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Abstract: This paper proposes a multisensory system for the detection and localization of peripheral
subcutaneous veins, as a first step for achieving automatic robotic insertion of catheters in the near
future. The multisensory system is based on the combination of a SWIR (Short-Wave Infrared) camera,
a TOF (Time-Of-Flight) camera and a NIR (Near Infrared) lighting source. The associated algorithm
consists of two main parts: one devoted to the features extraction from the SWIR image, and another
envisaged for the registration of the range data provided by the TOF camera, with the SWIR image
and the results of the peripheral veins detection. In this way, the detected subcutaneous veins are
mapped onto the 3D reconstructed surface, providing a full representation of the region of interest
for the automatic catheter insertion. Several experimental tests were carried out in order to evaluate
the capabilities of the presented approach. Preliminary results demonstrate the feasibility of the
proposed design and highlight the potential benefits of the solution.

Keywords: SWIR camera; TOF camera; peripheral vein detection; subcutaneous vein localization;
automatic catheter insertion

1. Introduction

It is estimated that about 90–95% of patients in hospitals receive some kind of intravenous therapy.
In comparison with other methods of administration, the intravenous technique is the fastest means
of providing fluids and medications throughout the human body. That is the reason why it is widely
used to transfuse blood and blood products, provide parenteral nutrition, correct dehydration and
electrolyte imbalances, deliver medication and chemotherapeutic agents, and provide avenues for
dialysis/apheresis, hemodynamic monitoring, and diagnostic testing [1].

Within intravenous therapy, the peripheral venous catheter is the most frequently used vascular
access device. It is applied to most emergency room and surgical patients, and before some radiological
imaging techniques using radiocontrast, resulting in more than a billion peripheral intravenous
catheters being used per year worldwide [2]. The procedure implies inserting a catheter into the
vein by a needle, which is subsequently removed while the small tube of the cannula remains in.
The process involves then a very demanding motor coordination, requiring proper training and
significant experience, especially when dealing with children and the elderly. Even so, errors are very
common, and often, nursing staff has to try several times before to place the needle successfully, which
causes pain and distress to the patient, and frustration to the clinicians. Replacement of catheters and
rotation of site is recommended every 72 to 96 h in order to reduce the risk of phlebitis and bloodstream
infection [3–5], which means repeating the process several times in case of prolonged stays in the
hospital. In addition, the insertion of peripheral intravenous catheters exposes health care workers
to certain occupational risks, such as a needlestick injury and exposure to blood, which can lead to
bloodborne infections [6,7].
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In the last decade, several robotic systems have been integrated successfully in the medical field,
offering objective and measurable advantages in comparison with traditional procedures, mainly
due to the high accuracy and repeatability of their actions [8,9]. These features also make robotic
systems stand out as an alternative to provide faster, safer and less painful insertion of intravenous
catheters [10–12]. One fundamental step to attain such systems is the effective detection and localization
of target subcutaneous veins.

The current state of the art related to automatic detection of veins is predominantly focused on
the recognition of finger-vein patterns that can be used as biometric signatures in personal identity
authentication systems [13]. For instance, in [14], the repeated tracking of dark lines on an image
of a finger captured under infrared light is proposed for finger-vein pattern extraction. In [15], the
same authors present an improved method based on the calculation of local maximum curvatures in
cross-sectional profiles of the image. In [16], a mean curvature method, which uses geometrical properties
of the intensity field to find alley-like structures with negative mean curvatures is proposed for the
same purpose. In [17], authors present a finger vein extraction method using gradient normalization
and principal curvature calculation. In [18], a finger-vein pattern identification system based on PCA for
image pre-processing and feature extraction using LDA is described. Finger-vein image enhancement is
proposed in [19] by using a fuzzy-based fusion method with Gabor and Retinex filtering, whereas in [20],
authors propose a new finger-vein capturing device that ensures accurate finger positioning to reduce
misalignment when veins images are captured. All these methods have in common the fact that they
are based on an image of a finger illuminated with an infrared light and acquired by a CCD camera.

Vein identification for automated intravenous drug delivery was proposed in [21]. The system
consisted of a web-camera, a near-infrared light and a Digital Single Lens Reflex (DSLR) camera with
an external filter to block visible light. The authors concluded that better results are achieved for the
images captured with the DSLR and poor results for images obtained with the web-camera can be
attributed to the low contrast quality of these images.

Multispectral imaging systems and NIR spectroscopy have also been considered by several authors.
Subcutaneous vein detection using multispectral imaging is proposed in [22]. In this case, visible and
NIR images acquired by a multispectral imager are used in a normalized subtraction algorithm for
improving contrast, and consequently the vein detection performance. In [23], near-infrared spectroscopy
is proposed for an education-focused mobile medical application devised to help to improve the
decision-making skills of healthcare students in venipuncture. There are also three commercial devices
approved by the FDA that use NIR spectroscopy to facilitate peripheral intravenous catheter insertion:
the VeinViewer [24] (Christie Medical Holdings, Memphis, TN, USA), the AccuVein [25] (AccuVein LLC,
Cold Spring Harbor, New York, NY, USA) and the VascuLuminator [26] (De Koningh Medical Systems,
Arnhem, The Netherlands). All these solutions are conceived to improve visualization of subcutaneous
veins instead of detecting them automatically.

