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CLP = cecal ligation and perforation; DO2 = oxygen delivery; dO2 = microvascular oxygen demand; Hb = hemoglobin; IVVM = intravital video-
microscopy; LPS = lipopolysaccharide; MAP = mean arterial pressure; O2ERc = capillary oxygen extraction ratio; NADH = nicotinamide adenine
dinucleotide (reduced form); NO =nitric oxide; NO2

– = nitrite; NO3
– = nitrate; NOx

– = nitrite/nitrate; (ec/i/n)NOS = (endothelial/inducible/neuronal)
nitric oxide synthase; PO2 = oxygen tension; qO2 = microvascular oxygen supply; RBC = red blood cell; RSNO = nitrosothiol; SNO-Hb = nitrosated
hemoglobin; SO2 = oxygen saturation; SR = supply rate; VO2 = oxygen consumption.
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“Five to fifteen minutes after its [endotoxin] intravenous
administration, there were strong waves of contraction
along the small arteries, arterioles and metarterioles.
These could arrest flow and last for several minutes.
There would afterwards be a phase of dilatation, fol-
lowed again by a strong contraction. As time went on,
the phases of relaxation became more prominent until
preagonally there was a general and permanent

vasodilation. The circulation would slow progressively
until death.”

From Delauney and coworkers (1955),
translated by Gilbert [1].

This early description of the microvascular response to endo-
toxin in guinea pig and mouse mesentery demonstrated the
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Abstract

The microcirculation is a complex and integrated system that supplies and distributes oxygen throughout
the tissues. The red blood cell (RBC) facilitates convective oxygen transport via co-operative binding
with hemoglobin. In the microcirculation oxygen diffuses from the RBC into neighboring tissues, where it
is consumed by mitochondria. Evidence suggests that the RBC acts as deliverer of oxygen and ‘sensor’
of local oxygen gradients. Within vascular beds RBCs are distributed actively by arteriolar tone and
passively by rheologic factors, including vessel geometry and RBC deformability. Microvascular oxygen
transport is determined by microvascular geometry, hemodynamics, and RBC hemoglobin oxygen
saturation. Sepsis causes abnormal microvascular oxygen transport as significant numbers of capillaries
stop flowing and the microcirculation fails to compensate for decreased functional capillary density. The
resulting maldistribution of RBC flow results in a mismatch of oxygen delivery with oxygen demand that
affects both critical oxygen delivery and oxygen extraction ratio. Nitric oxide (NO) maintains
microvascular homeostasis by regulating arteriolar tone, RBC deformability, leukocyte and platelet
adhesion to endothelial cells, and blood volume. NO also regulates mitochondrial respiration. During
sepsis, NO over-production mediates systemic hypotension and microvascular reactivity, and is
seemingly protective of microvascular blood flow.
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severity of the immediate arteriolar vasoconstriction response
to endotoxin. Moreover, it recounted the subsequent phases
of changing microvascular tone and cardiovascular collapse
that occur with progression of sepsis.

With the realization that the systemic inflammatory response
to bacterial infection (sepsis) or endotoxin (endotoxemia)
caused plasma volume depletion came the introduction of
fluid resuscitation [2]. With fluid resuscitation, both septic
patients and animal models have been found, in general, to
exhibit a hyperdynamic state [3–5]. This state is character-
ized by elevated cardiac output, increased oxygen delivery
(DO2), decreased systemic vascular resistance (with or
without decreases in mean arterial blood pressure [MAP]),
and increased tissue oxygen consumption (VO2), but impaired
oxygen extraction capacity [6,7] and lactic acidosis. The latter
two observations have led to the concept that microvascular
injury, impaired microvascular control, and maldistribution of
microvascular blood flow induce a tissue oxygen debt [8],
and the theory that inefficient matching of microvascular
oxygen supply (qO2) to oxygen demand (dO2) impairs oxygen
extraction [9,10]. This is manifested by a pathologic oxygen
supply dependency, whereby VO2 is dependent on DO2, and
a decreased critical oxygen extraction ratio (O2ER) [11,12].

Global measures of hemodynamic and oxygen transport para-
meters, including cardiac output, arterial pressure, vascular
resistance, blood gases, oxygen consumption, oxygen extrac-
tion and lactate, provide whole body information on the status
of the cardiovascular system in the critically ill patient.
Although serum lactate has been widely used as an indicator
of tissue hypoperfusion, decreased tissue oxygenation, and
anaerobic metabolism [13], recent evidence suggests that
blood lactate concentration may also reflect altered pyruvate
dehydrogenase [14,15] and Na+,K+-ATPase [16] activity, and
increased glycolysis rate [17]. Global oxygen transport para-
meters, however, fail to measure or assess the status of the
microcirculation [18], which is vital to organ function because
it is the microcirculation that delivers and distributes oxygen,
nutrients, and inflammatory and coagulation factors through-
out the tissue and removes metabolic waste products, heat,
and carbon dioxide.

To obtain information on the functional state of the microcir-
culation, tissue oxygenation, bioenergetic, or redox status of
an organ, a variety of techniques have been used both experi-
mentally and clinically. Laser Doppler flowmetry provides a
relative signal of red blood cell (RBC) flow [19,20] from an
unknown tissue volume, whereas intravital videomicroscopy
(IVVM) provides real-time images of microvascular geometry
and blood flow, from which microvessel diameter [21–24],
functional capillary density [19,25–27], and intercapillary area
[28,29] can be determined. Combined with video analysis
tools and dual wavelength spectrophotometry, IVVM has
allowed the quantification of capillary hemodynamics (RBC
velocity, RBC lineal density, and RBC flux/supply rate)

[19,30,31] and erythrocyte hemoglobin oxygen saturation
(RBC SO2) [30]. Analysis of microvascular blood velocity in
the finger nail-bed [32] and, more recently, orthogonal polar-
ization spectral imaging of the sublingual microcirculation
[33,34] have brought microvascular imaging to the bedside,
but with reduced spatial resolution.

