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Abstract: Digestive system cancers—those of the esophagus, stomach, small intestine, colon-rectum,
liver, and pancreas—are highly related to genetics and lifestyle. Most are considered highly mortal
due to the frequency of late diagnosis, usually in advanced stages, caused by the absence of symptoms
or masked by other pathologies. Different tools are being investigated in the search of a more precise
diagnosis and treatment. Plant lectins have been studied because of their ability to recognize and
bind to carbohydrates, exerting a variety of biological activities on animal cells, including anticancer
activities. The present report integrates existing information on the activity of plant lectins on various
types of digestive system cancers, and surveys the current state of research into their properties for
diagnosis and selective treatment.
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1. Introduction

Cancer is a complex process in which genetic alterations modify the ability of cells to transduce
signals, and allow them to acquire new functions, replicate beyond normal limits, evade apoptosis,
and ultimately encroach other tissues [1,2]. Within this process, cell surface glycosylations play a key
role on cell development, signalling, interaction, proliferation, differentiation and migration [3–5].
Digestive system cancers result from a combination of genetic and lifestyle factors that encompass
a wide spectrum of diseases with different clinical characteristics, therapeutic specificities, and life
expectancies [6,7]. They represent an important cause of mortality worldwide, generally related to
late diagnosis due to the absence of symptoms or masking by other pathologies [8]. Inflammation
is a physiological response that has been widely related to the presence of cancer in the digestive
tract [9,10], and for which alterations in the glycosylation of proteins play an important role [11].
Although some epidemiological studies have found that from 10 to 15% of cancers were related to
infections caused by viruses, fungi or bacteria, it has also been found that up to 25% of cancers are
associated with chronic inflammation [12–14].

Most of the drugs currently employed in anticancer therapy seem to affect cell replication and
therefore tumor growth, but they usually have nonselective mechanisms of action that affect vital
macromolecules (such as DNA) or metabolic pathways that are important for both malignant and
normal cells, causing undesirable and potentially toxic effects [15,16]. Efforts to treat cancer have led
research to focus on the use of less toxic and more selective molecules. Membrane glycosylation, one of
the most important facts of cell behaviour, has been pointed to as a valuable target for cancer diagnosis
and treatment [17,18]. Cancer cells display aberrant membrane glycosylation patterns, which vary

Int. J. Mol. Sci. 2017, 18, 1403; doi:10.3390/ijms18071403 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0003-3751-6601
https://orcid.org/0000-0002-8793-9963
http://dx.doi.org/10.3390/ijms18071403
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2017, 18, 1403 2 of 19

depending on the type of cancer and the tumor stage. Among the major glycosylation changes are
the blockage synthesis and the neo-synthesis of carbohydrates, altered branching, and the appearance
of new structures. A greater occurrence of cell surface N-glycans, sialylations, and fucosylations,
the abnormal production of mucin, the expression of Lewis X/A structures in glycosphingolipids
(identified as a tumor antigen), and the increased expression of galectins constitute the main structural
changes that mark the difference between cancer and normal cells. These changes are related with cell
migration, invasion, evasion of immune system, and metastasis [5,19–23].

Lectins are proteins or glycoproteins of non-immune origin that display a ubiquitous distribution
in living organisms, and are particularly abundant in plants. They have the ability to recognize and
bind specifically and reversibly to either free carbohydrates or glycoconjugates, such as glycoproteins,
glycolipids, or polysaccharides, without modifying their structure [24–27]. This type of proteins has
the ability to agglutinate cells or precipitate glycoconjugates detonating a variety of important cellular
processes [28–30]. Hundreds of plant lectins have been purified and characterized in order to investigate
their biochemical properties, carbohydrate binding specificity, and biological functions [31,32], finding
numerous applications in the agronomic and biomedical fields, including anticancer potential [31–34].

2. Potential of Plant Lectins against Cancer

The anticancer potential of lectins can be considered from two main angles: diagnostic and
therapeutic. The first is due to their ability to recognize cancer cells, mainly by the presence of tumor
glycosylations [35,36], which allows for a better diagnosis and prognosis of cancer tumors [37,38]. Their
therapeutic potential is based on their antitumor activity and cytotoxic effects through the induction of
programmed cell death, such as apoptosis and autophagy [27,39–44]; however, the mechanisms of cell
death induction have not been fully unravelled [31].