There is scarce literature related to 3D localization of subcutaneous veins. In [11,12,27], authors
propose active optical triangulation for range data acquisition and parametric surface modelling to store
the 3D shape of the patient arm. Active optical triangulation is achieved by combining a camera and
a laser stripe line generator. Worthy of mention is also the research presented in [28]. The proposed
system provides augmented vein structures that are back-projected and superimposed on the skin surface
of the hand for assisting doctors in locating the injection veins. The system consists of two industrial
cameras, a color micro projector, NIR light sources, a support structure with multi-degree of freedom, and
an underpan. Veins are segmented by a multiple-feature clustering method. Vein structures captured by
the two cameras are matched and reconstructed based on epipolar constraint and homographic property.
The skin surface is reconstructed by active structured light with special encoding values. Results show
that the system effectively provides augmented display and visualization of subcutaneous veins.

This paper presents an automatic system that combines a SWIR (Short-Wave Infrared) camera,
a TOF (Time-Of-Flight) camera, a NIR (Near Infrared) lighting system and the associated algorithm for
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the detection and localization of peripheral subcutaneous veins. The solution is intended to be used
for the future automation of peripheral intravenous catheter insertion.

The rest of the paper is organized as follows: Section 2 describes the design and implementation
of the proposed multisensory system and the associated algorithm. Section 3 presents the results
obtained from the different experimental tests that have been carried out. Section 4 discusses the main
results of this work and finally, Section 5 summarizes the major conclusions.

2. Materials and Methods

This section describes the multisensory system that has been designed for the data acquisition
and explains the processing algorithm that has been implemented for the automatic detection and
localization of peripheral subcutaneous veins.

2.1. Multisensory System Description

The proposed multisensory system is based on the combination of a GoldEye P-032 SWIR camera
(Allied Vision, Stradtroda, Germany), a SwissRanger SR-400011 TOF 3D camera (Mesa Imaging, Zürich,
Switzerland), and a NIR light source that consists of 96 LEDs of 940 nm distributed in two linear arrays.
The GoldEye P-032 SWIR camera has a high spectral response from 900 to 1700 nm thanks to its indium
gallium arsenide (InGaAs) sensor and features a maximum frame rate of 30 fps at its full resolution of
636 × 508 pixels with 14-bit A/D conversion. The TOF camera provides a depth map and amplitude
image at the resolution of 176 × 144 pixels with 16 bit floating-point precision, as well as x, y and z
coordinates to each pixel in the depth map. IR light can penetrate human tissues to about 3 to 5 mm
subcutaneous depth before losing coherence and directionality to diffusion due to the low optical
absorption of human skin and muscles in the NIR region of the electromagnetic spectrum [29,30].
On the contrary, blood is a strong absorber of NIR radiation, increasing the contrast between the
subcutaneous veins and the surrounding tissues in NIR images [31,32]. Thus, the SWIR camera enables
the acquisition of the required data for the detection of areas of interest that could belong to peripheral
subcutaneous veins, whereas the TOF camera supplies simultaneously fast acquisition of accurate
distances and intensity images of targets, enabling their localization in the coordinate space. Intrinsic
and extrinsic calibration parameters of both cameras were estimated by using the Matlab camera
calibrator app (http://www.mathworks.com/products/matlab/). A distance measurement calibration
was also carried out in Matlab for the TOF camera by following the method proposed in [33].

Figure 1 shows the layout of the different elements that make up the proposed system. Note that
the linear arrays of lEDs are placed side by side with the SWIR camera, so the SWIR camera captures
the light reflected by the patient arm.
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In addition, the custom-made multisensory rig that integrates the SWIR camera, the TOF camera
and the two linear arrays of NIR LEDs is mounted in a Bosch frame, in such a way that the image
planes of the cameras are parallel to the table where subjects place their hands or arms for the automatic
detection and localization of peripheral subcutaneous veins.

