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This study investigates whether terrestrial mammalian carnivore guilds of

ancient South America, which developed in relative isolation, were similar

to those of other continents. We do so through analyses of clade diversifica-

tion, ecomorphology and guild structure in the Sparassodonta, metatherians

that were the predominant mammalian carnivores of pre-Pleistocene South

America. Body mass and 16 characters of the dentition are used to quantify

morphological diversity (disparity) in sparassodonts and to compare them

to extant marsupial and placental carnivores and extinct North American

carnivoramorphans. We also compare trophic diversity of the Early Miocene

terrestrial carnivore guild of Santa Cruz, Argentina to that of 14 modern

and fossil guilds from other continents. We find that sparassodonts had com-

paratively low ecomorphological disparity throughout their history and that

South American carnivore palaeoguilds, as represented by that of Santa

Cruz, Argentina, were unlike modern or fossil carnivore guilds of other con-

tinents in their lack of mesocarnivores and hypocarnivores. Our results add

to a growing body of evidence highlighting non-analogue aspects of extinct

South American mammals and illustrate the dramatic effects that historical

contingency can have on the evolution of mammalian palaeocommunities.
1. Introduction
The evolution of mammals during South America’s protracted Cenozoic geo-

graphical isolation is well documented [1–3]. Nevertheless, few studies have

attempted to examine how such ‘Splendid Isolation’ may have affected the struc-

ture of mammalian ecological communities. Herein, we quantify and analyse the

taxonomic diversity and morphological disparity of sparassodont metatherians,

the predominant carnivorous land mammals of ancient South America, in order

to characterize their evolutionary history and examine dietary resource partition-

ing among members of the terrestrial carnivore guild. Sparassodonts represent a

radiation of mammals into the carnivore/predator niche independent of those on

other continents [4]. Thus, their fossil record provides an opportunity to test

whether patterns of clade evolution and niche partitioning in carnivoramor-

phans primarily reflect ecological factors affecting all carnivorous mammals or

morphological adaptations unique to Carnivora.

Sparassodonts are organized into five family-level groups: Borhyaenidae,

Proborhyaenidae, Thylacosmilidae, Hathliacynidae and the monotypic Honda-

delphidae, the first three of which comprise Borhyaenoidea [5–7]. They ranged

in size from less than 1 kg to approximately 150 kg, and their fossil record

extends from the early Cenozoic to the Pliocene (electronic supplementary

material, table S1). Although sparassodonts as a group were clearly carnivorous
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Figure 1. Representative sparassodont upper dentitions in occlusal view (a – c)
and lower dentitions in lingual (d ) and buccal (e – g) views, anterior to right.
(a) Hondadelphys fieldsi, left P1-P2 roots and P3-M4 (reversed), UCMP 37960;
(b) Sipalocyon gracilis, left C-M4, cast of YPM-PU 15373; (c) Arctodictis sin-
clairi, left C-M4 (reversed), MLP 85-VII-3 – 1; (d ) Pseudothylacynus rectus,
left p1-m4, MACN-A 52-369; (e) Sipalocyon gracilis, left i1-m4 (reversed),
MACN-A 691; ( f ) Arctodictis sinclairi, right c-m4, MLP 85-VII-3-1; (g) Thyla-
cosmilus atrox, left c-m4 (reversed), FMNH P14344. Scale bars equal 1 cm. For
collection abbreviations, see the electronic supplementary material, table S5.
(Online version in colour.)
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(figure 1), opinions have varied regarding their roles in

ancient South American mammal communities. Some species

have universally been regarded as meat or meat/bone

specialists [8,9], whereas others have been characterized as

more omnivorous based on qualitative (rather than quantitat-

ive) comparisons [2,10,11]. Opinions are similarly divergent

regarding the taxonomic diversity and therefore ecological

structure of South America’s mammalian carnivore guild

prior to the Great American Biotic Interchange [12–14].

Our study, which analyses the functional morphology of

the entire sparassodont dentition, aims to determine how the

trophic structure of a terrestrial carnivore guild from the

middle Cenozoic of South America compares to modern

and fossil terrestrial carnivore guilds from other continents.