Oxygen tension (PO2) has been assessed by oxygen micro-
electrodes inserted into the tissue of patients and animal
models [35–37], by palladium porphyrin phosphorescence
quenching, which detects the presence of intravascular or
tissue PO2 [38], and indirectly by hypoxic markers [39]. The
bioenergetic status of tissue has been determined by ATP
analysis [35] and inferred from nicotinamide adenine dinu-
cleotide (reduced form; NADH) fluorescence imaging studies
[38]. Although the diaphragm [40], cremaster muscle
[24,41–43], heart [38,44], and now sublingual microcircula-
tion [33,34] have been investigated, much of our current
understanding of the functional state of the septic microcircu-
lation has come from studies conducted in intestinal mucosa
[10,22,23,27–29,31,38,45], liver [46–49], and skeletal
muscle [19,21,25,26,30,50] because of the suitability of
those tissues for in vivo optical examination.

This paper reviews and considers the fundamental concepts
of oxygen transport and the effect of microvascular dysfunc-
tion on oxygen transport during sepsis. Aspects of nitric oxide
(NO) biology relevant to microvascular function, global and
local oxygen transport, and mitochondrial respiration are also
discussed.

The microcirculation as a functional system
for distributing blood flow
The cardiovascular system circulates blood throughout the
body, but it is the microcirculation, in particular, that actively
and passively regulates the distribution of RBCs and plasma
throughout individual organs (Fig. 1). Blood flow into an organ
is controlled upstream of the capillary networks or vascular
beds by the vascular tone of the resistance vessels compris-
ing the arteriolar network. These vessels are surrounded by
smooth muscle that either constricts or relaxes in response to
the balance between pressor and dilatory stimulation. Locally,
vascular tone controls the diameter of the resistance vessels,
the blood flow through them, and the pressure drop across
the microvascular beds. Globally, vascular tone controls the
systemic and pulmonary blood pressures.

Downstream of the arterioles, microvascular RBC flow is pas-
sively distributed throughout the capillary networks [51] and
other vascular beds such as the liver sinusoids, according to
local vessel resistance (diameter and length) and hemorheo-
logic factors (blood viscosity and RBC deformability). RBCs
are forced to deform and travel single file, often separated by
plasma gaps, as they pass through vessels that are of smaller
diameter then their own. This distinctive microvascular flow
behavior maximizes the surface area available for gas
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exchange between the RBC and the local environment.
Surprisingly, passive rheologic mechanisms appear to play a
greater role than arteriolar heterogeneity in determining capil-
lary heterogeneity and functional capillary density, especially
at low flow states [51]. Passive rheologic mechanisms are
also responsible for the Fahreaus effect (i.e. the drop in
vessel hematocrit along the arteriolar tree to the capillary
bed). In the skeletal muscle of septic rats, we have observed
that stopped-flow capillaries have lower hematocrit, or lineal
density (RBC/mm), than do neighboring flowing capillaries.
Neither the implications nor the cause and effect relationship
of this phenomenon is clearly understood.

In hyperdynamic sepsis progressive arteriolar constriction in
the small intestine occurs at all levels of the microvascular
arteriolar network, causing a decrease in blood flow to this
organ [23] and thus contributing to impaired villus microcircu-
lation [29,45]. In cremaster muscle [24,41] and the
diaphragm [40], however, there is a differential arteriolar
response in which arterioles with larger diameter vasocon-
strict and those with smaller diameter vasodilate. Similarly,
bacteremia causes a differential response in liver microves-
sels in which two-thirds of the inlet periportal sinusoids and

portal venules and outlet distal centrilobular sinusoids and
central venules dilate, whereas the remaining microvessels
constrict [46]. In addition, Zhao and coworkers [22] reported
that sepsis induces a differential sensitivity to acetylcholine in
the arteriolar networks of the splanchnic circulation.

The endothelial cell is a critical component of the highly inte-
grated microvascular system and plays an obligatory role as a
signal transducer of shear stress [52,53] and vasoactive sub-
stances [54], including acetylcholine, catecholamines,
prostaglandins, endothelin, bradykinin, thromboxane, adeno-
sine, nitrosothiols, and ATP. Moreover, endothelial cells
conduct and integrate local stimulatory signals throughout
the microcirculation [55] via cell–cell communication. During
endotoxemia endothelial dysfunction disrupts the microvascu-
lar communication system [56] and seemingly contributes to
abnormal tissue perfusion [57].

The microcirculation is an integrated system designed to
ensure that oxygen delivery meets or exceeds cellular oxygen
demand throughout the tissue. Within the context of the car-
diovascular system, oxygen transport can be considered to
be a flow of oxygen from the lungs (high ‘PO2) to the tissues
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Figure 1

Schematic representation of global and microvascular oxygen (O2) transport parameters. Arteriolar tone establishes the blood flow into an organ,
and capillary resistance and rheology factors determine red blood cell (RBC) distribution (heterogeneity) within the capillary bed. Capillary
hemodynamics are quantified as RBC velocity (V), lineal density (LD), and supply rate (SR) or flux. Capillary O2 transport (qO2) is determined by
capillary SR, RBC hemoglobin O2 saturation (SO2), and the O2 carrying capacity of the RBC (K).
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(low ‘PO2), involving both convective and diffusive transport
mechanisms (Fig. 2).