2.2. Algorithm for Automatic Detection and Localization of Peripheral Subcutaneous Veins

Figure 2 shows a block diagram of the proposed algorithm, which consists of two main parts: one
devoted to the features extraction from the SWIR image, and another envisaged for the registration of
the range data provided by the TOF camera, with the SWIR image and the results of the peripheral
veins detection.
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For features extraction, the first step involves the segmentation of the acquired SWIR image into
two regions, the background and the foreground. The foreground represents the part of the patient’s
body where the detection of the peripheral veins is going to be carried out, whereas the background
represents the rest of the image pixels that are not required for further processing. Otsu’s method [34] is
then utilized for choosing a global threshold that minimizes the intraclass variance of the background
and the foreground pixels. With the attained threshold, a binarization of the original SWIR image is
conducted, followed by a dilatation of the background region. The aim of this dilatation is discarding
those pixels where the transition from background to foreground region takes place, and which can
produce detection errors in the subsequent steps. In fact, the dilatation process is performed twice by
using two square structuring elements with two different width values, 10 and 15 pixels, respectively.
Thus, two masks are obtained and applied to the original SWIR images. In this way, once the vein
extraction is accomplished, a logical AND will be applied to both images, eliminating false detections
due to the effects produced by the edges during the segmentation process. Thus, the obtained masks
ensure that only the region of interest of the original SWIR image is considered for features extraction,
increasing the algorithm performance.
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Next, contrast-limited adaptive histogram equalization [35] is applied to the masked images for
compensating non-uniform lighting conditions, followed by an adjustment of the image intensity
values. This last adjustment consists on mapping the intensity values to new values such that 1% of
data is saturated at low and high intensities of the SWIR image. In this way, the contrast between the
veins and the surrounding tissues on the SWIR image is enhanced. After these preprocessing steps,
features extraction is accomplished by two different techniques: the maximum curvature method and
the k-means clustering.

The maximum curvature method presented in [15], which is one of the better finger-vein
extraction methods [13], is based on the fact that a vein appears like a dent with high curvature
in the cross-sectional profile, and consequently, calculates the local maxima of each cross-sectional
profile (in four directions: horizontal, vertical and two diagonal directions).

On the other hand, the k-means clustering used in this application partitions the image pixels into
three clusters: background, surrounding tissues and subcutaneous veins. From these three clusters,
only the subcutaneous veins cluster is considered as final solution. In this case, the centroids of clusters
used to characterize the data are determined by minimizing the sum of squad errors given by:

JK =
K

∑
k=1

∑
i∈Ck

(xi −mk)
2 (1)

where (x1, . . . , xn) = X is the data matrix, mk = ∑i∈Ck
(xi/nk) is the centroid of the cluster ck and nk is

the number of points in Ck [36].
Once the peripheral subcutaneous veins have been detected on the SWIR image, second part of

the algorithm addresses the registration of the detection results with the range data provided by the
TOF camera, so that they share a common reference frame. Before registration, radial distortion of the
TOF data is corrected. The relationship between the distortion coordinate system and the imaging
coordinate system is given by:

xd = x
(

1 + k1r2 + k2r4 + k3r6
)

yd = y
(

1 + k1r2 + k2r4 + k3r6
)

(2)

where (xd, yd) is the distorted coordinate, (x, y) is the normalized imaging coordinate, k1, k2, k3 are the
radial distortion coefficients of the lens, and r2 = x2 + y2. Normalized image coordinates are calculated
from pixel coordinates by translating to the optical center and dividing by the focal length in pixels.
Thus, x and y are dimensionless. Radial distortion coefficients are determined with the intrinsic and
extrinsic parameters of the camera during the calibration process. This calibration process is carried
out once, by taking pictures of different orientations of a planar checkboard considered as a metric
reference for the system. The position of all the square corners in a set of 50 pictures was analyzed in
order to obtain the camera parameters.

Then, as SWIR image and TOF data are acquired with cameras that exhibit a different pixel array
and a different field of view, the random sample consensus (RANSAC) algorithm [37] is adopted
for registering the acquired data, in such a way that a direct correspondence between the pixels of
the different images is obtained. As relative positions of SWIR and TOF camera remain fixed on
the designed set-up, the RANSAC algorithm is used only once and offline, for finding the rotation
and the translation (R, T) that enable the mapping of the TOF data into the reference frame of the
processed SWIR image, being R a 2× 2 matrix and T a 2× 1 vector. For that, N pairs of control points’
correspondences between frames F1 and F2 are selected, where F1 and F2 correspond to TOF and SWIR
frames respectively. In this particular case, five pairs of control points were selected manually in 20
different scenes, resulting in a total of 100 pairs of control points (N = 100). The control points are
represented by 2D coordinates

(
Xi

1, Xi
2
)

in their respective reference systems. RANSAC samples the
solution space of (R, T) and estimates its fitness by counting the number of inliers, f0:
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f0(F1, F2, R, T) =
N

∑
i

L
(

Xi
1, Xi

2, R, T
)

(3)

where:

L
(

Xi
1, Xi

2, R, T
)
=

{
1, e = ‖RXi

1 + T − Xi
2‖ < ε

0, otherwise
(4)

and ε is the threshold beneath which a features match
(
Xi

1, Xi
2
)

is determined to be an inlier. RANSAC
chooses the transform with the largest number of inlier matches [38,39]. The resulting (R, T) is then
utilized online for matching the range data provided by the TOF camera with the processed SWIR
data that contains the resulting peripheral veins detection.

3. Results

In order to validate the proposed multisensory system and the associated algorithm for the
detection and localization of peripheral veins, several experimental tests have been carried out.
Figures 3 and 4 show the data acquired by the multisensory system for one of the experimental tests
performed to evaluate the detection of the peripheral subcutaneous veins on the front of the hand.
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Figure 3 presents the SWIR image and the TOF amplitude image, whereas Figure 4 displays the
raw point cloud provided by the TOF camera.

