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ABSTRACT
Objectives  We used machine learning algorithms to track 
how the ranks of importance and the survival outcome 
of four socioeconomic determinants (place of residence, 
mother’s level of education, wealth index and sex of the 
child) of under-5 mortality rate (U5MR) in sub-Saharan 
Africa have evolved.
Settings  This work consists of multiple cross-sectional 
studies. We analysed data from the Demographic Health 
Surveys (DHS) collected from four countries; Uganda, 
Zimbabwe, Chad and Ghana, each randomly selected from 
the four subregions of sub-Saharan Africa.
Participants  Each country has multiple DHS datasets and 
a total of 11 datasets were selected for analysis. A total of 
n=85 688 children were drawn from the eleven datasets.
Primary and secondary outcomes  The primary outcome 
variable is U5MR; the secondary outcomes were to obtain 
the ranks of importance of the four socioeconomic factors 
over time and to compare the two machine learning 
models, the random survival forest (RSF) and the deep 
survival neural network (DeepSurv) in predicting U5MR.
Results  Mother’s education level ranked first in five 
datasets. Wealth index ranked first in three, place of 
residence ranked first in two and sex of the child ranked 
last in most of the datasets. The four factors showed a 
favourable survival outcome over time, confirming that 
past interventions targeting these factors are yielding 
positive results. The DeepSurv model has a higher 
predictive performance with mean concordance indexes 
(between 67% and 80%), above 50% compared with the 
RSF model.
Conclusions  The study reveals that children under the 
age of 5 in sub-Saharan Africa have favourable survival 
outcomes associated with the four socioeconomic 
factors over time. It also shows that deep survival neural 
network models are efficient in predicting U5MR and 
should, therefore, be used in the big data era to draft 
evidence-based policies to achieve the third sustainable 
development goal.

INTRODUCTION
Reducing under-5 mortality rate (U5MR) was 
the fourth of the Millennium Development 
Goals (MDGs) drafted in the year 2000, and 

the world sprang into action to achieve it, and 
it now appears within the third Sustainable 
Development Goal (SDG3).

The probability of a child dying before the 
age of 5 is a global indicator of societal and 
national development; it serves as a key marker 
of health equity and access.1 The fourth 
MDG (MDG4), which centred at reducing 
under-5 mortality by two-thirds in the period 
between 1990 and 2015, now appears in the 
third SDG (SDG3). It is to ‘Ensure healthy 
lives and promote well-being for all at all 
ages’. Although U5MR has declined in most 
sub-Saharan countries, there are substantial 
inequalities that still exist between subgroups 
of the population within countries.2 3 These 
subgroups are based on factors such as: 
wealth index, maternal factors such as educa-
tion level, place of residence and the sex of 
the child, among others. The Mosley and 
Chen framework categorises these socioeco-
nomic factors as the distal determinants of 
child mortality.4

Classical statistical parametric regression 
models such as the logistic regression model, 

Strengths and limitations of this study

	► The study used machine learning methods which 
when compared with classical statistical models are 
very flexible.

	► Machine learning methods have fewer assump-
tions and are adapted to fit very large datasets with 
complex relations between predictors and a given 
outcome.

	► Machine learning models may not give an effect size 
of the factors.

	► With these methods, it is very difficult to tell by how 
much the factor affects the outcome.

	► Causes of death of the children were unknown at the 
time of the survey.
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semiparametric models like the Cox proportional hazard 
model (CPH), and generalised additive models, have 
been widely used to study determinants of U5MR.1 5–11 
Sahu et al,7 study on levels, trends and predictors of infant 
and child mortality among tribes in rural India, used the 
CPH model to understand the socioeconomic and demo-
graphic factors associated with mortality from 1992 to 
2006 in India. The study concluded that household wealth 
is significantly associated with infant and child mortality. 
They also concluded that mortality differentials by socio-
demographic and economic factors were observed over 
the period. Mother’s education level and sex of the child 
were among the factors responsible for the trends and 
differentials of U5MR in rural India. Similar studies in 
Nigeria concluded that place of residence (rural or 
urban) was an important risk factor in determining U5MR 
along with mother’s education and sex of the child.12 13 
Although the CPH and the logistic regression models are 
very robust, they are often criticised for their restrictive 
assumptions and potentially lead to bias if one does not 
take care when preparing data for analysis.14 Classical 
machine learning approaches which include nearest 
neighbours, neural networks, kernel methods, penalised 
least squares and data partitioning methods, such as deci-
sion trees (CART) and random forests, are among the 
alternative approaches to parametric and semiparametric 
classical models.15–17 Recently, deep learning methods, 
which are advances in neural networks, have been recom-
mended for analysing survival data.18–24 These machine 
learning models are known to be very flexible compared 
with the statistical models like the CPH model.21–25 A 
recent study by Adegbosin et al,25 recommended using 
deep learning models to understand the determinants of 
U5MR in low-income and middle-income countries.

