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Inflammation and lithium: clues to mechanisms contributing to
suicide-linked traits
E Beurel1,2 and RS Jope1,2

Suicide is one of the leading causes of death in the United States, yet it remains difficult to understand the mechanistic
provocations and to intervene therapeutically. Stress is recognized as a frequent precursor to suicide. Psychological stress is well
established to cause activation of the inflammatory response, including causing neuroinflammation, an increase of inflammatory
molecules in the central nervous system (CNS). Neuroinflammation is increasingly recognized as affecting many aspects of CNS
functions and behaviors. In particular, much evidence demonstrates that inflammatory markers are elevated in traits that have been
linked to suicidal behavior, including aggression, impulsivity and depression. Lithium is recognized as significantly reducing suicidal
behavior, is anti-inflammatory and diminishes aggression, impulsivity and depression traits, each of which is associated with
elevated inflammation. The anti-inflammatory effects of lithium result from its inhibition of glycogen synthase kinase-3 (GSK3).
GSK3 has been demonstrated to strongly promote inflammation, aggressive behavior in rodents and depression-like behaviors in
rodents, whereas regulation of impulsivity by GSK3 has not yet been investigated. Altogether, evidence is building supporting the
hypothesis that stress activates GSK3, which in turn promotes inflammation, and that inflammation is linked to behaviors associated
with suicide, including particularly aggression, impulsivity and depression. Further investigation of these links may provide a clearer
understanding of the causes of suicidal behavior and provide leads for the development of effective preventative interventions,
which may include inhibitors of GSK3.
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INTRODUCTION
In 2010, suicide was the 10th leading cause of death in the United
States, accounting for more than 38 000 deaths, the suicide rate
increased steadily during the previous 10 years, and an astound-
ing approximately one million people in the US made a suicide
attempt (Centers for Disease Control and Prevention website).
Thus, it is evident that suicide is a major health problem that is not
adequately treated, as well as being poorly understood. Clearly,
there is a crucial need to develop improved strategies to
understand the conditions that elicit suicidal behavior and to
develop effective interventions.
Suicidal behavior is often, but certainly not always, associated

with psychiatric illnesses, particularly major depression, bipolar
disorder and schizophrenia. For example, a strong association was
indicated by the finding that suicide is 60% comorbid with mood
disorders,1 and the risk of suicide is at least 15 times higher in
patients with bipolar disorder than for the general population.2

However, the perplexing question remains as to what differenti-
ates the suicidal person from those with similar conditions that are
not suicidal. This issue has led to numerous studies attempting to
identify behavioral characteristics that contribute to suicidal
behavior. Among the key characteristics that have been identified
to be associated with suicidal behavior, impulsiveness, aggression
and feelings of helplessness or depression demonstrate particu-
larly strong links.1,3–9 These associations raise the possibility that
identification of mechanisms and therapeutic interventions that
regulate these characteristics may provide insight into the causes
of suicidal behavior and lead to methods for early detection and

intervention. In this regard, there is increasing evidence that
abnormal activation of the inflammatory system is linked to each
of these individual behaviors in animal models, and to suicidal
behavior in humans.
Here, we review evidence suggesting that inflammation may be

a key factor precipitating suicidal behaviors in response to
initiating stressors, we assess key aspects of suicidal behavior-
linked endophenotypes that have been studied in rodents, and
we examine the effects of lithium intervention that appears to
diminish suicide-linked behaviors.

STRATEGIES TO STUDY SUICIDAL BEHAVIOR IN ANIMAL
MODELS
The very nature of suicide limits direct investigation except
postmortem, thus gaining a better understanding of suicidal
behavior requires the development of indirect strategies. Two
feasible approaches include studies in animal models of mecha-
nisms that regulate suicide-associated behaviors, and studies of
the mechanism of action of drugs that alter suicidal behavior.
Thus, although suicide cannot be directly studied in animal
models, rodents can be used to study factors that regulate suicide-
relevant behaviors or endophenotypes. Using the endophenotype
approach to investigate complex behaviors associated with
numerous psychiatric and neurological conditions has been
discussed by many investigators in a variety of fields,10,11 and
although not perfect, it remains the primary strategy available for
studies in rodents. Thus, a better understanding of suicidal
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behavior may benefit from studies of endophenotypes in rodents,
particularly impulsive behavior, aggression and depression-like
behaviors that have been linked to suicidal behavior. Another
strategy to examine mechanisms regulating suicidal behavior is to
consider the actions of an agent that reduces attempted and
completed suicides. Substantial evidence demonstrates that
lithium, the classical mood stabilizer used to treat bipolar disorder,
reduces suicidal behavior and mortality during long-term
treatment.5,12 This conclusion is supported by several meta
analyses and has been reported in patients with unipolar and
bipolar depression (the patient populations most often treated
with lithium), in responders and nonresponders to the mood
stabilizing action of lithium, and the antisuicidal effect of lithium is
not matched by other mood stabilizers or antidepressants.6,8,13–16