The vein extraction results achieved after applying the proposed algorithms to the acquired SWIR
image are presented on Figure 5. Left-hand side image displays the result from the adapted maximum
curvature method, while right-hand side image shows result obtained with the method based on the
k-means clustering. Red color is utilized to visualize pixels identified or classified as vein.

Once the vein extraction is completed, TOF data are registered in order to locate the veins spatially.
Figure 6a shows the result from registering the original SWIR image with the TOF data (termed
SWIR-D visualization, as it combines the SWIR information with the estimated depth for each pixel),
whereas Figure 6b displays the 3D mapping of the veins detected with the method based on the
k-means clustering after applying the proposed registration algorithm.
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Figures 7 and 8 display the dataset acquired with the proposed multisensory system for a second
test scene. In this case, it is desired to evaluate the detection of the subcutaneous veins on the wrist
anterior view. The dataset includes the SWIR image (Figure 7a), the TOF amplitude image (Figure 7b)
and the raw point cloud provided by the TOF camera (Figure 8).
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Figure 8. Test 2—Raw point cloud provided by the TOF camera.

Figure 9a,b shows the results obtained after applying the adapted maximum curvature method
and the method based on the k-mean clustering, respectively. Next, Figure 10a displays the obtained
result after registering the TOF data with the original SWIR image, and Figure 10b illustrates the
SWIR-D visualization obtained after applying the proposed registration algorithm. In this SWIR-D
visualization, the subcutaneous veins detected on the SWIR image with the method based on the
k-means clustering are mapped onto the 3D reconstructed surface. Lastly, the third experiment is
intended to evaluate the detection and localization of subcutaneous veins on the anterior view of
the forearm. Figures 11 and 12 display the dataset acquired with the proposed multisensory system,
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including a SWIR image (Figure 11a), a TOF amplitude image (Figure 11b) and a raw point cloud
provided by the TOF camera (Figure 12).
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Figure 13a,b shows the vein detection results obtained with the adapted maximum curvature
method and the method based on the k-means clustering, respectively. Finally, Figure 14a displays
the obtained result after registering the TOF data with the original SWIR image, while Figure 14b
illustrates the mapping of the veins detected with the method based on the k-means clustering onto
the 3D reconstructed surface, after applying the proposed registration algorithm. Note that in the three
presented experiments, only the registration results obtained with the detection based on the k-means
clustering are displayed. This is due to the fact that the method based on the adapted maximum
curvature provides a low number of image pixels identified as vein, which demerits the registration
results. On the contrary, the detection method based on the k-means clustering provides a higher
a proportion of image pixels that are correctly identified as vein, and consequently, fits better as input
for the subsequent registration procedure, improving performance results.
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In order to evaluate quantitatively the performance of the proposed approach, ground truth data
was carefully collected and produced for the three test scenes presented previously. This process
included the manual labelling of the pixels that visually appear to belong to the veins on the SWIR
images and the manual measurement of the Cartesian coordinates of ten control points located on the
test scenarios. These coordinates were measured with respect to the reference frame located at the
intersection of the optical axis with the front face of the TOF camera.

Figure 15 shows the labelled images for the SWIR images presented on Figures 3a, 7a and 11a.
Note that the same masks applied during the segmentation process were utilized after the manual
labelling of the SWIR images, in order to get the same regions of interest used during the features
extraction. These images were then utilized as ground truth data in the pixel-level comparison carried
out with the detection results obtained with the proposed methods. Detection performance is then
evaluated in terms of true positive rate, accuracy and total error rate. The true positive vein detection
rate, which is a proportion of the pixels that are correctly identified as vein, is defined as:

TP =
number of pixels correctly identified as vein

total number of pixels identified as vein
·100% (5)

Accuracy is the overall correctness of the detection algorithm and it is calculated as:

Accuracy =
sum of correctly identified pixels

total number of pixels
·100% (6)

Lastly, the total error rate is given by:

Error rate =
sum of incorrectly identified pixels

total number of pixels
·100% (7)

Performance evaluation results are gathered in Table 1.
On the other hand, after evaluating the data registered from the TOF camera with respect to

the collected ground truth, we obtained that the position errors measured for the defined control
points go from 2.1 to 3.5 mm in the x-axis, from 1.8 to 4.6 mm in the y-axis and from 0.1 to 9.9 mm in
the z-axis, with a mean error of 2.5 mm in the x-axis, 2.9 mm in the y-axis and 3.1 mm in the z-axis.
Note that the x-axis coincides roughly with the transverse axis of the hand or forehand, the y-axis
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with the longitudinal axis, and the z-axis with the optical axis of the TOF camera. Table 2 summarizes
these results.

Table 1. Detection performance evaluation.