Previous studies have shown that the four socioeco-
nomic factors; place of residence, mother’s education, 
household wealth index and sex of the child, are often 
stated among the top predictors of under-5 mortality 
in the sub-Saharan region.12–25 With the launch of the 
MDG in the year 2000, we saw the convergence of the 
development agendas of United Nations Development 
Programme; United Nations Environment Programme; 
WHO; UNICEF; UNESCO and other development agen-
cies, to raise funding and create programmes to combat 
existing inequalities to achieve these goals.26 Despite the 
substantial improvement made with the MDG4, inequali-
ties persist today, and progress has been uneven. Now that 
the MDG4 appears as a facet of the SDG3 with an even 
wider age range, we need an evidence-based approach to 
achieve it by using existing datasets to inform policy.

Studying how the rank in importance of these factors to 
determine U5MR has evolved over time can help redirect 
resources to the right sectors, and hence be on-course to 
achieve SDG3. In this study, therefore, we train a random 
survival forest (RSF) and deep survival neural network 
model to understand how the rank of importance, the 
survival outcome and predictive nature of these socio-
economic factors in determining U5MR in sub-Saharan 

Africa have evolved over time. The RSF model is used 
to rank importance of these factors. The deep survival 
neural network model is used to determine whether these 
factors are still predictive, and to extract survival curves to 
assess whether there is a favourable survival outcome for 
children under the age of 5 associated with these factors 
in this region over time.

The contributions of this work are as follows: (1) to 
identify the rankings of the four socioeconomic factors 
in U5MR prediction in sub-Saharan Africa; (2) to present 
how the ranking of these factors has changed over time 
and (3) to present an application of deep survival models 
in modelling U5MR in the sub-Saharan Africa region to 
identify changes in the survival outcome associated with 
the four economic factors. These contributions are aimed 
at assisting policymakers in designing new interventions 
and providing evidence of how past interventions have 
worked through presenting changes in predictive impor-
tance rankings of the four socioeconomic factors over 
time.

METHODS
This study uses two machine learning models; the RSF 
model, and the deep survival neural network to answer 
the following questions: What are the ranks of importance 
of the four social socioeconomic factors over time for 
countries in the sub-Saharan region? Are the four socio-
economic factors linked to a favourable survival outcome 
in the region over time, especially after the expiry of the 
MDGs? Which of the two machine learning methods, the 
RSF and the DeepSurv model, is effective in predicting 
U5MR?

Data
Eleven datasets of completed Standard Demographic and 
Health Surveys (DHS) from four countries in sub-Saharan 
Africa were used for this study. The four countries were 
randomly selected from the four subregions (Southern, 
Central, Eastern and Western Africa) of sub-Saharan 
Africa. DHS is funded by USAID, UNFPA, UNICEF, Irish 
Aid and the government of the UK and since 1988 has 
provided datasets rich in information on fertility, family 
planning, maternal and child health, gender, HIV/
AIDS, malaria and nutrition in sub-Saharan Africa. The 
survey uses a two-stage cluster sampling.25 More infor-
mation about the sampling design, data collection and 
processing details are described on the DHS programme 
website. The datasets are available on request from the 
DHS programme. The outcome variable is under-5 
survival time, and this information was obtained from the 
birth history of interviewed women aged from 15 to 49 
years. All datasets used in this analysis are comprised of 
both living and deceased children, born in the period of 
5 years preceding the date of the survey. This is to limit the 
gap between the event and collection of socioeconomic 
information. The socioeconomic factors in this study 
were restricted to place of residence, mother’s level of 
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education, wealth index of the household and sex of the 
child. The four countries and the DHS datasets selected 
from each subregion are shown in table 1.

Data preprocessing
DHS datasets contain many features or variables. In this 
study only four features were considered for analysis: 
place of residence, mothers’ level of education, wealth 
index and sex of the child. Other features were excluded. 
The outcome variable, survival time, was calculated differ-
ently, depending on the survival status of the child. Chil-
dren under the age of 5 that were living at the time of 
the survey had their survival time calculated as the differ-
ence between the year of the interview and year of birth. 

For children who were deceased at the time of the survey, 
survival time was calculated as the difference between 
the year of the interview and the year of death. Survival 
time was measured in months for this analysis. For each 
dataset, a data frame containing the four features, survival 
time and the status indicator (living or deceased), was 
created. While information was complete across all data-
sets for the features considered in this analysis, some of 
the datasets that were collected in the 1990s and the early 
2000s, wealth index was not a recorded feature. These 
datasets were excluded in our final analysis to allow mean-
ingful comparisons. Tables 2 and 3 give the counts of the 
number of children under the age of 5 for each of the 
feature category in all the datasets considered for analysis.