Diffusive oxygen transport
Oxygen diffuses over relatively short distances down its
partial pressure (PO2) gradient. PO2 gradients exist along the
blood vessels and into the tissue (Fig. 2). In 1919 the physiol-
ogist August Krogh and mathematician Karl Erlang developed
a mathematical model of oxygen transport based on simple
cylindrical geometry and the assumption that each capillary
supplied a unique tissue volume [58]. Today, we know that
oxygen diffuses from arterioles [59] and capillaries in any
direction based solely on the local PO2 gradient; however, the
Krogh model is still instructive, especially under conditions of
diffusion limitation. Oxygen diffusion is limited by oxygen solu-
bility (k), oxygen diffusivity (D), and the PO2 gradient
(dPO2/dr). The critical oxygen diffusion distance, which is the
maximum distance that mitochondria can be away from an

oxygen source without impaired function, is determined by
these oxygen diffusion parameters and by capillary PO2 and
tissue oxygen consumption. Typical diffusion distances may
range from 10 to hundreds of microns. Whether tissue is
adequately oxygenated is then ultimately determined by local
microvascular oxygen delivery, critical oxygen diffusion dis-
tance, and intercapillary distance.

The PO2 gradient drives the net movement of oxygen from a
region of high PO2 to a region of low PO2; as such, as the PO2
gradient increases so to will the flux of oxygen, or the amount
of O2 that diffuses out of the vessel per unit surface area per
unit time. Oxygen flux is described mathematically by Fick’s
first law of diffusion:

Oxygen flux = –kD × dPO2/dr (1)

The negative sign in the expression converts the negative
slope of the gradient to a positive value. It is diffusion that
facilitates the movement of oxygen in the lung alveolus to
RBCs in capillaries surrounding the alveolar wall and from the
RBCs in the microvasculature into the tissue.

Convective oxygen transport and the
erythrocyte
Because oxygen has a low solubility in plasma, it is RBC flow
specifically, and not ‘blood’ (plasma and RBCs) in general,
that determines oxygen delivery; accordingly, the oxygen car-
rying capacity of the erythrocyte, facilitated by hemoglobin
(Hb), is essential to the convective, or bulk, transport of
oxygen over large distances by the blood. Within the RBC, as
it circulates between the lungs and the tissue, oxygen binds
co-operatively with Hb in a manner that alters its tetrameric
conformation, switching it from a relaxed, high oxygen affinity
structure to a tense, low oxygen affinity structure as Hb alter-
nately acquires oxygen and releases it to the local environ-
ment. The physiologic significance of the Hb–oxygen
interaction is reflected in the sigmoidal nature of the oxygen
dissociation curve. The affinity of Hb for oxygen can be
affected by temperature, pH, the Bohr effect, and NO
[60,61], in which S-nitrosohemoglobin increases the affinity
of Hb for oxygen [62].

In vitro, in vivo, and theoretical evidence [63–66] suggests
that the RBC releases vasoactive ATP and nitrosothiols in
response to increased PO2 gradients and mechanical defor-
mation [67]. In theory, the erythrocyte ‘senses’ the local PO2
gradient through a conformational change in the Hb molecule
and signals the microvasculature to vasodilate. Thus, the
RBC is integrated into the microvascular system as both a
deliverer and sensor of oxygen (Fig. 3).

During sepsis the mechanical properties of the RBC, includ-
ing membrane deformability and shape recovery, are progres-
sively altered such that the RBC becomes less deformable
[26,68,69]. Condon and coworkers [70] reported that
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Figure 2

Schematic representation of convective and diffusive oxygen (O2)
transport in the microcirculation. O2 is carried by the red blood cell
(RBC; convective transport) from the lung microcirculation to the
tissue microcirculation. As the RBC traverses the vascular bed it
‘offloads’ O2 to the neighboring tissue; O2 then diffuses from the
capillary to the tissue mitochondria, where it is consumed. Local
oxygen tension (PO2) gradients are established along the capillary
vessel, as the RBC hemoglobin (Hb) O2 saturation (SO2) decreases,
and into the tissue with the latter acting as the driving force of O2
diffusion.
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‘elderly’ RBCs, comprising 20% of the circulating erythro-
cytes, were most susceptible to decreased deformability and
that Hb content decreased in a large fraction of the RBCs
during sepsis. The accumulation of rigid erythrocytes sug-
gested to the authors that the erythrophagocytic capacity of
mononuclear phagocytes had been overwhelmed during
sepsis [70]. Although a cause and effect relationship has not
been demonstrated, a change in blood rheology does appear
to be a factor in the loss of functional capillary density [26]
and peripheral shunting [68] during sepsis. What effect
sepsis has on RBC oxygen sensing and signaling mecha-
nisms is unknown.

In larger blood vessels, convective oxygen transport is calcu-
lated as the product of blood flow (Q [ml/s]), Hb concentra-
tion (g/dl), Hb SO2 (%), and the oxygen-binding capacity of
Hb (C [oxygen/Hb]).

Convective oxygen transport = Q × Hb × SO2 × C (2)

In the microcirculation, capillary hemodynamics can be quan-
tified as either RBC flux [31] or as an RBC supply rate (SR)
[30]. RBC flux or SR (RBC/s) account for both RBC velocity
(V [µm/s]) and capillary hematocrit or RBC lineal density (LD
[RBC/mm]). Since RBC flux implies movement of RBC per
unit area, we prefer the term RBC SR.

SR = V × LD (3)

Similar to convective oxygen transport in larger vessels,
oxygen flow in capillaries (qO2) can be calculated from the
RBC SR, the RBC SO2, and the oxygen carrying capacity of a
single RBC (K = 0.0362 ml oxygen/RBC at 100% SO2) [30].

qo2 = SR × So2 × K (4)

Capillary oxygen transport parameters, capillary O2ER
(O2ERc), and capillary oxygen flux (O2 fluxc) can be calcu-
lated from capillary oxygen flow rates at the capillary entrance
(en) and exit (ex) and the capillary surface area, as deter-
mined by local capillary dimensions length (L) and diameter
(d), respectively.