Test TP Accuracy Error Rate

1
Method based on adapted max. curvature 21.9% 97.0% 3.0%

Method based on k-means 86.7% 96.5% 3.5%

2
Method based on adapted max. curvature 16.0% 97.3% 2.7%

Method based on k-means 72.3% 97.0% 3.0%

3
Method based on adapted max. curvature 22.0% 97.1% 2.9%

Method based on k-means 80.9% 96.1% 3.9%

1 

 

  

(a) (b) 

 

(c) 

 Figure 15. Labelled images. (a) Ground truth data for test 1; (b) Ground truth data for test 2; (c) Ground
truth data for test 3.

Table 2. Position errors from the 3D registered data.

Axis Minimum Error Maximum Error Mean Absolute Error

x 2.1 mm 3.5 mm 2.5 mm
y 1.8 mm 4.6 mm 2.9 mm
z 0.1 mm 9.9 mm 3.1 mm
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Lastly, the response time of the proposed algorithm was been evaluated on a 2.60 GHz Intel®

Core™ i5-4210M CPU with 8 GB of RAM memory. The average time for vein extraction using the
adapted maximum curvature method was 1.2 s and 588 ms for the method based on the k-means
clustering, whereas the average time for the registration procedure was 140 ms. That is, the total time
for automatic detection and localization of peripheral subcutaneous veins with the proposed system is
between 728 ms and 1.34 s.

4. Discussion

Performance evaluation results show that detection method based on the adapted maximum
curvature exhibits a slightly better performance in terms of accuracy and total error rate than the
method based on the k-means. This is due to the intrinsic nature of the algorithm, which provides
less pixels identified as vein, but with a very high level of correctness. On the other hand, the method
based on the k-means presents a much higher true positive rate detection, while keeping the accuracy
and the total error rate quite close to the values provided by the adapted maximum curvature method.
That means that a higher number of pixels are correctly classified as vein, and although incorrect
detections also increase, they do not demerit the algorithm accuracy. With a higher number of correctly
identified pixels, it is easier to determine some characteristics of veins, such as their width, which can
help in selecting the best target vein for the automatic insertion of catheters. In addition, as during
the mapping that takes place in the registration procedure some true positive detection points can be
lost, it is better to have a high positive detection rate that guarantees proper registration of the pixels
identified as vein.

Therefore, both methods attain a high level of correctness in identifying the image pixels that
belong to the peripheral subcutaneous veins, but the method based on the k-means clustering fits
better as input for the subsequent registration procedure, improving the overall performance result.
It is also important to remark that ground truth labelling of images that were used for the performance
evaluation was done manually, and this process is not 100% free from mistakes. Consequently, labelling
errors can also contribute to shorten the performance values.

Regarding performance results related to the TOF data registration procedure, it is relevant to
note that the TOF camera is characterized by suffering from flying pixels and noise. In addition, the
registration algorithm is dealing with a correspondence between images of 144 × 176 pixels from the
TOF camera and images of 636 × 508 pixels from the SWIR camera. Moreover, manual measurement
of distances for ground truth data is not exempt from errors, which could explain the appearance of
some isolated maximum errors, far from the mean values. Thus, the mean position errors obtained
during the experimental test are quite acceptable, but should be further improved in the near future
for increasing the reliability of the stated application.

On the other hand, the response time of the proposed algorithm satisfactorily fulfils the requirements
for real-time applications. This coupled with its affordable cost and its reduced size and compactness
makes it suitable for clinical routine use. Therefore, performance evaluation results highlight the
feasibility and the potential benefits of the proposed solution.

5. Conclusions

This paper proposed a multisensory approach for the detection and localization of peripheral
subcutaneous veins as a first step for achieving a guidance system that can be used in the future for
automatic catheter insertion with the help of a robotic system. The solution includes a SWIR camera
for acquiring reflectance measurements in the NIR region that are used for detecting the image pixels
that belongs to the subcutaneous veins, a TOF camera that provides fast acquisition of Cartesian
coordinates for enabling the localization of the target veins and a NIR lighting source for improving
the contrast between the subcutaneous veins and the surrounding tissues.
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The algorithm designed for the proposed multisensory system includes the vein features extraction
from the SWIR image and the registration of the detection results with the data provided by the TOF
camera, in such a way that range data can be associated to the image pixels identified as veins. For vein
features extraction, two methods were proposed and evaluated experimentally, one based on the
adaptation of the maximum curvature method and another based on the k-means clustering, both
combined with several preprocessing steps for improving detection performance. Although both
methods exhibit satisfactory detection accuracy, the method based on the k-means clustering fits better
for the posterior registration process, given its higher TP rate.

Preliminary experimental results demonstrate the feasibility of the proposed design and highlight
the potential benefits of the solution. However, future work should be directed to enhance the
localization performance in order to achieve a more reliable application.