Patient and public involvement
There were no patients involved in this study.

Models
The CPH model is the most prominent model for analysing 
survival data.1 5 However, its assumption that the outcome 
(log hazard) is a linear combination of the covariates, 
is too restrictive to predict survival outcomes which are 
complex and involve higher interactions between predic-
tive variables. This creates the need to use models that 
are more flexible in predicting survival outcomes. Clas-
sical machine learning techniques, such as survival trees 
and RSF, enable the detection of complex relationships 
in survival datasets, and they have been employed in 
recent years.15 These methods have achieved high accu-
racy in predicting the survival outcomes when applied 
to survival datasets to identify factors affecting U5MR.27 

Table 1  The standard DHS datasets used for this study, by 
subregions of sub-Saharan Africa identified by the year the 
survey was conducted

Southern region Eastern region

Zimbabwe Uganda

2006 2006

2011 2011

2015 2016

Western region Central region

Ghana Chad

2003

2008 2004

2014 2014

DHS, Demographic Health Surveys.

Table 2  Number of children under by sex of the child, place of residence and mother’s education level

Sex of Place of Mother’s education

The child Residence Level

Male Female Urban Rural None
Incomplete 
Primary

Complete 
Secondary

Incomplete 
Secondary

Complete 
Secondary Higher

Zimbabwe

 � 2006 2636 2610 1340 3906 206 1696 330 2870 22 122

 � 2011 2812 2751 1611 3952 100 710 1131 3417 54 151

 � 2015 3024 3108 2316 3816 63 736 1070 3823 78 362

Uganda

 � 2006 4145 4224 917 7452 2034 4346 835 932 27 195

 � 2011 3944 3934 1682 6196 1427 3789 898 1361 84 319

 � 2016 7844 7678 2811 12 711 2080 7568 2137 2767 162 808

Chad

 � 2004 2839 2796 2504 3131 4174 943 119 341 29 29

 � 2014 9472 9151 3973 14 650 13 424 2898 730 1329 165 77

Ghana

 � 2003 1950 1894 1043 2801 1824 595 228 1069 88 40

 � 2008 1526 1466 1000 1992 1132 561 161 924 149 65

 � 2014 3066 2818 2344 3540 2042 884 325 2055 354 224
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Even though they have exhibited a good performance 
in predicting survival outcomes, there are few studies 
aimed at understanding factors associated with U5MR 
that have embraced these methods.15 27 Recently, with 
the advancement of machine learning methods, deep 
learning methods have also been added to the toolbox of 
methods to analyse survival data.21 Because most datasets 
collected have complex structures, using models that have 
very strict assumptions, may lead to bias, thus misleading 
policy implementations. In this study, we applied two 
machine learning models on datasets from sub-Saharan 
Africa. They are the RSF, and the deep survival neural 
network model (DeepSurv).17 21

Random survival forests
RSFs are an extension of regression trees formally 
presented by Breiman et al,28 to survival data. These 
methods have been found to be the most desirable in 
addressing the challenges of the CPH model. First, we 
describe the survival tree, an important building block of 
the forest. This is followed by the algorithm of the RSF 
model by Breiman et al.28

Survival trees
The regression tree algorithm for right censored data, is 
an extension of the Classification and Regression Trees 
(CART) algorithm by Breiman et al.28 Box 1 is the general 
algorithm for survival trees.29–31

An RSF model is a collection of survival trees because 
a single tree is not always a good probability estimator 
due to its shortcomings of giving unstable estima-
tors.32 33 Researchers have, over the years, recommended 
the growing of an entire forest as the solution to the 

shortcomings of a single tree. Box 2 for building an RSF 
model as presented by Ishwaran et al,17 is given below as 
follows:

Note that the node size is restricted such that the 
number of unique events at a node does not drop below 
the minimum number.

This study used a special type of survival forest model known 
as the conditional inference survival forest model (CIF).34 35 
The CIF has the advantage, over the original RSF algorithm, 
of correcting the bias that results from favouring covariates 
that have many split points, rather than choosing covariates 
that are highly associated with the outcome.15 17 35 36

The random survival model was trained in the R-soft-
ware with each forest consisting of 200 trees (Code).37 38

Neural network survival models
Non-linear models, like artificial neural networks, are 
becoming increasingly popular as additional models in the 

Table 3  Number of children under 5 by wealth index

Wealth index

TotalPoorest Poorer Middle Richer Richest

Zimbabwe

 � 2006 1351 1166 958 1019 752 5246

 � 2011 1366 1145 1001 1178 873 5563

 � 2015 1244 1075 958 1603 1252 6132

Uganda

 � 2006 2139 1820 1555 1491 1364 8369

 � 2011 2030 1550 1405 1230 1663 7878

 � 2016 4152 3382 2971 2607 2410 15 522

Chad

 � 2004 916 867 762 1011 2079 5635

 � 2014 3559 3786 3902 4097 3279 18 623

Ghana

 � 2003 1285 859 682 539 479 3844

 � 2008 973 656 504 502 357 2992

 � 2014 1886 1304 1083 883 728 5884

The total number of children from all the DHS datasets used in this study is 85 688.
DHS, Demographic Health Surveys.