O2ERc = {qO2(en) – qO2(ex)}/qO2(en) (5)

O2 fluxc = {qO2(en) – qO2(ex)}/πdL (6)

Local differences in capillary hemodynamics give rise to
microvascular flow heterogeneity and subsequently oxygen
flow heterogeneity within the organ (Fig.1). The relationships
between microvascular geometry, capillary hemodynamics,
functional capillary density, and oxygen transport are of partic-
ular importance in the pathophysiology of sepsis because the
systemic inflammatory response induces remote microvascu-
lar derangements and dysfunction that may contribute to
tissue injury and ultimately organ failure in septic patients.

Microvascular stopped-flow in sepsis
One of the most striking manifestations of increased
microvascular heterogeneity during sepsis is an increase in
microvascular stopped-flow (Fig. 4), specifically capillary or
sinusoidal ischemia. This is evident in skeletal muscle
[19,25,26,30], intestinal villi [27–29,31,45], diaphram [40],
sublingual [33,34], and liver [46,47] microcirculation. IVVM
studies have found that capillary stopped-flow results in a
loss of functional capillary density and an increase in inter-
capillary distance in skeletal muscle [19,26], increased inter-
capillary area in the intestinal villi [28,29], and decreased
numbers of perfused liver sinusoids [46]. In septic patients it
is unknown whether decreased sublingual microvascular flow
index [33] or vessel density [34] correlates with putative
losses of microvascular or capillary density in other organs.

The loss of functional capillary density in skeletal muscle
occurs early during the progression of experimental sepsis and
is associated with both a loss of RBC deformability and an
over-production of NO [26]. Although Laser Doppler flowmetry
has detected the presence of dysfunctional microcirculation on
the basis of attenuated reactive hyperemia in skeletal muscle
[19,20], it is unable to discriminate fundamental capillary
stopped-flow or flow heterogeneity induced by sepsis. While
the exact mechanism of microvascular stasis is still to be deter-
mined, it is clear that sepsis causes local regions of ischemia in
the tissue by virtue of capillary stopped-flow.

A combination of inflammatory and coagulation mediated
factors [71] may contribute to microvascular stasis, including
fibrin deposition, altered RBC deformability [26], aggregation
[72] or adhesion [73] properties, increased leukocyte adhe-
sion and reduced leukocyte deformability [44], endothelial
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Figure 3

The red blood cell (RBC) as a deliverer and ‘sensor’ of oxygen (O2). By
altering its conformation, hemoglobin facilitates the release of
nitrosothiol (RSNO; nitric oxide [NO] derivative) or ATP in response to
increased O2 tension (PO2) gradients or mechanical deformation. Both
RSNO and ATP evoke vasodilation, with the latter being NO mediated.
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swelling, reduced or altered driving pressures in the microcir-
culation, or the development of putative microthrombi [74].
Neither tissue edema nor leukocyte adhesion in postcapillary
venules is the apparent cause, at least in skeletal muscle
[25,50]. In liver, increased leukocyte rolling and adhesion is
associated with decreased sinusoidal flow velocity [75],
raising the possibility that leukocytes are affecting microvas-
cular blood flow in this organ, although the precise relation-
ship between adhesion and flow is unknown. Although it has
been proposed that platelet–fibrin clots occlude microves-
sels, the role that platelets play in capillary stopped-flow is
also unknown. Capillary stopped-flow appears to be indepen-
dent of arterial pressure because both diaphragmatic capillar-
ies and mucosal capillaries were more likely to shut down in
septic relative to control animals with a similar degree of
hypotension [31,40]. In our 6-hour acute and 24-hour chronic
sepsis models [26,30] we also observed reversal of capillary
flow in skeletal muscle, indicating that significant fluctuations
in pressure gradients have occurred across the vascular bed.

Fluid resuscitation, tissue oxygen tension,
and microvascular derangements
Sepsis induces decreases in liver, gut, and skeletal muscle
tissue PO2 [35,36,76,77]. Fluid resuscitation has been
demonstrated to apparently rescue skeletal muscle microcir-
culation in terms of oxygen transport by improving PO2
[35,36]. However, despite this apparent improvement in
microvascular function tissue ATP remained depressed and
lactate remained elevated [35] (Fig. 5), suggesting that tissue
PO2 was not a reliable indicator of bioenergetic status during
sepsis, or conceivably of anaerobic metabolism. It has been
argued that increased tissue PO2 during sepsis indicates a
decrease in the ability of tissue to consume oxygen [35,78]
and that this may be due to mitochondrial failure or cytopathic
hypoxia [79].

Subsequently, a more detailed evaluation of skeletal muscle
oxygen transport at the individual capillary level in a fluid
resuscitated, 24-hour normotensive rat model of sepsis
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Figure 4

Sepsis induced capillary stopped-flow and increased effective tissue volume. (a, b) Consecutive microvascular variance images of the same rat
skeletal muscle capillary bed at different times during the progression of sepsis. (Variance images depict the change in light intensity at each pixel
in the field of view, from a 30 s video sequence. Perfused capillaries appear as dark lines, and the tissue background is white.) Sepsis increased
capillary stopped-flow, reduced functional capillary density, and increased the effective tissue volume supplied by the remaining vessels. The latter
is depicted in (c). RBC, red blood cell.
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demonstrated that the microcirculation was not rescued by
fluid resuscitation [30]. Using in vivo spectrophotometric
imaging that simultaneously determined skeletal muscle
microvascular geometry, capillary hemodynamics, and ery-
throcyte Hb SO2 in normally perfused capillaries (i.e. capillar-
ies with RBC velocity 20–325 µm/s), we found that O2ERc
actually increased by a factor of three in septic rats, indicat-
ing an increase in oxygen flux out of the capillary into the sur-
rounding tissue.