Acknowledgments: Authors acknowledge partial funding from the CSIC Project Robótica y Sensores Para Los
Retos Sociales (ROBSEN—PIE 20165E050) and the ROBOCITY203-III-CM Project (Robótica Aplicada a la Mejora
de la Calidad de vida de los Ciudadanos. Fase III; S2013/MIT-2748), funded by Programa de Actividades de I + D
en la Comunidad de Madrid and cofounded by Structural Funds of the EU. Roemi Fernández acknowledges the
financial support from Ministry of Economy, Industry and Competitiveness under the Ramón y Cajal Programme.

Author Contributions: The work presented here was carried out in collaboration between the authors.
Roemi Fernández designed the study and wrote the manuscript. Roemi Fernández and Manuel Armada
conceived and designed the experiments. Roemi Fernández designed and implemented the proposed algorithm.
Roemi Fernández and Manuel Armada performed the experiments for data acquisition. Roemi Fernández
processed and analyzed the data and drew the main conclusions. Manuel Armada contributed to the review of
the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jones, A. Dressings for the management of catheter sites: A review. J. Assoc. Vasc. Access 2004, 9, 26–33.
[CrossRef]

2. Alexandrou, E.; Ray-Barruel, G.; Carr, P.J.; Frost, S.; Inwood, S.; Higgins, N.; Lin, F.; Alberto, L.; Mermel, L.;
Rickard, C.M. International prevalence of the use of peripheral intravenous catheters. J. Hosp. Med. 2015, 10,
530–533. [CrossRef] [PubMed]

3. O’Grady, N.P.; Alexander, M.; Burns, L.A.; Dellinger, E.P.; Garland, J.; Heard, S.O.; Lipsett, P.A.; Masur, H.;
Mermel, L.A.; Pearson, M.L.; et al. Guidelines for the Prevention of Intravascular Catheter-Related Infections;
Center for Disease Control and Prevention: Atlanta, GA, USA, 2011.

4. Bernatchez, S.F. Care of peripheral venous catheter sites: Advantages of transparent film dressings over tape
and gauze. J. Assoc. Vasc. Access 2014, 19, 256–261. [CrossRef]

5. Pujol, M.; Hornero, A.; Saballs, M.; Argerich, M.J.; Verdaguer, R.; Cisnal, M.; Peña, C.; Ariza, J.; Gudiol, F.
Clinical epidemiology and outcomes of peripheral venous catheter-related bloodstream infections at
a university-affiliated hospital. J. Hosp. Infect. 2007, 67, 22–29. [CrossRef] [PubMed]

6. Richardson, D.; Kaufman, L. Reducing blood exposure risks and costs associated with spivc insertion.
Nurs. Manag. 2011, 42, 31–34. [CrossRef] [PubMed]

7. Strauss, K.W.; Onia, R.; Van Zundert, A.A.J. Peripheral intravenous catheter use in Europe: Towards the use
of safety devices. Acta Anaesthesiol. Scand. 2008, 52, 798–804. [CrossRef] [PubMed]

8. Díaz, C.E.; Fernández, R.; Armada, M.; García, F. A research review on clinical needs, technical requirements,
and normativity in the design of surgical robots. Int. J. Med. Robot. Comput. Assist. Surg. 2017. [CrossRef]
[PubMed]

9. Díaz, C.E.; Fernández, R.; Armada, M.; García Gutiérrez, F.D.J. State of the art in robots used in minimally
invasive surgeries. Natural orifice transluminal surgery (NOTES) as a particular case. Ind. Robot Int. J. 2015,
42, 508–532. [CrossRef]

10. Saltarén Pazmiño, R.J.; Aracil Santonja, R.; Puglisi, L.J.; Poletti, G.A.; Rey Portoles, G.; Cabrera Parra, W. Robot
de estructura cinemática híbrida para el guiado de la inserción de agujas, catéteres y elementos quirúrgicos
para procedimientos de cirugía mínimamente invasiva. Spanish Patent ES-2392059 B2, 20 December 2011.

http://dx.doi.org/10.2309/155288504774596815
http://dx.doi.org/10.1002/jhm.2389
http://www.ncbi.nlm.nih.gov/pubmed/26041384
http://dx.doi.org/10.1016/j.java.2014.09.001
http://dx.doi.org/10.1016/j.jhin.2007.06.017
http://www.ncbi.nlm.nih.gov/pubmed/17719678
http://dx.doi.org/10.1097/01.NUMA.0000407577.64066.4b
http://www.ncbi.nlm.nih.gov/pubmed/22124297
http://dx.doi.org/10.1111/j.1399-6576.2008.01664.x
http://www.ncbi.nlm.nih.gov/pubmed/18477072
http://dx.doi.org/10.1002/rcs.1801
http://www.ncbi.nlm.nih.gov/pubmed/28105687
http://dx.doi.org/10.1108/IR-03-2015-0055


Sensors 2017, 17, 897 15 of 16

11. Paquit, V.; Price, J.R.; Seulin, R.; Mériaudeau, F.; Farahi, R.H.; Tobin, K.W.; Ferrell, T.L. Near-infrared
imaging and structured light ranging for automatic catheter insertion. In Medical Imaging 2006: Visualization,
Image-Guided Procedures, and Display 2006; Cleary, K.R., Robert, L., Galloway, J., Eds.; SPIE: San Diego, CA,
USA, 2006; Volume 6141.