Furthermore, several studies have found that relatively high levels
of lithium in the public drinking water are associated with reduced
risk of suicide in the general population.17 Thus, studies in rodents
of individual behaviors associated with suicidal behavior, in
conjunction with studies of lithium, which is able to diminish
suicidal behavior, provide feasible investigative strategies to
better understand the underlying causes of suicidal behavior
and to develop effective interventions.

STRESS INDUCES INFLAMMATION WHICH IS ASSOCIATED
WITH SUICIDAL BEHAVIOR
Stress is a common precursor of suicidal behavior.18 Stress also
increases inflammation, and inflammation is linked to increased
impulsive, aggressive and depressive behaviors, leading to the
hypothesis that stress-triggered inflammation has an important
role in provoking suicidal behavior (Figure 1). Multiple types of
psychological stress have been shown to cause activation of the
inflammatory response, which is indicated by elevated levels of

inflammatory cytokines.19–45 However, comparative studies have
not been reported to determine if different types of stress induce
different patterns of inflammatory cytokine production, and which
inflammatory molecules are most closely associated with suicidal
behavior. The common finding that stress induces inflammation
has been interpreted in evolutionary terms as a logical mechanism
to enhance survival. Historically, many stressors had the potential
to lead to injury and infection, therefore pre-activation of the
immune system would enhance survival and recovery.46 However,
as psychological stress has increased in modern societies, and
drugs are available to combat life-threatening infections, these
evolutionary mechanisms to improve survival after injury may now
have deleterious effects on behaviors, including promotion of
multiple suicide-linked behaviors, as discussed below.
Except for the initial insult, stress appears to utilize many of the

same mechanisms as pathogens to induce an inflammatory
response, although much still remains to be learned about the
details of the stress-induced signaling pathway. The stress
response is most well-characterized for signaling through Toll-
like receptor 4 (TLR4), the receptor for lipopolysaccharide (LPS),
which is the most widely used agent to study inflammation
experimentally and is the major cause of sepsis. TLR4 is activated
by both pathogen-associated molecular patterns of microbes, and
insult-induced endogenous ligands, called danger- or damage-
associated molecular patterns (DAMPs).47 DAMPS induce TLR4
signaling outcomes that respond to the need for rapid danger-
recovery and restoration of homeostasis.48 DAMPs that activate
TLR4 include a broad range of molecules, such as heat-shock
proteins,49 hyaluronan oligosaccharides,50 high-mobility group
protein box-1,51 modified lipids52 and several others, which are
produced by a variety of stressors in the central nervous system as
well as peripherally. Thus, stress-induced DAMPs can set in motion
an inflammatory response that appears to be equivalent to that
induced by pathogens. TLR4 is expressed by microglia, astrocytes
and neurons, as well as immune cells.48,53–57 TLR4 expression is
dynamic and is often upregulated in conditions that are
associated with increased levels of pathogen-associated molecular
patterns or DAMPs,52,58 including evidence of dynamic changes in
the expression of TLR4 in the brain. For example, TLR4 expression
in rodent brain increased in response to ischemia/reperfusion
injury, which was partially attributed to DAMPs arising from
oxidative stress.55,59 Furthermore, chronic mild stress increased
TLR4 expression in rat prefrontal cortex,42 and administration of a
TLR4 antagonist reduced stress-induced neuroinflammation.45

Thus, TLR4 can be activated in response to stress, not only by
pathogens, and is involved in stress-induced inflammation,
including in the central nervous system.
There is much evidence linking an activated inflammatory

response with suicidal behavior. Elevated levels of inflammatory
cytokines, particularly interleukin-6 (IL-6), were found in the blood
and CSF of patients who attempted suicide compared with
nonsuicidal depressed patients and controls.60–64 Elevated mar-
kers of inflammation and microglial activation also were found in
postmortem brains of suicide victims.65–67 Conversely, therapeutic
administration of cytokines increases suicide risk.68–71 Particularly
interesting is the recent finding from a postmortem brain study
that protein expression of TLR4 is higher in depressed suicide
victims than in depressed nonsuicide subjects and controls.72