In the same muscle capillary beds we observed a threefold
increase in the ratio of fast flow (i.e. RBC velocity
> 325 µm/s) to normal flow capillaries, and a fourfold increase
in capillary density of stopped-flow. Technical limitations pre-

vented the determination of hemodynamic parameters in the
fast flow vessels, but their appearance indicated that some
local regions of tissue were clearly over-supplied with oxygen
whereas other areas – those supplied by capillaries exhibiting
increased O2ERc – were clearly under-supplied with oxygen.
This was evidence of a maldistribution of RBC flow at the
capillary level and a mismatching of local oxygen supply with
local oxygen demand. These findings also indicated that the
septic microcirculation had lost its ability to regulate capillary
blood flow because it was unable to redistribute RBCs to
regions of low PO2 and increased oxygen demand. The pres-
ence of an increased proportion of fast flow vessels, adjacent
to stopped-flow capillaries, suggested that oxygen might
have been shunted through the capillary beds via these
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Figure 5

Relationships between global hemodynamics, tissue oxygen tension (PO2), and skeletal muscle lactate and ATP. In a 6-hour rat model of sepsis
(cecal ligation and perforation [CLP]), fluid resuscitation was found to prevent decreases in systemic oxygen delivery (DO2) and tissue PO2 in
skeletal muscle (tPO2). This apparent rescue of the muscle microcirculation was belied by elevated lactate and reduced ATP. *P < 0.05, versus
control. FR, albumin fluid resuscitation; MAP, mean arterial pressure. By permission from Circ Shock 1988, 26:311-20 [35].
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vessels. Mathematical modeling of these vessels may provide
insight into their oxygen transport properties.

This putative shunting mechanism in skeletal muscle is sus-
pected to be quite different from that proposed to exist in
either the gut or the heart. In these organs it has been pro-
posed that fundamental ‘microvascular weak units’ [38] exist
that are bypassed during sepsis or low flow conditions.
Although the exact microvascular geometry of such microvas-
cular weak units has not been demonstrated, entire microvas-
cular beds, rather than single capillaries, may be
compromised. In the liver, Unger and coworkers [46]
reported an intrahepatic redistribution of blood flow in which
blood was channeled away from constricted vessels to
vasodilated vessels. Taken together, these data demonstrate
that sepsis creates microvascular heterogeneities or ineffi-
ciencies in the matching of local oxygen delivery to local
oxygen demand in these organs, which may contribute to a
local tissue oxygen debt and organ dysfunction.

Capillary stopped-flow and increased
capillary oxygen extraction
Although increased local oxygen consumption [6,7] could
account for increased capillary oxygen extraction in skeletal
muscle in 24-hour septic rats [30], a positive correlation
between capillary oxygen extraction and the degree of
regional capillary stopped-flow (Fig. 6) indicates that, as
stopped-flow increases, the remaining functionally normal
capillaries offload greater amounts of oxygen to the surround-
ing tissue. There is no evidence of capillary recruitment. That
vessels with high flow were unable to compensate for the
loss of perfused capillaries is supported by the correlation
between increased oxygen extraction and stopped-flow. The
dysfunctional aspect of oxygen transport in the septic micro-
circulation is realized with the Krogh cylinder model (Fig. 4c).
The effective tissue volume supplied by a capillary actually
increases as the degree of capillary stopped-flow increases;
hence, local capillary oxygen extraction necessarily increases
to meet the increased oxygen demand imposed on it by the
increased tissue volume surrounding it.

A loss of functional capillary density has been found to
increase intercapillary distances in skeletal muscle and
intestinal villi [19,31], but whether convective oxygen flow
was sufficient and oxygen diffused over these increased dis-
tances is unknown. In the ileum of septic rats, oxygen trans-
port is further compromised by increased flow motion with
longer periods of capillary stopped-flow [29]. Although
Hotchkiss and coworkers [39] did not detect cellular hypoxia
using [18F]fluoromisonidazole in either the skeletal muscle,
brain, liver, heart, or diaphragm of septic rats, it is possible
that a mismatch in tissue qO2/dO2 impaired oxygen extraction
in the gut and heart [9,10].

It is important to realize that fluid resuscitation in the animal
model did not prevent loss of functional capillary density, or

restore microvascular regulation or the qO2/dO2 mismatch in
the tissue [30]. A similar impairment in microvascular perfu-
sion was detected in septic patients, despite restoration of
intravascular volume [33]. A question that remains unan-
swered is at what stage of sepsis does the microcirculation
actually fail to ensure adequate oxygenation. The report that
early goal-directed therapy in septic patients reduces 60 day
mortality, and fewer patients succumbed to cardiovascular
collapse (in-hospital mortality) [80], raises the possibility that
microvascular dysfunction persists throughout the entire
septic process. The severity of microcirculatory dysfunction
may therefore ultimately determine the severity of organ dys-
function. In light of the above observations, it is important to
consider local geometry, hemodynamics, and oxygen trans-
port as well as the average tissue PO2 when assessing the
extent of tissue oxygenation or the functional state of the
microcirculation during sepsis.

Nitric oxide properties: synthesis, diffusion,
and transport
The gaseous molecule NO is a potent regulator of vascular
tone, a cytotoxic agent, a neurotransmitter, an antioxidant (in
that it reacts with superoxide anion to form peroxynitrite), and,
seemingly, a modulator of overall microvascular integrity,
function, and oxygen transport. This review focuses primarily
on the latter role of NO.