12. Paquit, V.; Price, J.R.; Mériaudeau, F.; Tobin, K.W.; Ferrell, T.L. Combining near-infrared illuminants to
optimize venous imaging. In Medical Imaging 2007: Visualization and Image-Guided Procedures; Cleary, K.R.,
Miga, M.I., Eds.; SPIE: San Diego, CA, USA, 2007; Volume 6509.

13. Ton, B.T.; Veldhuis, R.N.J. A high quality finger vascular pattern dataset collected using a custom designed
capturing device. In Proceedings of the 2013 International Conference on Biometrics (ICB), Madrid, Spain,
4–7 June 2013; pp. 1–5.

14. Miura, N.; Nagasaka, A.; Miyatake, T. Feature extraction of finger-vein patterns based on repeated line
tracking and its application to personal identification. Mach. Vis. Appl. 2004, 15, 194–203. [CrossRef]

15. Miura, N.; Nagasaka, A.; Miyatake, T. Extraction of finger-vein patterns using maximum curvature points in
image profiles. IEICE Trans. Inf. Syst. 2007, E90-D, 1185–1194. [CrossRef]

16. Song, W.; Kim, T.; Kim, H.C.; Choi, J.H.; Kong, H.-J.; Lee, S.-R. A finger-vein verification system using mean
curvature. Pattern Recognit. Lett. 2011, 32, 1541–1547. [CrossRef]

17. Choi, J.H.; Song, W.; Kim, T.; Lee, S.-R.; Kim, H.C. Finger vein extraction using gradient normalization and
principal curvature. Proc. SPIE 2009, 7251, 725111.

18. Wu, J.-D.; Liu, C.-T. Finger-vein pattern identification using svm and neural network technique.
Expert Syst. Appl. 2011, 38, 14284–14289. [CrossRef]

19. Shin, K.; Park, Y.; Nguyen, D.; Park, K. Finger-vein image enhancement using a fuzzy-based fusion method
with gabor and retinex filtering. Sensors 2014, 14, 3095–3129. [CrossRef] [PubMed]

20. Pham, T.; Park, Y.; Nguyen, D.; Kwon, S.; Park, K. Nonintrusive finger-vein recognition system using NIR
image sensor and accuracy analyses according to various factors. Sensors 2015, 15, 16866–16894. [CrossRef]
[PubMed]

21. Deepa, P.; Mohanavelu, K.; Sundersheshu, B.S.; Padaki, V.C. Vein identification and localization for
automated intravenous drug delivery system. In Wireless Networks and Computational Intelligence, Proceedings
of the 6th International Conference on Information Processing (ICIP 2012), Bangalore, India, 10–12 August 2012;
Venugopal, K.R., Patnaik, L.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 270–281.

22. Wang, F.; Behrooz, A.; Morris, M.; Adibi, A. High-contrast subcutaneous vein detection and localization
using multispectral imaging. J. Biomed. Opt. 2013, 18, 050504. [CrossRef] [PubMed]

23. Juric, S.; Flis, V.; Debevc, M.; Holzinger, A.; Zalik, B. Towards a low-cost mobile subcutaneous vein detection
solution using near-infrared spectroscopy. Sci. World J. 2014, 2014, 365902. [CrossRef] [PubMed]

24. Phipps, K.; Modic, A.; O’Riordan, M.A.; Walsh, M. A randomized trial of the vein viewer versus standard
technique for placement of peripherally inserted central catheters (PICCs) in neonates. J. Perinatol. 2012, 32,
498–501. [CrossRef] [PubMed]

25. Kaddoum, R.N.; Anghelescu, D.L.; Parish, M.E.; Wright, B.B.; Trujillo, L.; Wu, J.; Wu, Y.; Burgoyne, L.L.
A randomized controlled trial comparing the accuvein AV300 device to standard insertion technique for
intravenous cannulation of anesthetized children. Pediatr. Anesth. 2012, 22, 884–889. [CrossRef] [PubMed]

26. Cuper, N.J.; Klaessens, J.H.G.; Jaspers, J.E.N.; de Roode, R.; Noordmans, H.J.; de Graaff, J.C.; Verdaasdonk, R.M.
The use of near-infrared light for safe and effective visualization of subsurface blood vessels to facilitate blood
withdrawal in children. Med. Eng. Phys. 2013, 35, 433–440. [CrossRef] [PubMed]

27. Meriaudeau, F.; Paquit, V.; Walter, N.; Price, J.; Tobin, K. 3D and multispectral imaging for subcutaneous
veins detection. In Proceedings of the 2009 16th IEEE International Conference on Image Processing (ICIP),
Cairo, Egypt, 7–10 November 2009; pp. 2857–2860.