Box 1  Algorithm 1: survival tree algorithm

1.	 At each node, each covariate and all its allowable split points are 
candidates for splitting the node into two daughter nodes.

2.	 Compute the impurity measure based on a predetermined split-rule 
at the node on a pool of all allowable split points.

3.	 Split the node into two daughter nodes (α and β) using the value of 
an impurity measure. The best split maximises the difference be-
tween the two daughter nodes.

4.	 Recursively repeat steps 2 and 3 by treating each daughter node 
as a root node.

5.	 Stop if a node is terminal, that is, has no less than d
0 >0 unique 

observed events.
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toolbox of models aimed at predicting survival outcomes. 
They look very promising, especially when applied to 
large datasets that could have many covariates with non-
linear effects on the survival outcome. It is important 
to note that neural networks are only prominent for 
predicting outcomes, but they cannot give explanations 
or quantify covariate effects on the outcomes. Initially, 
a single hidden layer feed-forward neural network was 
trained to survival data and its performance in predicting 
survival outcomes provided mixed results.21–24 Recently, 
with the introduction of deep learning methods, which 
are advances in neural networks, deep survival neural 
networks have been found to gain superiority over existing 
methods in predicting survival outcomes.18–20 Instead of 
only one hidden layer in the neural network, more than 
one hidden layer is used. The Neural net considered 
in this study is based on the likelihood function of the 
CPH model.39 Therefore, before describing the neural 
network, we give a brief introduction to the CPH model.

CPH model
The hazard function depends on time t and a vector of 
covariates X through:

	﻿‍ λ
(
t, X

)
= λ0

(
t
)

exp
(
h
(
X
))

‍� (1)

Where λ0 (t) is the baseline hazard function and 
exp(h(X)) the risk score. The CPH model estimates h(X), 
by a linear function ‍hβ

(
X
)
= β

′
· X ‍. The estimates ‍

(
β‍ of 

the parameters (β) are obtained by maximising the partial 
likelihood. Suppose that there are k distinct event times, 
and ‍t1 < t2 < . . . < tk‍ represent the ordered distinct event 
times, the partial likelihood is given as:

	﻿‍
L
(
β
)

=
k∏

i=1
i

exp
(
ĥβ

(
Xi

))
∑

j ∈ R
(

ti
) exp

(
ĥβ

(
Xj
))

‍�
(2)

This estimation of h(X) by ‍ĥβ
(
X
)
‍ is very restrictive and 

can lead to biased results for studies where it is violated. 
This criticism has led to the need to use more flexible 
models to analyse survival datasets. Neural networks are 
among these new methods for survival analysis. A neural 
network consists of an input layer, hidden layers and an 
output layer. Each input is connected directly to all but 

one node in the hidden layer. A non-linear transformation 
is performed on a weighted sum of the inputs. The recti-
fied linear activation function (ReLU) is recommended 
in modern neural networks as the transformation or acti-
vation function to compute hidden layer values. This is 
defined as:

	﻿‍ g
(
z
)

= max
{

0, z
}
‍� (3)

In this study, however, the Scaled Exponential Linear 
Unit (SELU) is used as an activation function because of 
its advantages over the ReLU as it can get trapped in a 
dead state. That is, the weights’ change is so high, and 
the resulting z in the next iteration so small such that the 
activation function is stuck at the left side of zero. The 
affected cell cannot contribute to the learning of the 
network anymore, and its gradient stays at zero. If this 
happens to numerous cells in your network, the power 
of the trained network stays below its theoretical capabil-
ities. It is given as:

	﻿‍

g
(
z
)

= λ



γ
(
exp

(
z
)
− 1

)
, z < 0,

z, z ≥ 0.‍�

Where γ>0 and λ>0 are to be specified and chosen 
such that the mean and variance of the inputs are 
preserved between two consecutive layers. It looks like 
a ReLU for values larger than zero, there is an extra 
parameter involved, λ. This parameter is the reason for 
the S(caled) in SELU. Consider replacing the linear 
function ‍hβ

