic image features. The first features are 
extracted using a CNN model (i.e., ResNet18) that was trained for 
classifying LUAD subtypes using the DHMC LUAD subtypes dataset 
[26]). The second features are based on an ImageNet-pretrained CNN 
model, which is implemented in one of the state-of-the-art CNN archi
tectures (i.e., EfficientNetB0 architecture) [27]. In the deep learning 
paradigm, it is commonly preferred to use a feature extractor that is 
pre-trained on a relevant task in the same modality; however, there is 
also an increasing number of reports in the biomedical domain that 
shows general feature extractors could be beneficial with minimal 
fine-tuning [9]. This is because the ImageNet dataset is usually far larger 
than medical image datasets in terms of sample size and target classes, 
which could unlock its generic power to extract subtle features even in a 
different modality. We explored different model architectures in this 
work to examine the efficacy of reusing an off-the-shelf pathology-spe
cific feature extractor and also off-the-shelf generic feature extractor. In 
this study, CNNLUAD-Feat denotes a CNN model pretrained on the LUAD 
subtype classification task, and CNNImage-Feat denotes a CNN pretrained 
on the ImageNet classification task. Both models were fine-tuned for our 
patch-level genetic mutation prediction task at two levels: 1) only the 
last fully-connected layer or 2) all the layers except for batch normali
zation layers. For patient-level genetic mutation prediction, all the 
patch-level predictions are pooled and aggregated to compute the 
average confidence score for each somatic mutation. We applied a 
grid-search optimization on the average confidence score in the vali
dation set to establish our confidence score threshold for patient-level 
inference. 

In addition to these two CNN models, we developed a LUAD subtype 
distribution-based method to investigate the translational power of 
LUAD subtype predictions to genetic mutation prediction. Instead of 
using the LUAD imaging features, we reused the LUAD subtype classi
fication results of tissue patches and the proportion of each LUAD sub
type area on whole slides. To this end, we trained a logistic regression 
model that takes a slide-level LUAD subtype distribution for a patient as 
input and predicts somatic mutation status for each gene. In this work, 
LogitLUAD-hist denotes the logistic regression model that was developed 
on top of the pretrained CNN for LUAD subtype predictions. Fig. 1 shows 
the overview of our approaches in this study. 

Evaluation metrics and statistical analysis 

We evaluated our method on two different test sets: 1) an internal 
test set of 60 patients from DHMC and 2) an external test of 111 patients 
from the CPTAC-3 dataset to show the generalizability of our approach. 
Each genetic mutation was independently predicted (i.e., five binary 
classifications for each slide), and we used the area under the receiver 
operating characteristics (AUC) for each genetic mutation prediction to 
evaluate the performance of our models. In addition, we computed 95% 
confidence intervals (95% CIs) using the bootstrapping method with 
1000 iterations for each metric. 

Results 

Table 2 summarizes the evaluation results of our CNN models on the 
internal test set from DHMC. Each model name is followed by either 
"-FT/FC" or "-FT/AL", where "-FT/FC" indicates the model is fine-tuned 
at the last fully-connected layer, and "-FT/AL" indicates the model is 
fine-tuned at all of the layers (except batch-normalization layers). The 
CNNLUAD-Feat-FT/FC model on the first row of this table achieved an AUC 
of 0.804 (95% CI: 0.614–0.972) for BRAF mutation and an AUC of 0.711 
(95% CI: 0.616–0.803) for TP53 mutation. The CNNImage-Feat-FT/AL on the 
fourth row achieved an AUC of 0.799 (95% CI: 0.686–0.904) for EGFR 
mutation and an AUC of 0.713 (95% CI: 0.611–0.811) for TP53 
mutation. 

Table 3 summarizes the evaluation of our CNN models on the 
external CPTAC-3 test set. CNNImage-Feat-FT/AL achieved an AUC of 0.686 
(95% CI: 0.620–0.752) for EGFR mutation and an AUC of 0.677 (95% CI: 
0.602–0.752) for TP53, showing a consistent performance across 
different datasets. On the contrary, the CNNLUAD-Feat-FT/FC, which had 
high predicting performance for BRAF and TP53 mutations on the in
ternal DHMC test set, did not achieve a consistent performance on the 
external CPTAC-3 test set. 