In vitro studies have found a preferential attachment of some lectins to the membranes of cancer
cells [27,39,45–47], a relevant aspect since selectivity is sought as a tool to improve the effectiveness of
anticancer therapies. For example, mistletoe lectins (Viscum album) have been used on the European
continent for years as alternative adjuvant agents in cancer therapy, lessening the adverse effects of
chemo and radiotherapy, and improving patients’ quality of life [47]. Further, some lectins have the
ability to bind to the gastrointestinal epithelium cells, exhibiting high resistance to intestinal proteolysis
and maintaining their biological activity and carbohydrate affinity intact [48,49]. Table 1 shows the
growing diversity of plant lectins with cytotoxic, antiproliferative, apoptotic, or autophagic effects on
cancer cell lines and on in vivo experiments.
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Table 1. Antineoplastic activity of plant lectins.

Vegetal Source Lectin In Vitro Activity In Vivo Activity References

Abrus precatorius AGG Inhibition of protein synthesis, apoptosis induction. Inhibition of tumor growth and angiogenesis,
apoptosis induction. [50–53]

Allium chinense ACL Antiproliferative effect, apoptosis induction. Not reported. [54]

Arachis hypogaea PNA Antiproliferative effect, apoptosis, and autophagy induction by oxidative stress. Inhibition of tumor growth, apoptosis and
autophagy induction. [46]

Astragalus membranaceus AML Antiproliferative effect, apoptosis induction by caspases. Not reported. [55,56]

Canavalia ensiformis Con A Antiproliferative effect, autophagy, and apoptosis induction via
caspase–mitochondrial pathway.

Inhibition of tumor growth, inhibition of tumor
nodule formation. [57–62]

Glycine max SBL Antiproliferative effect, apoptosis, and autophagy induction by oxidative stress and
DNA damage.

Inhibition of tumor growth, apoptosis, and
autophagy induction. [63]

Momordica charantia MCL Differential antiproliferative effect, apoptosis induction by caspases. Inhibition of tumor growth, apoptosis induction. [64,65]

Morus alba MLL Apoptosis induction. Not reported. [66]

Phaseolus acutifolius TBL Differential antiproliferative effect, apoptosis induction. Not reported. [39,67]

Phaseolus vulgaris PHA Antiproliferative effect, apoptosis induction by death receptors. Not reported. [41,68,69]

Pinellia ternate PTL Antiproliferative effect, apoptosis induction. Inhibition of tumor growth. [70,71]

Polygonatum cyrtonema PCL Differential antiproliferative effect, autophagy, and apoptosis induction by caspases. Not reported. [72–74]

Polygonatum odoratum POL Differential antiproliferative effect, autophagy induction by oxidative stress, and
apoptosis induction via caspase–mitochondrial pathway and death receptors. Not reported. [42,75,76]

Sophora flavescens SFL Antiproliferative effect, apoptosis induction by caspases. Inhibition of tumor growth. [62,77]

Triticum vulgaris WGA Differential antiproliferative effect, autophagy induction. Not reported. [78,79]

Urtica dioica UDA Antiproliferative effect, apoptosis induction. Not reported. [80]

Viscum album ML Antiproliferative effect, apoptosis induction. Inhibition of tumor growth and metastasis,
prolonged survival rate. [81–86]

AGG, Abrus agglutinin; ACL, Allium chinense lectin; PNA, Peanut agglutinin; AML, Astragalus membranaceus lectin; Con A, Concanavalin A lectin; SBL, Soybean lectin;
MCL, Momordica charantia lectin; MLL, Mulberry leaf lectin; TBL, Tepary bean lectin; PHA, Phaseolus vulgaris agglutinin; PTL, Pinellia ternata lectin, PCL Polygonatum cyrtonema
lectin; POL, Polygonatum odoratum lectin, SFL, Sophora flavescens lectin; WGA, Wheat germ agglutinin; UDA, Urtica dioica agglutinin; and ML, Mistletoe lectin.
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3. Plant Lectins against Esophageal Cancer

Esophageal cancer ranks eighth in prevalence and sixth in cancer mortality worldwide [87],
and its incidence is expected to rise within the next few years [88] due to factors such as diet [89,90]
and lifestyle that lead to pathologies such as obesity [91], gastresophageal reflux, and Barrett’s
esophagus [92,93]—themselves risk factors for changes at the cellular level.