(
X
)
= β

′
· X ‍ in equation 2 by the output of 

‍hθ
(
X
)
= exp

(
g
(
X, θ

))
‍ of the neural network. The propor-

tional hazards model becomes

	﻿‍ hθ
(
Xi
)

= exp
(
g
(
Xi, θ

))
‍� (4)

This implies that the covariates of the uppermost 
hidden layer of the deep network are used as the input to 
the CPH model. The output of the deep neural network 
is a single node that contains estimates of the risk func-

tion in equation 4 
‍

(
ĥθ

(
t, Xi

))
‍
 and the function to be 

maximised is:

	﻿‍

L
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θ
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=
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(
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(5)

The average negative log partial likelihood of equation 
5 is given as:

	﻿‍

l
(
θ
)

= − 1
nδ1

∑
i : δi=1


ĥθ

(
Xi
)
− log

∑
j ∈ R

(
ti
) exp
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ĥθ

(
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

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� (6)

where nδ1 is the number of events in the dataset. To 
penalise for model complexity, a term is added to the loss 
function to put weight on a few of the covariates. Penalty 
of ridge regression or L2-norm is used in this study. The 
loss function to be minimised is therefore given as:

Box 2  Algorithm 2: survival forest algorithm

1.	 Draw B, bootstrap samples from the original data set. Each boot-
strap sample, b=1, 2…, B excludes about 30% of the data and this 
is called out-of-bag (OOB).

2.	 Grow a survival tree for each bootstrap sample, at each node ran-
domly select a subset of covariates. Split the node by selecting the 
covariate that maximises the difference between daughter nodes 
using a predetermined split rule.

3.	 Grow the tree to full size under the constraint that a terminal node 
should have no less than d

0 >0 unique death.

4.	 Calculate the cumulative hazard (‍Λ̂
(
t
)
‍) or survival curve (‍Ŝ

(
t
)
‍) for 

each tree. Average to obtain the ensemble estimate.
5.	 Using OOB data, calculate prediction error for the ensemble cumu-

lative hazard function (CHF) or survival probability.
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Therefore, the network is trained by setting the objec-
tive function to be the average negative log partial like-
lihood of the CPH model with regularisation where α is 
the regularisation parameter for the L2 norm. Gradient 
descent optimisation is used to find the weights of the 
network which minimise the loss function. The Deep-
Surv neural network architecture is described in detail by 
Katzman et al.21 Figure 1 shows its architecture. It is a deep 
feed-forward neural network implemented as:

DeepSurv was popularised by Katzman et al,21 who 
implemented it in Theano Python library with the Python 
package Lasagne. In this study, however, we used the 
PySurvival python package implementation of the same 
model by Fotso.40 For our study, observed socioeconomic 
factors are given as inputs to the network. The hidden 
layers of the network consist of a fully connected layer 
of nodes, followed by a dropout layer. The output layer 
has one node with a linear activation which estimates 
the log-risk function in the CPH model. The loss func-
tion for the network is shown in equation 7. A drop-out 
probability is introduced such that at each training stage, 
individual nodes are either dropped out of the network 
with probability 1 − p or kept with probability p, so that 
a reduced network is left to prevent overfitting. In this 
study, p=0.2 and a learning rate of 1e-8 are used (Code).

Model evaluation
The Concordance index (C-index) is a common metric 
used to evaluate the performance of survival models. It 
is defined as the probability of agreement for any two 
randomly chosen observations, where agreement means 
that the observation with the shorter survival time should 

have the larger risk score, and the opposite is true.41 42 
Note that censored observation cannot be compared with 
any observed event time because its exact event time is 
unknown; however, any other pair of observations are 
called comparable.43 If predicted survival outcomes are 
denoted by ﻿‍Y ‍, the C-index is given by:

	﻿‍ C =
∑

i:δ1=1
∑

yi<yj I
(
Ŷi<Ŷj

)
Number of comparable pairs‍�

(8)

In survival analysis, shorter survival time means 
smaller predicted outcomes. C-index value of above 0.5 
means better agreement among comparable pairs.41–43 
Overfitting is one of the criticisms of machine learning 
techniques. This arises from using the training error to 
evaluate the model performance. In this study, we used 
a cross-validated C-index to evaluate the performance of 
the deep learning model.

Cross-validation
Splitting the data into a test and train set is one of the most 
used methods to evaluate the predictive performance of 
machine learning models. The test error is known to be 
more informative than the train error, because of the 
assumption that the test dataset is independent from 
the train dataset. However, the test error can vary from 
one test sample to another and, since the test data is a 
subset of the train set, this independence is not guaran-
teed. This makes this method unreliable. Hence K-fold 
cross-validation is recommended. K-fold cross-validation 
divides the data into K folds and ensures that each fold 
is used as a testing set at some point.44 In this study, we 
used a 10-fold cross-validation. The dataset is divided into 
10 folds or sections. The first fold is set aside to use as a 
test set and the rest of the folds combine to serve as the 
training set. In the second iteration, the second fold is 
used as the testing set while the rest serve as the training 
set. This process is repeated until each of the ten folds 
have been used as the testing set.