28. Ai, D.; Yang, J.; Fan, J.; Zhao, Y.; Song, X.; Shen, J.; Shao, L.; Wang, Y. Augmented reality based real-time
subcutaneous vein imaging system. Biomed. Opt. Express 2016, 7, 2565–2585. [CrossRef] [PubMed]

29. Anderson, R.R.; Parrish, J.A. The optics of human skin. J. Investig. Dermatol. 1981, 77, 13–19. [CrossRef]
[PubMed]

30. Tuchin, V.V.; Utz, S.R.; Yaroslavsky, I.V. Tissue optics, light distribution, and spectroscopy. Opt. Eng. 1994, 33,
3178–3188. [CrossRef]

http://dx.doi.org/10.1007/s00138-004-0149-2
http://dx.doi.org/10.1093/ietisy/e90-d.8.1185
http://dx.doi.org/10.1016/j.patrec.2011.04.021
http://dx.doi.org/10.1016/j.eswa.2011.05.086
http://dx.doi.org/10.3390/s140203095
http://www.ncbi.nlm.nih.gov/pubmed/24549251
http://dx.doi.org/10.3390/s150716866
http://www.ncbi.nlm.nih.gov/pubmed/26184214
http://dx.doi.org/10.1117/1.JBO.18.5.050504
http://www.ncbi.nlm.nih.gov/pubmed/23649005
http://dx.doi.org/10.1155/2014/365902
http://www.ncbi.nlm.nih.gov/pubmed/24883388
http://dx.doi.org/10.1038/jp.2011.129
http://www.ncbi.nlm.nih.gov/pubmed/21941231
http://dx.doi.org/10.1111/j.1460-9592.2012.03896.x
http://www.ncbi.nlm.nih.gov/pubmed/22694242
http://dx.doi.org/10.1016/j.medengphy.2012.06.007
http://www.ncbi.nlm.nih.gov/pubmed/22841651
http://dx.doi.org/10.1364/BOE.7.002565
http://www.ncbi.nlm.nih.gov/pubmed/27446690
http://dx.doi.org/10.1111/1523-1747.ep12479191
http://www.ncbi.nlm.nih.gov/pubmed/7252245
http://dx.doi.org/10.1117/12.178900


Sensors 2017, 17, 897 16 of 16

31. Sfareni, R.; Boffi, A.; Quaresima, V.; Ferrari, M. Near infrared absorption spectra of human deoxy- and
oxyhaemoglobin in the temperature range 20–40 ◦C. Biochim. Biophys. Acta BBA Protein Struct. Mol. Enzymol.
1997, 1340, 165–169. [CrossRef]

32. Wray, S.; Cope, M.; Delpy, D.T.; Wyatt, J.S.; Reynolds, E.O.R. Characterization of the near infrared absorption
spectra of cytochrome AA3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation.
Biochim. Biophys. Acta BBA Bioenerg. 1988, 933, 184–192. [CrossRef]

33. Chiabrando, F.; Chiabrando, R.; Piatti, D.; Rinaudo, F. Sensors for 3D imaging: Metric evaluation and
calibration of a CCD/CMOS time-of-flight camera. Sensors 2009, 9, 10080–10096. [CrossRef] [PubMed]

34. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9,
62–66. [CrossRef]

35. Zuiderveld, K. Contrast limited adaptive histogram equalization. In Graphics Gems IV; Heckbert, P.S., Ed.;
Academic Press Professional, Inc.: San Diego, CA, USA, 1994; pp. 474–485.

36. Kanungo, T.; Mount, D.M.; Netanyahu, N.S.; Piatko, C.D.; Silverman, R.; Wu, A.Y. An efficient k-means
clustering algorithm: Analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 881–892.
[CrossRef]

37. Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to
image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]

38. Du, H.; Henry, P.; Ren, A.X.; Cheng, A.M.; Goldman, A.D.B.; Seitz, A.S.M.; Fox, D. Interactive 3D modeling
of indoor environments with a consumer depth camera. In Proceedings of the 13th International Conference
on Ubiquitous Computing (UbiComp’11), Beijing, China, 17–21 September 2011; ACM: New York, NY, USA,
2011; pp. 75–84.

39. Fernández, R.; Salinas, C.; Montes, H.; Sarria, J. Multisensory system for fruit harvesting robots. Experimental
testing in natural scenarios and with different kinds of crops. Sensors 2014, 14, 23885–23904. [CrossRef]
[PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0167-4838(97)00042-3
http://dx.doi.org/10.1016/0005-2728(88)90069-2
http://dx.doi.org/10.3390/s91210080
http://www.ncbi.nlm.nih.gov/pubmed/22303163
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.1109/TPAMI.2002.1017616
http://dx.doi.org/10.1145/358669.358692
http://dx.doi.org/10.3390/s141223885
http://www.ncbi.nlm.nih.gov/pubmed/25615730
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Multisensory System Description 
	Algorithm for Automatic Detection and Localization of Peripheral Subcutaneous Veins 

	Results 
	Discussion 
	Conclusions 