Invasive esophageal cancer is a progressive multi-stage process that can be completed in two ways:
by the conversion of normal epithelium to basal cell hyperplasia, dysplasia or carcinoma in situ that
leads to squamous cell carcinoma; or by metaplasia caused by Barrett’s esophagus, which represents a
previous stage and leads to esophageal adenocarcinoma (EAC) [92,94]. However, the elasticity of the
esophagus delays the presence of symptoms [95], so that cancer in this organ is habitually diagnosed
in advanced stages and often in the presence of metastatic disease [96], decreasing the 5-year survival
to less than 15% [97]. Diagnosis is usually invasive and exhibits limitations in the detection of cancer in
its early stages [98]. According to this, and given the fact that esophageal cancer is mostly preceded by
dysplastic and metaplastic changes in tissue, it is important to find biomarkers that allow identification
of alterations at the cellular level, in the early stages of neoplastic formation [96].

At present, there is little evidence on the use of plant lectins as diagnostic agents or adjuvant
treatment of esophageal cancer. However, in a recent study, the topical application of fluorescently
labelled wheat germ lectins (WGA) on ex vivo esophagus tissues showed high affinity and specificity
for sub-expressed glycans in neoplasia originated from Barrett’s esophagus. Identification of dysplasia
was better traced than by white light endoscopy, the technique commonly used for diagnosis [99],
confirming that the use of lectins for optically detecting changes in glycan expression in dysplastic
tissue represents a potential biomarker for the transformation towards EAC [100]. Additionally,
new lectin-based biomarkers have been used for the detection of EAC in serum. A lectin-coated
magnetic bead array, coupled with mass spectrometry and assembled with 20 lectins, mostly from
plants, has distinguished between healthy, Barrett’s esophagus, and EAC phenotypes and will be
subject to further testing [98].

4. Plant Lectins against Gastric Cancer

Gastric cancer (GC) is one of the most aggressive malignancies, occupying the fourth place in
morbidity and the second in mortality among cancers worldwide [101,102]. In spite of a downward
trend in incidence and mortality shown in several countries [103,104], it continues to be a threat in
developing countries [101]. This type of cancer tends to progress from chronic gastritis [105–107],
developing over the course of years and even decades, remaining clinically undetectable in the absence
of specific symptoms [108–110]. Since it is fatal in about 80% of cases [111] due to diagnosis in advanced
stages or even metastasis [110], surgical and chemotherapeutic treatments no longer have the desired
effect [112]. Therefore, it is necessary to find more precise markers that allow more efficient diagnosis
in the early stages [113].

Gastric cancer shows an outstanding aspect within its multifactorial aetiology, which is the
presence of Helicobacter pylori bacteria in up to 95% of cases [114]. This bacterium, classified as a
class I carcinogen since 1994 [115], has the ability to adhere to epithelial cells and the gastric mucosa
by adhesins, extra-membrane proteins that bind to glycosylated receptors from the host, modifying
the glycophenotype and promoting infection and chronic inflammation. The resulting alterations in
the glycosylations affect the activity of cadherins and integrins, proteins that regulate cell–cell and
cell–extracellular matrix interactions, respectively. Proliferation, migration and invasion processes
are affected, facilitating carcinogenesis, and therefore representing important targets in anti-cancer
therapy [116].