Fig. 2 illustrates the receiver operating characteristics (ROC) curves 
of CNNImage-Feat-FT/AL model for each oncogene mutation across the 
DHMC and CPTAC-3 test sets. 

Table 4 shows the performance of our logistic regression model built 
on top of the pretrained CNN’s LUAD subtype distribution. LogitLUAD-hist- 

mean, which employs the mean aggregation for slide-based LUAD sub
type distributions of a patient, achieved an AUC of 0.681 (95% CI: 
0.567–0.770) for EGFR mutation and an AUC of 0.692 (95% CI: 
0.580–0.778) for TP53 mutation on the internal DHMC test set. Logi
tLUAD-hist-min, which similarly used the minimum aggregation, achieved 
an AUC of 0.725 (95% CI: 0.623–0.803) for BRAF mutation and an AUC 

Fig. 1. Overview of our pipelines. Tissue patches are extracted from whole-slide images using a sliding-window method with one-third overlap after removing 
background. [1] Extracted features through a CNN are used to predict patch-level mutation level. The predictions are pooled and aggregated to compute a confidence 
score for each somatic mutation. [2] LUAD subtype classification results of patches are pooled to compute the proportion of each LUAD subtype area on whole slides. 
A logistic regression is applied to the LUAD subtype distribution to predict somatic mutation status for each gene. 
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of 0.69 (95% CI: 0.578–0.777) for TP53 mutation on the internal DHMC 
test set. The models, however, did not perform better than an AUC of 0.6 
on the external CPTAC-3 test set. 

Discussion 

In this study, we developed several deep neural network-based 
models that predict oncogene mutations based on H&E stained FFPE 
whole-slide images of LUAD patients to investigate the utilization of 
existing pretrained models that were developed for a different task. Our 
experiments showed promising performance in predicting EGFR and 
TP53 mutations, achieving an AUC of 0.799 and 0.713 on the internal 
DHMC test set, using an ImageNet pretrained CNN model with fine- 

tuning all the layers. A model that fine-tuned only the last fully- 
connected layer and directly reused the generic image-based features 
did not achieve the best performance, indicating that ImageNet-based 
generic image features might not be directly applicable to our task. A 
model with ImageNet parameters, however, could be a good starting 
point to fine-tune for further domain-specific tasks, confirming a com
mon ground in deep learning research [28,29]. We also observed that a 
model using LUAD features had limited generalizability in predicting 
BRAF and TP53 mutations when tested on the external test set. A similar 
trend was observed in our experiment with logistic regression models 
using LUAD subtype distribution where prediction performance for 
BRAF, EGFR, and TP53 mutations was declined in the external test set. 
While the LUAD subtype dataset for pretraining a CNN model and the 

Table 2 
AUCs and associated 95% CI achieved by our models on the internal DHMC test set for each somatic mutation. A model name followed by "-FT/FC" indicates the model 
is fine-tuned at the last fully-connected layer. A model name followed by "-FT/AL" indicates the model is fine-tuned at all of the layers (except batch-normalization 
layers). The AUC of 0.65 or higher is highlighted in bold.  

Models BRAF EGFR KRAS STK11 TP53 

CNNLUAD-Feat-FT/FC 0.804 0.627 0.604 0.612 0.711  
(0.614–0.972) (0.483–0.764) (0.490–0.719) (0.407–0.800) (0.616–0.803) 

CNNLUAD-Feat-FT/AL 0.483 0.570 0.530 0.606 0.635  
(0.197–0.767) (0.446–0.687) (0.419–0.639) (0.392–0.802) (0.528–0.741) 

CNNImage-Feat-FT/FC 0.518 0.479 0.474 0.521 0.565  
(0.244–0.780) (0.348–0.605) (0.364–0.582) (0.262–0.769) (0.456–0.672) 

CNNImage-Feat-FT/AL 0.543 0.799 0.596 0.609 0.713  
(0.297–0.774) (0.686–0.904) (0.486–0.706) (0.374–0.832) (0.611–0.811)  

Table 3 
AUC with 95% CI achieved by our models on the external CPTAC-3 test set for each somatic mutation. A model name followed by "-FT/FC" indicates the model is fine- 
tuned at the last fully-connected layer. A model name followed by "-FT/AL" indicates the model is fine-tuned at all of the layers (except batch-normalization layers). 
The AUC of 0.65 or higher is highlighted in bold.  