Measures of covariate importance
To understand which factors are important in influ-
encing predictions, the RSF model has a measure which 
estimates the importance of each covariate. It is gener-
ally referred to as the variable importance measure.45–48 
Variables are selected because of their importance in 
predicting the survival outcome. The basic measure of 
variable importance is to count the number of times the 
predictor is selected by each tree in the whole forest.49 
Different measures of variable importance exist in liter-
ature and have been implemented in the random forest 
algorithms.28 32 49 50 In this study, permutation importance 
was selected as our measure of covariate importance.

Permutation importance
Permutation importance is based on the idea of iden-
tifying whether the covariate in question has a positive 
effect on the predictive performance of the random 
forest model. As an illustration, first consider a tree 
grown and its prediction accuracy (‍e‍), calculated by using 

Figure 1  DeepSurv architecture Katzman et al.21
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the out-of-bag (OOB) observations. Second, randomly 
permute the values of the factor of interest, (‍Xi‍) for all 
individuals. Note that permutation breaks the original 
relationship of the covariate with the survival outcome. 
Obtain a new value for prediction accuracy, (‍ei‍) using 
OOB observations. Compare ‍ei‍, with ‍e‍ of the original clas-
sification for covariate, ‍Xi‍ . Calculate, argmax {0; ‍ei‍ − ‍e‍ 
}. The difference between the accuracy before and after 
permutation provides the importance of the covariate ‍Xi‍ 
from a single tree. Permutation variable importance of a 
covariate for the entire forest is calculated by averaging 
over all the tree importance values. This is repeated for 
all covariates of interest.32 50 51

RESULTS
In this study, we applied the random forest algorithm 
described in the methods section on the selected data-
sets, and we extracted the most important variables in 
predicting child survival. We used a special type of the 
RSF model known as the CIF model. This was done to 
avoid the bias that results from favouring covariates that 
have many split points, rather than choosing covariates 
that are highly associated to the outcome. The ranks of 
importance of the four features obtained by applying the 
CIF to the datasets are shown in figures 2–5. The ranks of 
feature importance presented here are for datasets from 
each country that was selected from each subregion.

In figure  2, the two most important predictors of 
U5MR in Zimbabwe in 2006 are wealth index and place 
of residence, respectively. In 2011, place of residence and 
wealth index are ranked as the most predictive factors of 
U5MR. Lastly, in 2015, mother’s education and place of 
residence are the top ranked predictors.

In figure 3, mother’s education is ranked first for the 
years 2008 and 2014, and wealth index second in both 
datasets.

In figure 4, wealth index and mother’s education are 
ranked first and second in 2006. Wealth index and moth-
er’s education are ranked first and second in 2011. Lastly 
in 2016, mother’s education is ranked first, and wealth 
index is ranked second in predicting U5MR in Uganda. 
Figure 5 shows that place of residence and wealth index 
are ranked the top two most important predictor vari-
ables in predicting U5MR in Chad.

Figure 2  Ranks of importance for the four socioeconomic 
factors in predicting U5MR in Zimbabwe over a period of 9 
years. U5MR, under-5 mortality rate.

Figure 3  Ranks of importance for the four social economic 
factors in predicting U5MR in Ghana over a 10-year period. 
U5MR, under-5 mortality rate

Figure 4  Ranks of importance for the four social economic 
factors in predicting U5MR in Uganda over a period of 10 
years. U5MR, under-5 mortality rate.
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Figures 2–5 show that mother’s education is ranked first 
in 5 out of the 11 datasets, and wealth index ranked first 
in three out of the eleven datasets, but second in 8 out 

of the 11 datasets. This shows that these two factors are 
dominant in predicting U5MR in the region over time. 
Place of residence has also been ranked first in 2 out of 
the 11 datasets, and second in 1 of the 11 datasets, placing 
it among the top three predictors of under-5 survival in 
the countries considered in this study.

It is evident from these rankings that mother’s educa-
tion and wealth index were among the most dominant 
factors. The sex of the child is not anywhere near the top 
two ranks of importance in all the datasets considered for 
analysis. In fact, it was ranked last in six out of the eleven 
datasets.

These results agree with a study by Rutstein et al,52 
which studied the changes in socioeconomic inequalities 
in low-income and middle-income countries in the 2000s.