The studies that have been carried out using lectins as tools for GC have been focused on diagnosis
due to the differential assessment of healthy and neoplastic tissues, metastasis, or by evaluating
recurrence through the analysis of glycans present in different tissues. Lectin microarrays have been
used to differentiate between gastric ulcer (GU) and GC. For instance, 40 human GU and GC tissue
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samples previously diagnosed by pathologists were analysed by a microarray made up by 37 lectins,
mostly from plants. Differences between the two diseases were found in the glycopatterns, as well
as a higher presence of glycosylations in GC than in GU, which showed higher binding affinity for
MPL (Maclura pomifera) and VVA (Vicia villosa) lectins [117]. Another diagnostically oriented study
evaluated the ability of a microarray of 17 lectins integrated in a microfluidic “lab-on-a-chip” platform
to identify alterations in the glycan structure of biopsies and serum from 39 patients, either healthy
gastric epithelium, type B chronic gastritis associated with H. pylori, type C chronic gastritis, or gastric
adenocarcinoma. The microarray was able to discriminate between the four clinical stages from
tissue samples. For the serum samples, it was only possible to distinguish between normality and
disease. Additionally, it was possible to determine the glycoprofiles of the three disease stages [113].
In another study, the expression of glycans was analyzed through a microarray made up of 45 lectins
in 60 healthy tissues as well as in 60 tissues resected from gastric cancer patients. Twenty-four out
of the 45 lectins tested showed significant differences at binding to cancer tissues in comparison
to healthy tissues; in particular, the BPL lectin (Bauhinia purpurea) showed promise as predictor of
gastric cancer recurrence [118]. Moreover, a microarray constituted of 41 lectins, mostly from plants,
was successfully used to differentiate cancer phenotypes through glycan profiling of 242 advanced GC
tissue samples, and was found to be a more accurate quantitative assessment than immunostaining.
Lymph-node-metastasis-associated lectins were also discerned [119].

On the other hand, recent studies have shifted to analysing the cytotoxic effect of lectins in gastric
cancer as a therapeutic possibility. Pseudomonas fluorescens lectins (PFL) showed cytotoxicity against
human gastric cancer cells (MKN28). A dose-dependent effect on cell viability was shown in doses
of 0.5 µM and higher; however, at lower doses a slight increase in cell viability was observed [120].
The cytotoxic and apoptotic effect of Urtica dioica (UDA) lectins on human gastric cancer cells (AGS)
was likewise tested. The cells were exposed to different concentrations of the lectin for 24 h and a
decrease in cell proliferation and apoptosis induction was observed [80].

5. Plant Lectins against Small Intestine Cancer

Although the small intestine makes up 75% of the gastrointestinal tract and 90% of the total
mucosal surface, the presence of tumors in this organ is rare [121,122], representing only 3% of
malignancies [123]. This situation can be explained by factors such as rapid transit, the content of
circulating fluid, the presence of the enzyme benzopyrene hydroxylase and low bacterial load, which
means less exposure to carcinogens and irritants and less formation of carcinogenic metabolites [124].
However, small intestine cancer prevalence is increasing [122], and like other neoplasias of the
gastrointestinal tract lacks specific symptoms until later stages [125], hindering diagnosis and
appropriate treatment and reducing lifespan.

Food lectins affect intestinal function since they interact with the small intestine epithelial
cells [126] and can remain active for several hours, as they can resist the digestive process. Some of them
show tolerance to variables such as elevated temperatures, acid pH, and digestive enzymes [19,127,128].
The administration of raw leguminous beans or their lectins to rats can provoke effects ranging from
weight loss to death. Chronic exposure to lectins can cause small intestine hyperplasia [129–131].
However, a recent study found that after the administration of Phaseolus vulgaris L. var. Beldia to rats,
some marked structural changes in the small intestine villi were observed, but not weight loss [132].
The evidence described suggests that the feasibility of lectins for the diagnosis or treatment of small
bowel cancer, although no studies have been found on that matter.

6. Plant Lectins against Colorectal Cancer

Colorectal cancer (CRC) ranks third in incidence among all types of cancer and has a mortality
rate of about 50% [133], with a high prevalence in developed countries [134]. Glycosylation alterations
are important changes in the inflammation process, ulcerative colitis, Crohn’s disease, precancerous
adenomatous polyps, hyperplastic polyps, and colon cancer [135]. They usually occur in O-linked
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mucin-type glycans that start with N-acetylgalactosamine (GalNAc), causing the shortening of
O-glycans. Plant lectins can recognize these changes and interact with various colon cell types. Taking
into account that changes in glycosylations have been associated with the presence of CRC [136,137],
and that some lectins remain intact through the intestinal tract [19], they have the potential to be used
as diagnosis or therapeutic tools.