Notably, alterations in genes involved in inflammation have been
found to be associated with suicidal behavior in multiple studies
of potential candidate genes.73–76 In addition, inflammation
activates the enzyme indoleamine-2,3-dioxygenase, which cata-
lyzes the formation of kynurenine, and plasma kynurenine levels
were higher in depressed patients with a history of suicide
attempts than in nonsuicidal depressed patients and healthy
controls.77 The authors suggested that elevated kynurenine levels
may be a marker of suicide attempt risk, independent of
depression severity, and that kynurenine metabolites may
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Figure 1. Scheme of a potential mechanistic pathway that may lead
to suicidal behavior. The scheme displays a hypothetical component
of mechanisms contributing to suicidal behavior. Stress is estab-
lished to cause activation of GSK3 in rodent brain, and lithium is an
established inhibitor of GSK3, which we propose may contribute to
its antisuicidal actions. Active GSK3 promotes inflammation, and we
hypothesize that inflammation, one of multiple signaling systems
regulated by GSK3, contributes to provoking components of suicidal
behavior, such as aggression, impulsivity and depression. GSK3,
glycogen synthase kinase-3.
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contribute to the aggression/impulsivity and neurocognitive
deficits proposed as endophenotypes associated with suicidal
behavior.1,18,77–79 Thus, multiple lines of evidence demonstrate a
consistent relationship between elevated markers of inflammation
and suicidal behavior. Therefore, it is important to identify which
components of suicidal behavior may be induced by activation of
the inflammatory response.

AGGRESSIVE BEHAVIOR
Aggression has been linked to suicidal behavior in many
studies1,3–5,7,8,79 and an increasing number of reports demonstrate
that inflammation is associated with increased aggressive
behaviors.80 Elevated aggressive traits were associated with
increased serum TNF,81 with the inflammatory marker C-reactive
protein,82–84 and with multiple cytokines.84,85 Increased serum IL-6
levels correlated with personality traits of aggression in healthy
controls83 and with aggression traits in female patients with
eating disorders.86 Furthermore, aggressive traits were increased
in patients treated with cytokines therapeutically.87,88 Thus, in
humans, aggressive behaviors are well correlated with increased
markers of inflammation.
A few studies of rodents have also examined links between

aggression and inflammation. In rodents, aggression is often
measured using the social dominance tube test and the
aggression test. Mice bred for high aggression had increased
cytokine levels89 and knockout of both tumor necrosis factor
receptor-1 and tumor necrosis factor receptor-2 resulted in the
remarkable absence of aggressive behavior.90 Thus, there appears
to be a strong link between aggression and activation of the
inflammatory system in rodents, but further studies are needed to
verify this association and to delineate which inflammatory
molecules mediate the interaction and the mechanisms that are
involved.
Substantial evidence shows that lithium can reduce aggressive

behavior. Lithium is well documented to reduce aggressive
behavior in a variety of human populations, for example, children,
adults and the elderly, which has been related to its antisuicidal
actions.5,6,8,91,92 As reviewed in detail previously,5,92,93 many
studies have shown that aggressive behavior in rodents also is
consistently reduced by lithium treatment. Thus, lithium signifi-
cantly reduces aggressive traits and inflammation, but these two
outcomes of lithium administration have not yet been examined
together.

IMPULSIVE BEHAVIOR
As noted in the Introduction, impulsive behavior may frequently
be an important component of suicidal behavior. Only a limited
number of studies have tested if there is a relationship between
inflammation and impulsive behavior. In a study of nearly 5000
individuals, elevated levels of IL-6 were associated with
impulsivity-related traits.94 A novel study of 5652 people over a
period of 3 years identified a strong correlation between
impulsiveness and increased lymphocyte numbers that are
indicative of immune activation, and the authors concluded that
‘impulsiveness was a predictor of chronic inflammation’.95

Links between inflammation and impulsive behavior appear not
to have been examined in animal models, but there is evidence
that lithium administration reduces impulsive behavior in humans
and rodents. Three controlled studies of lithium in humans
concluded that lithium reduces impulsive behavior, but further
studies would strengthen this conclusion.96–98 In rodents,
impulsive behavior exemplified by choosing a small or poor
reward that is available immediately, in preference to a larger but
delayed reward, is often measured using the three-choice serial
reaction time task,99 in which mice are trained to respond to a
flash of light occurring in one of three locations with a nose poke,

which releases a food reward. In the subsequent test phase, mice
are trained to choose between two light cues, one giving a larger
food reward than the other. In subsequent trials, the delivery of
the larger food reward is delayed, so mice must choose the
immediate smaller reward or the delayed larger reward, and wild-
type mice predominantly choose the latter. Increased impulsive
behavior results in mice choosing the immediate smaller reward
rather than the delayed larger reward. There is some indication
that lithium treatment reduces impulsive behavior in rodents, but
the data are limited. Lithium administration suppressed impulsive
behavior in the three-choice serial reaction time task in male
Wistar/ST rats, a strain that has been shown to be more impulsive
than Lister hooded rats.100 Lithium reduced premature responses
and increased the latency of the correct responses in the three-
choice serial reaction time task in male Wistar/ST rats, without
affecting response latency and without affecting the amount of
food consumption or other motivation-related measures.101

Lithium also reduced impulsivity in mice in the delay discounting
task in which mice receive larger rewards after a delayed response
than after an immediate response.102 Thus, the links between
impulsive behavior and inflammation, as well as its control by
lithium, remain sparse but supportive of these associations.