NO is synthesized by the L-arginine pathway in a variety of
cell types including macrophages, neutrophils, platelets,
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Figure 6

Local capillary oxygen extraction ratio (O2ERc) versus regional capillary
stopped-flow (%CDstop). In a 24-hour rat model of sepsis (cecal
ligation and perforation [CLP]), capillary oxygen extraction from
normally flowing capillaries (capillary velocity between 20 and
325 µm/s) was found to correlate with the degree of regional capillary
stopped-flow. As capillary stopped-flow increased, the RBCs offloaded
increased amounts of oxygen. (CLP group: y = 0.018x – 0.18;
r2 = 0.64; P < 0.05.) By permission from Am J Physiol Heart Circ
Physiol 2002, 282:H156-H164 [30].
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endothelial, and smooth muscle and parenchymal cells by a
family of nitric oxide synthase (NOS) enzymes. They are cate-
gorized as type I (calcium dependent, inducible, neuronal,
nNOS), type II (calcium independent, inducible, iNOS), or
type III (calcium dependent, endothelial or constitutive,
ecNOS, eNOS, or cNOS). L-arginine analogs function as
nonspecific NOS inhibitors; guanidine (aminoguanidine),
isothiourea (aminoethyl-isothiourea), acetamide (N-[3-
(aminomethyl) benzyl]acetamide.2HCl, or 1400W), and lysine
(L-N6-[1-iminoethyl]lysine, or L-NIL) derivatives have partial
iNOS inhibition selectivity; and nitroinadozole has partial
nNOS selectivity.

Under normal conditions, a small amount of NO is produced
in endothelial cells by the constitutively expressed NOS
enzyme in response to receptor mediated and shear stress
vasodilatory stimuli [81,82]. As a gas, NO diffuses down its
concentration gradient, from endothelial cell to smooth
muscle cell, where it opposes sympathetic or chemically
mediated vasoconstriction of arterioles by relaxing smooth
muscle in a guanylate cyclase mediated reaction. NO also dif-
fuses into the microvascular lumen where it regulates RBC
[83] and leukocyte deformability [44], leukocyte–endothelial
adhesion in mesenteric and skeletal muscle postcapillary
venules [84,85], and platelet adhesion and aggregation
[86,87]. NO has also been reported to both maintain and,
during endotoxemia, increase vascular permeability in the
intestine, heart, liver, and kidney [88,89]. Taken together, NO
is an important factor in maintaining the integrity of blood flow
through the microcirculation by regulating resistance vessel
diameter, blood rheology, interaction between cellular blood
elements and the vascular wall, and blood volume.

NO has been reported to be transported from the lungs to
the tissue via S-nitrosation of the Hb β-chain cysteine 93 thiol
group (SNO-Hb) [65,90] and released in the microcirculation
as a low molecular weight nitrosothiol (RSNO) with vasorelax-
ant properties. The mechanisms of formation and release of
NO from RSNO species are not completely understood [91].
Feelisch and coworkers [92] have also found considerable
species variation in the amounts and ratios of RSNOs,
nitrosamines, and nitrosylhemes. Although providing evidence
that intravascular transfer of NO occurs between SNO-Hb
and nitrosated albumin, Gladwin and coworkers [93] con-
cluded that in human circulation these nitrosated species had
little effect on regulating vascular tone.

In human NO breathing experiments, in which exogenous NO
counteracted the vasopressor effect of nonspecific NOS inhi-
bition in the forearm, Cannon and coworkers [94] reported
that NO reacted predominantly with the heme moiety of Hb
forming either nitrosyl(heme)hemoglobin (Hb[FeII]NO) with
deoxyhemoglobin or, consistent with a NO scavenging role
by the RBC [95], methemoglobin (FeIII) and nitrate (NO3

–)
with oxyhemoglobin. The authors argued that remote vasodi-
lation was mediated either by direct NO release from

Hb(FeII)NO, indirectly via a SNO-Hb intermediate, or by
nitrite (NO2

–) bioconversion to NO [94]. In similar human
studies, intravenous infusion and bolus injection of NO and
RSNO in the brachial artery increased both artery diameter and
forearm blood flow [96,97]. Here, the authors concluded that
NO was transported as both free and nitrosative, RSNO, forms.

Caveats with respect to interpreting data from functional
studies investigating NOS inhibition are that NO levels in
tissue or plasma are often unknown, inhibition of NO over-
production is significant but incomplete, and the degree and
specificity of NOS inhibition are unknown. Additionally, the
reader should bear in mind that, during sepsis, NO functions in
a ‘sepsis milieu’ of increased levels of reactive oxygen species
and endogenous vasopressors, especially endothelin, which is
upregulated [98] during sepsis and independent of NO
inhibition [99]. Comparison of data can also be confounded by
differences in animal models and the timing of the NOS
inhibition (i.e. pretreatment versus delayed administration).

Nitric oxide over-production and time course
during sepsis
During the progression of sepsis, proinflammatory cytokines
tumor necrosis factor-α and interleukin-1, and lipopolysac-
charide (LPS) stimulate the upregulation of iNOS [100]
throughout the organs [101] and nNOS in brain and skeletal
muscle [102]. Various LPS and cecal ligation and perforation
(CLP) models of sepsis have shown rapid but transient
increases in iNOS and nNOS mRNA expression followed by
or commensurate with increased NOS activity and increased
levels of NO oxidized metabolites, namely NO2

– and NO3
–

(NOx
–), in tissue and plasma.

Following LPS treatment, iNOS mRNA in rat kidney appeared
by 60 min, peaked at 2–4 hours along with plasma NOx

–, and
declined by 16 hours [103]; nNOS mRNA in rat brain
increased by 2 hours whereas iNOS mRNA increased by
3 hours, with both NOS isoforms returning to baseline by
12 hours [104]; and iNOS mRNA in the small intestine was
detected at 1 hour, peaked at 4 hours, and was faint at
24 hours [105]. In dogs treated with LPS, iNOS activity was
increased in the liver by 4 hours and in the heart by 6 hours
[106]. Infusion of Staphylococcus aureus cell wall components
caused progressive increases in iNOS activities in thoracic
aorta, lung and liver, and plasma NOx

– from 2 to 6 hours [107].