Diagnosis of CRC can take advantage of lectin’s recognition properties. A lectin glycoarray was
used to detect biomarkers that could discriminate between normal, adenoma, and CRC in human
plasma, identified marked differences in CRC and adenomas compared with normal tissues. Changes
consisted of a notable elevation of sialylations and fucosylations in complement C3, histidine-rich
glycoprotein, and kininogen-1, which were identified as useful biomarkers for this disease [138].
In tissue samples, lectin microarrays have been used for the identification of glycan differences between
colon cancer and normal tissues from patients, where Solanum tuberosum lectin (STL) recognized with
high affinity GlcNAcylation, enabling distinction between both types of tissues [139].

Regarding the cytotoxic effects of plant lectins on CRC, in vitro studies have shown that Korean
mistletoe lectins (VCA) exhibit a dose-dependent effect on a cell line of colon cancer (COLO).
Approximately 65% of the treated cells showed apoptosis mediated by the activation of caspases-2, -3,
-8, and -9 and the inhibition of antiapoptotic proteins. COLO cells were inoculated into naked CD1
nu/nu mice and VCA lectins were injected around the tumor mass for 5 weeks. Complete tumor
regression was observed [140]. Lectins from leaves of Morus alba (MLL) exhibited cytotoxic effect
on HCT-15 cells from human colorectal adenocarcinoma and an antiproliferative effect by apoptosis
induction [66]. Additionally, a lectin obtained from Lotus corniculatus (LCL) showed a dose-dependent
antiproliferative effect on HCT116 cells from human colonic carcinoma by apoptosis induction [141].

Lectins from Tepary beans (Phaseolus acutifolius, TBL) exerted a dose-dependent antiproliferative
effect on different cancer cell lines [39,67], particularly on human colorectal adenocarcinoma
CaCo-2 [39]. In vivo studies showed low TBL toxicity in short-term experiments, depending on
the administration route [48,142]. In a study to determine the effect of TBL on colon cancer in rats,
a 6-week intragastric administration demonstrated good tolerability with no toxic effects however;
a 10% decrement of body weight gain was observed [48]. Similarly, an aqueous lectin extract of
Moringa oleifera seeds caused moderate cytotoxicity on HT-29 colon cancer cells. When administered to
mice in a dose of 2000 mg/kg, no signs of acute or systemic toxicity were observed [143].

However, some lectins exhibit contrary effects on cell proliferation. Peanut agglutinin lectin
(PNA) showed a mitogenic effect on HT-29 and SW-1222 cells [144]. This lectin binds to the
Thomsen–Friedenreich (TF) oncofetal carbohydrate antigen that is abundant in colon cancer, adenomas,
and inflammatory bowel disease, and has shown a mitogenic effect on colon epithelial cells,
both in vitro and in vivo. This effect has been related to the mitogen-activated protein kinase
(MAPK) pathway [145]. Colon cancer metastasis is also related to signalling pathways such as
MAPK [146], ribosomal s6 kinase (RSK) via the extracellular signal-regulated kinase (ERK) [147],
proto-oncogene tyrosine-protein kinase (Src) [148], and protein kinase B (Akt) [149,150]. To date,
the T-LAK-cell-originated protein kinase (TOPK) pathway has been described as a regulator of the
metastasis process in colon cancer cells [150]. Therefore, efforts must focus on molecular targets of
signalling pathways to understand the specific effects of lectins on colon cancer.

In vivo studies have shown that some lectins can affect several relevant cellular processes in colon
cancer. Chinese mistletoe lectins (ACML-55) induced antitumor immunity in mice inoculated with
CT26 colon cancer cells, delaying tumor development [151].

7. Plant Lectins against Liver Cancer

Liver cancer is one of the most aggressive cancers, with a high mortality rate worldwide [152].
Its prevalence is higher in Asia and Africa [153], where China accounts for slightly more than half of all
deaths worldwide [154]. Infections by hepatitis B and C viruses are the main risk factor for liver cancer,
accounting for up to 77% of cases [155]. Other important risk factors are alcoholism, smoking, diabetes
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mellitus, metabolic syndrome, and exposure to aflatoxins [154,156], all of which are preventable to
some extent. Up to 90% of primary liver cancer cases are hepatocellular carcinomas [156].