DEPRESSIVE BEHAVIOR
Depression is often linked with suicidal behavior, although, in
contrast to the commonly held assumption, many suicidal patients
are not depressed.1,4,5,7,9,78,103 There is abundant evidence that
inflammation is associated with the onset and severity of
depression, as inflammatory molecules are upregulated in the
serum and postmortem brains of depressed patients, as discussed
in detail in several reviews.104–109 Furthermore, administration of
interferon-α to bolster immunity induces depression in susceptible
people.103,110 Moreover, LPS administration induces symptoms of
depression in humans,111 and a mild stimulation of the primary
host defense system has negative effects on emotion, which is
thought to be caused by elevated cytokines.110,112 As noted
above, psychological stresses that can induce depression increase
inflammatory cytokine production in humans and rodents.113,114

Inflammation in patients with major depression is associated with
resistance to antidepressant treatment, and anti-inflammatory
drugs can improve antidepressant actions.106–108,114-116 Raison
and Miller46 recently summarized results demonstrating that many
genetic changes identified in patients with major depressive
disorder involve the inflammatory system. In rodents, administra-
tion of inflammatory cytokines or the inflammation-stimulant LPS
causes depression-like behaviors that are attenuated by
antidepressants.105 Specific inflammatory cytokines that have
been identified as promoters of depression-like behavior in
rodents include IL-6,117 TNFα118 and IL-1β.119 Thus, there is much
evidence that inflammation can precipitate depression and impair
therapeutic responses.
Lithium is not used therapeutically as a direct antidepressant,

but is often used to augment antidepressants in treatment-
resistant depression, and inflammation is reduced by lithium. In
mice, lithium has a wide variety of antidepressant-like effects. For
example, in mice, lithium administration produces antidepressant-
like effects in the learned helplessness paradigm120 and in the
forced swim test.121 The antidepressant actions of lithium are
often attributed to its action as an inhibitor of glycogen synthase
kinase-3 (GSK3), as discussed in the following section, because
pharmacological or molecular inhibition of GSK3 has similar
antidepressant effects in animal models.

GSK3 INHIBITORS REDUCE INFLAMMATION
GSK3 refers to two paralogs, GSK3α and GSK3β, that are encoded
by different genes but retain 85% homology and are commonly
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referred to as isoforms. GSK3 is primarily regulated by phosphor-
ylation on serine-21-GSK3α and serine-9-GSK3β, which inhibits
GSK3 activity. Homozygous GSK3α/β21A/21A/9A/9A knockin mice
express both GSK3 isoforms with serine-to-alanine mutations at
these sites, S9A-GSK3β and S21A-GSK3α. This maintains GSK3
maximally active, since it cannot be inhibited by serine
phosphorylation, but within the physiological range because
GSK3 is expressed at normal levels.122 GSK3 may be a feasible
therapeutic target to diminish suicidal behaviors because it
promotes several suicide-linked behaviors in rodents and pro-
motes inflammation, and lithium is a well-established inhibitor of
GSK3, which may contribute to the capacity of lithium to reduce
suicide.
A variety of evidence has raised the possibility that activated

GSK3 may contribute to suicidal behaviors. GSK3 is activated in
mouse brain by stress,123 a response that may promote suicide-
linked behaviors, and GSK3β activity was found to be elevated in
postmortem brains of depressed suicide victims.124 Clear evidence
has demonstrated that GSK3 promotes aggressive behaviors, as
reduced expression of either GSK3 isoform decreased aggressive
behaviors in mice.125,126 The contribution of GSK3 to impulsive
behaviors has yet to be examined, except for the studies of lithium
discussed above, but an evaluation of SNPs in the GSK3β gene
revealed that a genetic variability in the GSK3β gene is associated
with increased impulsive behavior in patients with bipolar
disorder.127 Many studies have shown that GSK3 promotes
depression-like behaviors in rodents.128 These include clear
antidepressant effects of a variety of new small molecule
inhibitors of GSK3, in addition to lithium, in rodents,121,129–132

including on depressive behavior exhibited by tryptophan
hydroxylase-2 mutant mice with deficient serotonin.125 Also,
overexpression of a dominant-negative mutant of GSK3 to reduce
GSK3 actions promoted resilience in the social defeat stress test of
depression-like behavior.133 In addition, inhibition of GSK3 is
required for the rapid antidepressant effect of ketamine in the
learned helplessness model of depression in mice.120 Antidepres-
sants increase serotoninergic signaling, which inhibits GSK3 by
increasing its serine phosphorylation, and increase signaling by
Wnt2, which inhibits GSK3 in the Wnt signaling pathway.134,135