Models BRAF EGFR KRAS STK11 TP53 

CNNLUAD-Feat-FT/FC 0.456 0.605 0.598 0.527 0.475  
(0.270–0.638) (0.530–0.680) (0.519–0.677) (0.428–0.625) (0.392–0.558) 

CNNLUAD-Feat-FT/AL 0.423 0.500 0.601 0.438 0.570  
(0.241–0.601) (0.425–0.576) (0.518–0.682) (0.334–0.540) (0.486–0.654) 

CNNImage-Feat-FT/FC 0.550 0.513 0.457 0.478 0.400  
(0.411–0.690) (0.462–0.563) (0.378–0.535) (0.373–0.581) (0.324–0.476) 

CNNImage-Feat-FT/AL `0.451 0.686 0.629 0.484 0.677  
(0.270–0.628) (0.620–0.752) (0.552–0.706) (0.406–0.562) (0.602–0.752)  

Fig. 2. The receiver operating characteristic curves (ROC) of CNNImage-Feat-FT/AL for each somatic mutation predicted for (a) internal DHMC test set and (b) external 
CPTAC-3 test set. Each column from left to right corresponds to BRAF, EGFR, KRAS, STK11, and TP53, respectively. The gray bands represented 95% confidence 
intervals of each ROC. 
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LUAD dataset in this study were collected independently, we hypothe
size that there might exist some internal consistency, such as tissue 
preparation or scanner type, that could lead to models’ overfitting. Also, 
it is worth noting that we did not observe any statistically significant 
difference in performance for patients with and without co-occurring 
mutations based on our results. 

The prediction performance of our models is not directly comparable 
with those of previous work due to the use of different datasets; how
ever, our promising performance in predicting EGFR mutations is 
aligned with the previous work [11,14]. Of note, EGFR mutations, which 
one of our proposed models identifies at an AUC of 0.799 based on 
whole-slide images in the DHMC test set, is an important factor in the 
targeted treatment of NSCLC patients. Currently, Osimertinib, an EGFR 
inhibitor, is approved by the US Food and Drug Administration (FDA) 
for the treatment of NSCLC with stage IB and above and have led to 
improvements in clinical outcome and quality of life of NSCLC patients 
with EGFR-mutation [30,31]. 

Any delay in genetic testing of NSCLC patients with potential 
clinically-actionable mutations, such as EGFR, can have major impacts 
on patients clinical outcomes. We expect further development and 
validation of the presented methods in this work could lead to new 
approaches to identify NSCLC patients with clinically-actionable muta
tions based on tumor pathology slides, and to provide an accurate, fast, 
and inexpensive pre-selection method that could be utilized before 
performing time-intensive and expensive genetic tests to screen patients 
for clinically-actionable mutations. As a result, these prediction methods 
could prioritize genetic screening of NSCLC patients who are the most 
likely to have clinically-actionable mutations, thus reducing screening 
turnaround time and increasing the accuracy of treatment administra
tion. In addition, such pre-selection methods could improve the finding 
and tracking of NSCLC patients with clinically-actionable mutations for 
translational research, as well as facilitate the recruitment of NSCLC 
patients for clinical trials. 

Our study further supports oncogene mutation prediction using deep 
learning with both internal and external test sets, suggesting that gene 
mutations could present subtle morphological characteristics in whole 
slides, where deep learning-based feature learners can extract such 
latent information. Of note, utilizing histopathology features of LUAD 
subtypes had limited utility in predicting oncogene mutations. Still, our 
experiments showed promising results for predicting BRAF, EGFR, and 
TP53 mutations based whole-slide image features. As a future direction, 
we plan to investigate KRAS and STK11 mutations with alternative ap
proaches. In addition, we plan on collecting larger multi-institutional 
LUAD datasets to investigate the predictability of specific mutations 
for each gene. Finally, we plan to extend our histopathology-based 
analysis to further predict response levels and time to the develop
ment of resistance for targeted therapies. 
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