Of interest for diagnosis, Lens culinaris agglutinin (LCA) has been used as a tool for hepatocellular
carcinoma identification, taking advantage of its specific binding to α1-6 fucose [157,158]. Research
concerning the effect of plant lectins on liver cancer cells has determined that wheat germ lectin (WGA)
promotes a high cytotoxic effect [78]. Korean mistletoe lectins (VCA) were tested on the SK-Hep-1
human hepatoma cell line, which expresses p53, and on Hep3B, which does not express p53. A dose-
and time-dependent cytotoxic effect was observed on both cell lines, which were similarly affected
by both lectins. The study therefore concluded that the mechanism of cell death was independent of
p53. Apoptosis induction and inhibition of telomerase were found [83]. In another work, when Hep3B
cells were exposed to VCA an apoptotic effect related to the increase of reactive oxygen species and
the decreased of mitochondrial membrane potential was reported. The phosphorylation of JNK
appeared to be responsible for triggering a modification in the ratio of Bax/Bcl-2, Bax translocation,
the consequent release of cytochrome c, and ultimately activation of caspase 3 [159].

Concanavalin A (ConA) lectins inhibit growth and elicit autophagy in ML-14a, Huh-7 and
HepG2 hepatoma cell lines. In addition, an in vivo assay injected the spleens of mice with severe
combined immunodeficiency with human hepatoma cells, which migrated to the liver to form tumor
nodules. One week after inoculation, treatment with intravenous ConA lectin was initiated. The results
showed that ConA lectin treatment significantly inhibited the formation of tumor nodules at doses
of 20 mg/kg, presumably through lymphocyte activation [60]. Phaseolus vulgaris var. blue tiger king
(BTKL) lectins were tested on HepG2 cells from human hepatocellular carcinoma and WRL 68 from
human embryonic liver tissue. The results suggested a selective cytotoxic effect, affecting HepG2 cells
more than their non-carcinogenic counterparts, whose proliferation was not significantly affected.
It was also determined that the most prevalent type of cell death was apoptosis, with the presence
of DNA fragmentation, apoptotic bodies, chromatin condensation and membrane depolarization;
however, necrosis was also found [68]. Lectins of Phaseolus coccineus L. var. Albonanus Bailey (CHL)
were also tested on HepG2 cells, showing an antiproliferative effect [160].

Recently, the effect of Momordica Charantia lectins (MCL) was studied on five human hepatoma
cell lines, including HepG2 and PLC/PRF/5. The results showed a dose- and time-dependent
cytotoxicity induction that inhibited cell proliferation. The presence of apoptosis and autophagy
was specifically detected by G2/M arrest, as well as the activation of MAPK pathways and caspases-3,
-8, and -9 in the apoptotic processes. Additionally, in an in vivo xenotransplant-type assay, human
hepatoma cells were injected into nude mice, which were then administered with MCL and/or the
antineoplastic drug Sorafenib. A dramatic decrease in tumor size by apoptosis was observed in rats
treated with the lectin–drug combination. Based on the results, the authors suggest MCL as a promising
chemotherapeutic agent [161]. Allium chinense lectins (ACL) were studied on Hep-3B human hepatoma
cells, where a cytotoxic effect was observed in a dose-dependent manner. Apoptosis by mitochondrial
route was determined [54]. Additionally, Broccolini lectin (BL) from Brassica oleracea Italica showed a
selective dose-dependent cytotoxic effect on HepG2 cells [162].

8. Plant Lectins against Pancreatic Cancer

Pancreatic cancer (PC) is one of the most lethal cancers, with a 5-year survival prognosis below
5%, independent of surgical resection of the neoplasm [163,164]. This is because, like most cancers of
the digestive tract, is usually diagnosed at advanced stages, commonly when metastasis is already
present. This situation is largely due to the inaccessibility of the organ for diagnostic testing, its late
clinical presentation, and a lack of biomarkers that identify early pancreatic cancer stages [38,164,165].
Due to its rapid clinical progression, PC remains a real challenge for early detection.