In rats subjected to CLP, Sheih and coworkers [108] found
that tissue NOx

– levels increased from 5 to 10 hours in
kidney, gut, heart, liver, and lungs commensurate with
increased iNOS mRNA and increased plasma NOx

–. Also in
CLP rats, thoracic aorta and lung iNOS protein and activity
increased by 6 hours and remained elevated for 48 hours,
whereas cNOS protein and activity progressively decreased
from 6 to 48 hours. Concomitantly, plasma NOx

– increased
by 6 hours, peaked at 12 hours, and remained elevated for
48 hours [109]. The progressive loss of cNOS protein was
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consistent with downregulation of ecNOS protein and mRNA
in bovine coronary venular endothelial cells 8 hours after
exposure to LPS [110].

In septic patients no such NOS/NOx
– time course profiles

have been determined; however, increased plasma NOx
–

[111] and increased skeletal muscle tissue NOx
– [78] have

been reported. In a longitudinal patient study, fluctuating
plasma NOx

– levels were associated with recurring bacterial
infection over a 28-day period [112]. Plasma NOx

– was also
reported to be inversely related to systemic vascular resis-
tance [113] and positively related to cardiac output [114] in
septic patients.

Effect of nitric oxide over-production on
microvascular reactivity
Under septic conditions iNOS and nNOS are upregulated in
endothelial and muscle cells, respectively [102,115], leading
to over-production of NO in the microvasculature and arteri-
olar dysfunction. In a rat CLP model of sepsis, Gocan and
coworkers [102] reported that microvascular reactivity to
acetlycholine, quantified as changes in arteriolar diameter
and downstream capillary RBC velocity, was impaired in
skeletal muscle by NO and restored by nNOS inhibition.
Interestingly, acetylcholine increased the proportion of per-
fused microvessels in the sublingual microcirculation of
septic patients [34]. Hollenberg and coworkers [42,43]
found that NOS inhibition in CLP rats reversed arteriolar
hyporesponsiveness to catecholamines and endothelin in
cremaster muscle, as measured by changes in arteriolar con-
traction. In another study, iNOS deficient mice were resistant
to vascular hypocontractility [116]. All of these findings
suggest that NO over-production was a factor in refractory
hypotension in sepsis.

The effect of nitric oxide synthase inhibition
on hemodynamics and oxygen transport in
sepsis
In 1990, Kilbourn and coworkers [117] reported that tumor
necrosis factor induced hypotension in dogs could be
reversed by nonspecific NOS inhibition. Subsequently,
numerous clinical [118–122] and animal studies of sepsis
[4,5,123] demonstrated that NOS inhibition prevented or
reversed hypotension, even in septic patients unresponsive to
conventional vasoconstrictor therapy [118,122]. In 48-hour
sheep models of sepsis, both nonspecific and iNOS specific
NOS inhibition reversed hyperdynamic sepsis and normalized
cardiac indices, systemic vascular resistance, and oxygen
extraction [124–126] by peripheral vasoconstriction. In a clin-
ical study of septic shock patients, Broccard and coworkers
[118] reported that nonspecific NOS inhibition increased
MAP and decreased cardiac output, allowed gradual with-
drawl of α-adrenergic support, decreased DO2 and increased
O2ER, but had no effect on VO2, lactate, or splanchnic oxy-
genation. Despite a favorable outcome on MAP in septic
shock patients, a nonspecific NOS inhibition phase III clinical

trial was terminated because of increased mortality arising
from increased cardiovascular failure [127]. Interestingly, acti-
vated protein C, which is currently the only treatment to
reduce patient mortality in severe sepsis [128], has been
found to reduce increased lung iNOS mRNA and activity and
prevent hypotension in a 3-hour LPS rat model of sepsis
[129].

The effect of inhibiting NO over-production on microvascular
geometry, hemodynamics, and oxygen transport is less well
characterized. Nonspecific NOS inhibition normalized
cardiac output but exacerbated vasoconstriction in the small
intestine of rats infused with Escherichia coli [130]. In dogs
treated with LPS for 3 hours, Walker and coworkers [131]
reported that nonspecific NOS inhibition normalized gut and
hind limb vascular resistance with negligible effect on
oxygen extraction or oxygen uptake. In ex vivo rat endotox-
emic hearts, nonspecific NOS inhibition resulted in
decreased coronary blood flow and myocardial ischemia as
measured by increased NADH fluorescence [132]. The
same reduction in coronary blood flow in normal hearts had
no effect, suggesting that hyperdynamic sepsis masked an
underlying myocardial microvascular dysfunction. In liver,
nonspecific NOS inhibition in 2-, 3-, and 8-hour models of
sepsis decreased sinusoidal blood flow and increased both
the number of nonperfused sinusoids and leukocyte adhe-
sion in sinusoids and postsinusoidal venules [48,49,75].
Huang and coworkers [133] also reported that both nonspe-
cific and partially specific NOS inhibition with aminoguani-
dine exacerbated 7 hour LPS induced decreases in blood
velocity and hemoglobin oxygenation in liver sinusoids. Liver
hypersensitivity to the pressor effect of endothelin may
account, in part, for NOS inhibition exacerbating decreased
liver hemodynamics during sepsis [98]. Although fluid resus-
citation restored skeletal muscle tissue PO2 in a 3.5-hour rat
LPS model of sepsis, concurrent nonspecific NOS inhibition
reduced tissue PO2 [36].