The study also applied the DeepSurv model to the 
selected datasets and extracted survival curves from the 
model output to establish whether the survival outcome 
associated with the four socioeconomic factors has 
become favourable over time.

Figure 6 shows survival curves of the survival outcome 
(under-5 survival time), associated with the four socioeco-
nomic factors extracted from the deep learning survival 
model, for the test datasets obtained from the eleven 
datasets of the four countries from the four subregions 

Figure 5  Ranks of importance for the four social economic 
factors in predicting U5MR in Chad over the period of 10 
years. U5MR, under-5 mortality rate

Figure 6  Survival probabilities for the children in the test dataset for Zimbabwe, Uganda, Ghana and Chad obtained from the 
DeepSurv model.
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considered in this study. The survival curves show an 
improvement in the survival probabilities associated with 
the four socioeconomic factors for children under the 
age of 5 in the countries over time. Zimbabwe, in the 
southern African subregion, had a survival curve for the 
year 2015 above the survival curves of 2006 and 2011. 
Uganda, in the East African region, had a survival curve 
for the year 2001 that is below the survival curve for the 
year 2016. Ghana, in the West African subregion, had 
a survival curve for the children under the age of 5 in 
the year 2014 above that of the year 2008. And lastly, for 
Chad, in the central subregion, the survival curve for the 
year 2014 is above that of 2004.

This indicates that there is improvement in the survival 
outcome associated with the four socioeconomic factors 
in these countries’ over time, especially after 5 or more 
years after the launch of the MDG.

The countries considered for analysis in the different 
subregions had a median survival time associated to the 
four socioeconomic factors for the children in the test 
dataset of above 5 years; however, we noticed that this 
improvement has been gradual. For example, a country 
like Uganda from the East African subregion had a 
survival curve for the year 2006 that is below the survival 

curve for the year 2011. It is also shows that the survival 
curve of the year 2011 is below that of the year 2016.

In Zimbabwe, for the year 2011, the survival curve for the 
children under the age of 1 year is above that of the children 
below the same age in 2006. However, the survival curve for 
children above 1 year in 2011 compared with those above 
1 year of age in 2006 are the same. This is expected for short 
period (2006–2011), however, when we compare the effects 
of the four factors over a longer period (2006–2015) we can 
clearly see the distinction between the survival outcomes 
associated with the four socioeconomic factors over time.

This indicates that there is improvement in the survival 
outcome associated to the four socioeconomic factors 
in this country over time. The improvements in the 
survival outcome associated to these factors over time as 
evidenced from the results are occurring after the year 
2000 where many interventions were implemented to 
achieve the MDGs, an indicator that these interventions 
had a positive impact on reducing U5MR.

Lastly, we compared the DeepSurv and RSF models 
using cross-validated C-indicies to determine which of the 
two models has a higher predictive performance on the 
datasets used in this study. These results are, therefore, 
summarised in figure 7.

Figure 7  Comparison of predictive performance of the deep survival neural network and the random survival forest (RSF) 
models on all the datasets considered in this study.
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Figure  7 shows that the mean values of the cross-
validated C-indices from the deep learning model on all 
datasets are above the 50% mark, which is an indicator 
that the model has higher predictive quality compared 
with the RSF model.

The performance of this model on datasets of a country 
from each subregion has no clear trend, but what is 
obvious is that these four socioeconomic factors are still 
predictive in determining U5MR in sub-Saharan Africa. 
In fact, in some of the datasets, the model shows a high 
predictive performance in the recent years. This is an 
indication that the factors considered in this model are 
still predictive and associated with U5MR. Therefore, 
public health policies needed to achieve SDG3 must be 
designed to target existing inequalities in U5MR caused 
by these four social economic factors.

DISCUSSION
The study reveals that among the four socioeconomic 
factors, wealth index (household wealth) and mother’s 
education level are the top contributors of mortality in the 
countries’ datasets considered in this study. Wealth index 
ranked first in some of the datasets like Zimbabwe (2006), 
Uganda (2011) and Ghana (2003). It also ranked second 
in datasets like Zimbabwe (2011 and 2015), Uganda (2006 
and 2016), Chad (2008 and 2014) and Ghana (2008 and 
2014). Mother’s education level was also ranked first in 
some of the datasets over the period considered, these 
include Zimbabwe (2015), Uganda (2006 and 2016), and 
Ghana (2008 and 2014). Place of residence ranked first in 
datasets like Chad (2004 and 2014).