The ability of plant lectins to differentiate between healthy pancreatic tissue and neoplastic
tissue, based on their differential affinity to cell glycosylation patterns, has been tested though the use
of lectin microarrays. A study was performed on serum samples from 24 patients, both healthy
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and with confirmed diagnosis of chronic pancreatitis or pancreatic cancer. The samples were
processed and subjected to a microarray composed of MAL (Maackia amurensis); SNA (Sambucus nigra);
PNA (Arachis hypogaea); ConA (Canavalia ensiformis); and a mushroom lectin, AAL (Aleuria aurentia),
in order to detect differences in glycans. Bioinformatic analyses found that samples from healthy and
pancreatitis-affected patients showed greater similarity between them than to samples of pancreatic
cancer. The most prominent alterations in the expression of glycosylations during the progression
of PC were sialylations and fucosylations in different proteins [165]. In a larger study, a trial was
conducted to diagnose structural differences in serum glycans from 183 healthy patients with chronic
pancreatitis, type II diabetes mellitus, or pancreatic cancer using an antibody/glycoprotein/lectin
sandwich assay with lectins from Aleuria aurentia (AAL), Sambucus nigra (SNA), Lens culinaris (LCA),
and Canavalia ensiformis (ConA). The results showed that the microarray was able to discriminate
between cancer samples, the other pathologies, and the healthy control group with a high sensitivity
and specificity, particularly by SNA lectin [166].

In an in vitro study, the effects of wheat germ lectins (WGA), concanavalin A (ConA),
and Phytohemagglutinin-L (PHA-L) were tested on membrane binding and proliferation of 9 pancreatic
cancer cell lines (BxPC, MIA, Panc-1, CFPAC, ASPC, HS-766T, HTB-147, CaPan-1 and CaPan-2),
using a lectin-blot assay and the incorporation of thymidine. A marked dose-dependent cytotoxic
effect of WGA lectin was observed on all cancer cell lines, being higher than the effects of the other
two lectins, even at a lower concentration. WGA lectin was able to bind to sialic acid residues in
membrane glycoproteins, causing chromatin condensation, nucleus fragmentation, and DNA release,
and internalization and localization in the cell nucleus were determined [167]. Recently, the activities
of Benincasa hispida (BhL) and Datura innoxia (DiL9) on pancreatic cancer cells lines have been studied.
A considerable antiproliferative, dose-dependent effect triggered by a mitochondrial apoptotic pathway,
along with anti-angiogenic features, were reported [168].

In vivo experiments showed the effects of mistletoe extracts and lectins from Viscum album and
were compared to those of Gemcitabine, an antitumor drug used in the treatment of pancreatic cancer.
Xenotransplants in athymic nude mice (NMRI nu/nu) were performed using human pancreatic
adenocarcinoma cells PAXF 736 and treated with mistletoe extract, mistletoe lectins or Gemcitabine in
equivalent doses. Mistletoe extracts showed more antitumor activity than Gemcitabine, presenting
partial regressions and total remission of the tumors. Mistletoe lectins showed similar but lower
activity than the extract, also with partial regressions [169]. Tröger and colleagues [170] also evaluated
the effect of a mistletoe extract on 220 patients with localized advanced cancer or metastatic pancreatic
cancer receiving palliative care only (best supportive care-BSC) without chemotherapeutic treatment
at the time of the study. The results were favorable, with a clear increase in survival in the 110 patients
who received mistletoe extract treatment over the same number of control patients without treatment.
In addition, the patients who were given the extract reported a lower presence of adverse events.
The authors suggest the administration of such extract as a second line therapy for patients with
advanced or metastatic pancreatic cancer. In this phase III study, the effects of mistletoe extract were
attributed mostly to the presence of lectins and viscotoxins.

9. Lectin-Based Analytical Techniques with Biomedical Applications

Although lectins of the same family are highly conserved in the binding site amino acid residues,
the specificity of binding is related with amino acids of different regions of the carbohydrate-binding
site. Lectin’s specificity for glycans include mannose and glucose (Man/Glc) for concanavalin A
(Con A), N-acetylglucosamine (GlcNAc) and Nacetylneuraminic acid (Neu5Ac) for wheat germ
agglutinin (WGA), galactose (Gal) and N-acetylgalactosamine (GalNAc) for soybean agglutinin (SBA),
and Gal for ricin agglutinin (RCA) [171]. The ability of lectins to recognize glycans allows for the use
of several analytical methods that take advantage of two important features: specificity and reversible
binding. Table 2 shows some of the traditional and modern techniques used for glycans recognition by
lectins in biomedicine.
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Table 2. Lectin-based analytical techniques for glycan detection (modified from [171]).