Importantly, antidepressants inhibit GSK3 in mouse brain after
in vivo administration of clinically relevant doses.125,135 Further-
more, oppositely to inhibiting GSK3, expression of constitutively
active GSK3 in mice results in increased susceptibility to stress-
induced depression-like behavior in mice.123

Lithium is an established inhibitor of GSK3, and lithium and
other GSK3 inhibitors are remarkably effective in reducing
inflammation. Therapeutic levels of lithium, ~ 1mM, inhibit GSK3
both directly136,137 and by an indirect mechanism that causes
increased inhibitory serine phosphorylation of GSK3.138,139 GSK3
inhibitors have been shown to be effective anti-inflammatory
drugs, reducing by 67–90% inflammatory IL-6, IL-1β and TNFα
production by microglia,140 astrocytes,141–146 human monocytes
and peripheral blood mononuclear cells147 and other immune
cells.143,146–149 Remarkably, in vivo administration of lithium
provided protection from endotoxin shock sufficiently enough
to allow the survival of most mice from an otherwise lethal
(LD100) dose of LPS.147 Thus, GSK3 inhibition effectively reduces
inflammation throughout the periphery and the central nervous
system.150 Reduced LPS-induced inflammatory cytokines attained
by inhibiting GSK3 was found to be due to inhibition of the
transcriptional activity of NF-κB, a transcription factor that
mediates upregulation of many inflammatory molecules,147 in
accordance with reports that GSK3 promotes NF-κB activity, as we
reviewed.151 GSK3 inhibitors also block signal transducer and
activator of transcription-3 (STAT3) activation, a key transcription
factor in inflammatory signaling.141 Remarkably, GSK3 regulates
the anti-inflammatory cytokine IL-10 in an opposite manner, so
GSK3 inhibition increases anti-inflammatory IL-10 levels three- to

fourfold in vivo and in vitro.147 This is mediated by GSK3 inhibition
of the CREB and AP-1 transcription factors to reduce their
expression of anti-inflammatory IL-10, which underlies the
increase in IL-10 levels induced by GSK3 inhibitors.147,152 The
anti-inflammatory actions of GSK3 inhibitors likely contribute to
their beneficial effects that have been found in multiple animal
models of inflammatory diseases, including endotoxic shock,147

arthritis and peritonitis,152,153 endotoxemia,154 colitis155 and
traumatic brain injury.156 Furthermore, GSK3 inhibitors alleviate
inflammatory disease severity in the mouse model of multiple
sclerosis.146,157

In summary, GSK3 may be a feasible therapeutic intervention
for suicidal behavior. GSK3 is activated by stress, is a strong
promoter of inflammation, promotes in rodents aggressive and
depression-like behaviors, and is inhibited by lithium, which
diminishes suicidal behavior.

PERSPECTIVE
Altogether, there is substantial evidence that suicidal behavior and
individual impulsivity, aggression and depression are all associated
with increased inflammation, which itself can be induced by stress.
Thus, we propose the concept that stress activates GSK3 and
induces inflammation, which, in turn, promotes the suicide-linked
endophenotypes of impulsivity, aggression and depression-like
behaviors. We speculate that different inflammatory molecules are
produced following different types of stress and that different
inflammatory molecules may mediate each of the behavioral
outcomes, perhaps accounting, in part, for why not all suicidal
patients exhibit each behavior. Furthermore, it is likely that
differential effects of inflammatory molecules on the specific brain
regions and neural circuits that mediate each of the suicide-linked
behaviors influence the cumulative behavioral outcome, which
also must be regulated by genetic and epigenetic characteristics
of affected subjects. Identification of the inflammatory and
behavioral responses to stress that are attenuated by lithium
may begin to provide information about its mechanism for
reducing suicidal behavior, and why it is not effective in all
patients. Furthermore, we suggest that inhibition of inflammatory
signaling and inhibition of GSK3 may provide mechanisms to
diminish in tandem both the inflammatory response to stress and
suicide-related behaviors.
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