With a mean C-index value of above 0.5, the deep 
survival model was the best performing model in 
predicting U5MR in all the datasets analysed in the study. 
This implies that the socioeconomic factors included in 
the model are still very predictive in determining U5MR. 
Survival curves of the survival outcome associated with 
the four socioeconomic factors were extracted from 
the best performing model. These curves are extracted 
from the deep survival model run on the test dataset, a 
20% partition of each of the datasets in the study. For 
a country like Zimbabwe selected from the Southern 
African subregion, the recent year, 2015, had survival 
curves (favourable survival outcome) that were above the 
survival curves of the earlier years (2006, 2011) on the 
test data. The general trend in this analysis was that there 
was a favourable survival outcome associated to the four 
social economic factors in the recent years compared with 
the earlier years in the four countries selected from the 
different subregions.

The main strength of this study is that we used machine 
learning methods which, when compared with clas-
sical statistical models, are very flexible and have fewer 
assumptions. They are, therefore, adapted to fitting very 
large datasets with complex relations between predic-
tors and a given response. Another strength of the study 
is that we are tracking the influence of socioeconomic 

factors in determining U5MR over time, which has poten-
tial to explain how effective our interventions have been. 
However, the methods used in this study are criticised for 
being a black box. They may not give an effect size of the 
factors, and therefore, it is difficult to tell by how much 
the factor affects the outcome. Another limitation of the 
study is that the survey data does not include information 
for mothers who died before the survey, which creates 
respondent bias.

Our results on the most influential factors associated 
with U5MR agree with other studies.2 3 25 52–54 Ezeh et al,54 
found that mother’s education level and household wealth 
influenced child survival in Nigeria. A similar study by 
Adegbosin et al,25 that used deep learning techniques in 
predicting U5MR in low-inome and middle-income coun-
tries, ranked mother’s education and household wealth 
index among the most critical predictors of U5MR. The 
same study found that deep learning techniques are supe-
rior in predicting child survival, and a similar conclusion 
has been arrived at in other similar studies.55 56 The only 
difference in our study is that we were able to extract the 
survival outcome from the best performing model for 
each of the countries over time, and presented how the 
survival outcome associated to the economic factors has 
improved over time.

In general, there has been a downward trend for U5MR 
worldwide.2 54 57 58 Most studies assert that this trend has 
not occurred evenly in some of the regions. Sub-Saharan 
Africa is one of those regions with inequalities across 
countries and social groups. These inequalities in U5MR 
have evolved over the past 25 years and therefore policy-
makers must resort to evidence-based policy imple-
mentations to achieve the SDG3 target. This study has 
revealed that machine learning techniques are effective 
in providing us with such evidence. This study focused 
on four socioeconomic factors. Among these factors, 
wealth index and mother’s education, were ranked as 
the most influential in predicting U5MR in the coun-
tries used in this study over time. Therefore, policies to 
achieve SDG3 should directly impact household incomes 
and girl child education. It is important to note that this 
study was limited to tracking the ranks of importance of 
four social economic factors over time and it would be 
significant to see the changes in the ranks of importance 
when all the other factors associated with U5MR are 
included in the study. It would also be vital to see how 
the survival outcome is improving over time after consid-
ering all the other factors that determine U5MR in the 
region. The study excluded some of the datasets within 
the countries chosen for analysis, mostly those collected 
before the year 2000. Including these datasets would lead 
to us clearly assessing the impact of the interventions 
that were launched to achieve the MDG to improve the 
survival outcome of children under the age of 5 in the 
region.
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CONCLUSION
Sub-Saharan Africa has, over the years, implemented 
policies especially in public health with little or no 
research to find out which policies would be efficient. 
This has led to governments and international organi-
sations that are funding these implementations losing 
much needed resources on inefficient policies. Now, 
with the availability of datasets like those from the DHSs 
and the use of machine learning techniques, we can 
uncover a lot of policy signals. If used well, this informa-
tion can guide policy-makers on what policies to imple-
ment and what sectors to target to achieve the SDG. For 
example, our study looked at how ranks of importance, 
the survival outcome, and the predictive nature of four 
socioeconomic determinants of U5MR have evolved 
using two machine learning techniques. The results 
uncovered interesting results that can be used to inform 
policy on what sectors to target to achieve SDG3. The 
study revealed that most policies should target reducing 
poverty levels and aim at increasing literacy levels of 
the girl child in the regions. The study revealed that 
past interventions aimed at targeting these four social 
economic factors are starting to pay-off. This is because, 
over time, the survival outcome associated with these 
factors has become more and more favourable.

The DeepSurv model has a higher predictive perfor-
mance with mean C-index values (between 67% and 
80%), above 50%, indicating that these factors are still 
highly associated with U5MR. Therefore, this study 
advocates for reviews of the success of these policies 
using machine learning methods to know where to 
put the most effort in the implementation process of 
these programmes targeting some of these factors. The 
results also show that the deep survival neural network 
model has a better predictive performance between the 
two machine learning models.
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