Technique Fundament References

Cell agglutination Specific recognition of cell membrane carbohydrates
or glycoconjugates. [28,29,172]

Cytochemical and
histochemical assays

Recognition of cell surface carbohydrates or glycoconjugates by
labelled lectins or immuno-recognition of lectins. [157,158,173,174]

Enzyme-linked lectin
assay (ELLA) Marked lectins used for binding to immobilized glycoconjugates. [175–177]

Lectin affinity
chromatography (LAC) Affinity chromatography using immobilized lectins. [178]

Lectin blotting Qualitative method for detecting carbohydrates moieties in a
western blot-like method. [179,180]

Crossed affinity
immunoelectrophoresis

Based in migration patterns changes of glycosylated proteins in an
agarose gel which contain an embedded lectin. A second dimension
is needed for detecting of the protein with embedded specific
antibody in the gel and a final staining of proteins is required.

[175]

Flow cytometry Lectins labelled with a fluorophore are used in order to detect cell
surface glycoconjugates. [181,182]

Surface plasmon
resonance (SPR)

Immobilized lectins to a glass surface (optical biosensor) and
binding to carbohydrates in solution is determined as changes in
the refractive index.

[183,184]

Lectin microarrays A panel of immobilized lectins in a chip is used for
glycans recognition. [4,37,139,166,177]

Antibody-Lectin Sandwich
Array (ALSA) Biomarker glycoprofiling by lectins and glycan-binding antibodies. [158,185,186]

Electrochemical Impedance
Spectroscopy biosensors (EIS) A label-free biosensor based on the lectin–glycan interaction. [187,188]

Taking advantage of lectin’s recognition properties, they have also been used for drug delivery.
Oral administration is the most conventional method for drug delivery; however, its passage through
the gastrointestinal tract entails a series of obstacles such as pH variation, low stability, solubility,
bioavailability, and absorption [189]. Lectins’ ability to prevail in aggressive environments (e.g., pH,
heat, and enzymes) and interact with cell membrane glycans allows for their use as vehicles for targeted
drug delivery [190,191]. Several plant lectins have been used for this purpose and have been aimed
toward specific cells and tissues (direct lectin targeting) [192]. An increase in the cellular uptake of
lectin-conjugated particles has been reported [193]. Another modality of targeted drug delivery consists
of glycans coupled to nanoparticles to target endogenous lectins within specific tissues (reverse lectin
targeting) [194,195]. Its use in cancer therapeutics has also been explored, for example, by associating
wheat germ agglutinin (WGA) to a paclitaxel-loaded particle, an effective chemotherapeutic for colon
cancer. The conjugated molecule was able to exert anti-proliferative activity against colon cancer cell
lines Caco-2 and HT-29, showing greater cellular uptake and retention compared to non-conjugated
particles [196].

10. Final Remarks and Conclusions

Plant lectins as bioactive molecules are characterized by their ability to recognize animal cell
carbohydrates. This property enables them to generate cellular responses depending on cell linage,
from immune system activation to cancer cell death. Lectins exhibit a vast potential for diagnostic
and therapeutic use against cancer due to the cytotoxic, apoptotic, autophagic, and antitumor effects
triggered after exposure to these proteins in cells, tissues, and even patients with cancerous processes
of the digestive system. The reported information regarding the activity of plant lectins on digestive
cancer cell lines indicates the presence of dose- and time-dependent cytotoxicity, generally affected by
induction to apoptosis. In vivo experiments have shown inhibition of tumor growth and in some cases
even complete remission of tumors. Phase III studies of the effect of plant lectins in cancer patients
have shown favorable effects. The ability to induce cell death in a selective manner is a desirable
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attribute in anticancer therapy and, paradoxically, a trait most of the current chemotherapeutics lack
but which lectins have shown. Hence, the growing interest in the study of the activity of plant lectins
is due to the biological effects they exert on cancer cells, from identification of tumors to antitumor
activity and, additionally, decreased side effects caused by chemotherapeutics. The diagnostic potential
of plant lectins has been exposed using microarrays however; despite their multiple beneficial effects,
it is important to acknowledge their possible toxicity that depends on the lectin source, the dose,
and the administration route. There is a need to increase the study about the biological effects of lectins,
and deepen into their molecular mechanisms in order to take advantage of the biomedical potential of
these amazing proteins.
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