Maintaining plasma NOx
– at baseline in a 6-hour rat CLP

model of sepsis using the iNOS inhibitor aminoguanidine
attenuated the loss of functional capillary density in skeletal
muscle [26]. In the ileum, aminoguanidine was found to atten-
uate LPS induced decreased oxygen consumption [134].
However, the specific iNOS inhibitor 1400W had no effect
on decreased intestinal perfused villi or oxygen extraction in a
24-hour pig LPS model of sepsis [135]. The effectiveness of
NOS inhibition in this study, however, is uncertain because
portal venous NOx

– levels remained elevated. In 6-hour endo-
toxemic pigs, the more selective iNOS inhibitor aminoethyl-
isothiourea normalized hepatic artery blood flow and partially
restored portal venous flow [136]. Although liver oxygen
extraction remained above baseline, interestingly, liver oxygen
consumption increased. In an 8-hour rat ischemia/reperfusion
LPS model in which nonspecific and partially specific iNOS
inhibition by aminoethyl-isothiourea reduced plasma NOx

– by
33% and 44%, respectively, liver microvascular blood flow,
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as assessed by Laser Doppler flowmetry, decreased dramati-
cally in both cases [137].

Alternatively, evidence from NO donor studies suggest that
increased NO production may preserve or protect microvas-
cular blood flow. Sodium nitroprusside attenuated the loss of
perfused liver sinusoids in a rat LPS model of sepsis [47],
administration of nitroglycerin to fluid resuscitated septic
patients increased sublingual microvascular flow index [33],
and the NO donor 3-morpholinosydnonimine decreased criti-
cal oxygen delivery and increased critical oxygen extraction
ratio in dogs treated with LPS [4], indicating that increased
NO improved the matching of microvascular oxygen delivery
with oxygen demand. NO over-production may also have
caused an apparent rebound in liver perfusion at a later stage
of sepsis [138]. Taken together with the deleterious effects of
NOS inhibition, these results suggest that NO over-produc-
tion may have a protective effect on microvascular blood flow
by counteracting increased endogenous vasopressor activity
during sepsis; clearly, however, more microcirulatory research
needs to be conducted to assess the role of endogenous NO
during sepsis.

Relationship between nitric oxide,
mitochondrial dysfunction, and oxygen supply
Oxygen is primarily consumed at the inner membrane of the
mitochondrion by the redox reaction, which simultaneously
oxidizes cytochrome c and reduces oxygen to water. The
reaction is catalyzed by the terminal enzyme of the electron
transport chain, namely cytochrome c oxidase (or cytochrome
a,a3). Several in vitro studies have reported that NO inhibits
cytochrome c oxidase [139–142]. Moreover, Torres and
coworkers [140] found that the degree of inhibition is deter-
mined by the oxygen concentration (Fig. 7). Their data also
indicate that inhibition is reversible and suggest that NO and
oxygen compete for the same binding site on cytochrome c
oxidase, although the precise nature of the inhibition is
unknown. In vitro studies of rat aorta endothelial cells have
shown that NO inhibits mitochondrial respiration in an oxygen
dependant manner [143]. From the standpoint of the septic
microcirculation, these findings raise the intriguing possibility
that sepsis induced microvascular oxygen transport dysfunc-
tion and NO over-production contribute to both tissue
hypoxia and mitochondrial inhibition.

Near infrared spectroscopy of baboon forearm muscle in an
E. coli infusion and fluid resuscitated model of sepsis found
progressive changes in the redox state of cytochrome a,a3
that correlated with ultrastructural changes in the mitochon-
dria despite minimal changes in global DO2, VO2, and oxygen
extraction [144]. The authors concluded that abnormalities in
muscle oxygen metabolism and mitochondrial function were
the result of an early defect in oxygen supply followed by a
progressive loss of cytochrome a,a3 function. In human septic
patients it was recently reported that increased NO levels in
muscle (measured as NOx

–) are associated with mitochondr-

ial dysfunction, decreased ATP concentration, organ failure,
and eventual outcome [78].

Conclusion
Since the mid-1950s it has been known that sepsis induces
profound derangements in cardiovascular function. More
recently, information acquired on the functional state of the
microcirculation in intestine, liver, and skeletal muscle has
shown that sepsis induces profound changes in microvascu-
lar geometry, hemodynamics, and oxygen transport.
Increased microvascular stopped-flow results in a maldistrib-
ution of RBC flow within the microcirculation and a mismatch-
ing of local oxygen delivery with oxygen demand. Remaining
functional capillaries compensate for decreased functional
capillary density by offloading more oxygen to the surround-
ing tissue; nevertheless, increased oxygen flow heterogeneity
seemingly impairs oxygen extraction by increasing critical
oxygen delivery and decreasing the critical oxygen extraction
ratio. Abnormal microvascular oxygen transport also indicates
that regulatory mechanisms have become dysfunctional and
suggests that local cellular environments, as such, have been
dramatically altered. The loss of capillary blood flow may
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Figure 7

Dependence on oxygen concentration of the percentage of inhibition
of cytochrome c oxidase by nitric oxide (NO). For equal concentrations
of cytochrome c oxidase and NO (1.2–1.8 µm) oxygen was found to
compete with NO when the enzyme enters turnover. Each data point
represents a different experimental setup. The results suggest that,
under physiologic conditions, in which oxygen concentration is low,
nanomolar concentrations of NO can regulate mitochondrial
respiration. By permission from Biochem J 1995, 312:169-173 [140].
© The Biochemical Society.
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potentiate the effects of proinflammatory mediators by increas-
ing their residence time in the microcirculation and tissue.

The potent vasodilator NO plays an important, yet complex,
role in microvascular homeostasis. During sepsis, over-pro-
duction of NO has been associated with decreases in blood
pressure, impaired microvascular reactivity, abnormal RBC
deformability, decreased functional capillary density, and
reduced oxygen consumption. Although inhibiting NO during
sepsis increases blood pressure, it also reduces microvascu-
lar blood flow and exacerbates abnormal oxygen transport.
Evidence that NO donors improve microvascular hemody-
namics would seem to suggest that NO over-production pro-
tects microvascular flow and oxygen transport during sepsis,
but clearly more microcirculatory research must be performed
to assess the role of endogenous NO during sepsis.
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