We also address several other fundamental questions about

carnivore evolution, palaeoecology and guild structure
in South America including: (i) did the diversification of spar-

assodonts in South America resemble that of

carnivoramorphans in North America? (ii) how did the late

Cenozoic decline of sparassodonts affect the group’s dis-

parity? and (iii) how do diversity and disparity of

sparassodonts compare to Cenozoic North American carni-

voramorphans and modern carnivorans as a whole?
2. Material and methods
(a) Terminology
‘Diversity’ (without any qualifier) refers to taxonomic diversity

(richness) and ‘disparity’ refers to morphological diversity [15]

or functional richness [16]. We measure diversity using oper-

ational taxonomic units (OTUs) and disparity using occupied

morphospace. ‘Carnivorous’ refers to animals that feed on ver-

tebrates (not simply secondary consumers). ‘Omnivorous’ refers

to animals that consume significant plant material and/or

invertebrates in addition to vertebrates.

(b) Sparassodont data
OTUs are genera or purported genera, primarily following

Forasiepi [5]. Additional details are provided in the electronic sup-

plementary material, table S4. To describe sparassodont dental

ecomorphology, we scored all OTUs for 16 characters used by sev-

eral previous studies [17–19] to quantify carnivoramorphan and

‘creodont’ dental ecomorphology (electronic supplementary

material, tables S6–S7). M3 and m4 were considered the carnas-

sials in sparassodonts, as they are typically the largest and least-

worn slicing teeth and are thought to be the closest functional ana-

logues of ‘creodont’ and carnivoran carnassials (e.g. [19,20]).

Relative grinding area (Character no. 16) was scored following

Werdelin & Wesley-Hunt [17] but with one bin subdivided into

order to better distinguish extant mesocarnivores and hypocarni-

vores. Body mass (Character no. 17) was scored following Wesley-

Hunt [19] but with the smallest body size state divided into two;

OTUs were coded using body mass ranges in the electronic sup-

plementary material, table S1, and scored for the larger state in

cases where the body mass spanned two categories. Scoring

was based on original material where possible (electronic sup-

plementary material, table S5). Owing to incomplete fossil

preservation, most OTUs could not be scored for at least some

characters. In some cases, character states were scored based on

homologous or analogous teeth or morphologically similar

OTUs (noted in the electronic supplementary material, table S7).

(c) Non-sparassodont data
We coded nine additional carnivorous metatherian genera for

comparative purposes: three extant Australian dasyuromor-

phians and six extinct South American didelphimorphians

(electronic supplementary material, table S1). The former may

be the closest extant ecomorphological analogues for sparasso-

donts, whereas the latter coexisted with sparassodonts during

the late Neogene and have been suggested to have occupied

similar niches and/or competitively replaced some species

[10,21]. Metatherian codings were combined with the extant car-

nivoran dataset of Werdelin & Wesley-Hunt [17], which includes

approximately 85% of modern carnivoran species, and the North

American Cenozoic carnivoramorphan dataset of Wesley-Hunt

[19], which was recoded to be congruent with the present study.

(d) Time bins
For analyses of diversity and disparity through time, sparasso-

donts were allocated to 2-million-year time bins based on the
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South American Land Mammal Age(s) (SALMAs) or informal

equivalents in which the taxon has been recorded (electronic sup-

plementary material, table S8). These bins (intervals) were used

rather than absolute ages because the ages of most South Amer-

ican fossil sites are not known with greater precision.

(e) Carnivore guilds
Taxonomic lists of non-volant terrestrial carnivore guilds were

compiled from the literature for the late Early Miocene site of

Santa Cruz, Argentina [22,23] and three modern ecosystems:

the lowland rainforest of Malaysia, the savannah-woodland of

Serengeti National Park, Tanzania, and the temperate coniferous

forest of Yellowstone National Park, USA (electronic supplemen-

tary material, table S9). Santa Cruz was chosen as representative

of a South American fossil carnivore guild because it is the most

diverse guild presently known, and the palaeobiology of many

species has been studied in detail. The three modern sites are

those used by Van Valkenburgh in her classic studies of large

carnivore guilds [24,25]; small carnivorans were added based

on other sources. Modern carnivorans were categorized as

hypercarnivorous, mesocarnivorous or hypocarnivorous based

primarily on Van Valkenburgh [25] (large species) and Friscia

et al. [26] (small species). A comparative set of 11 Northern

Hemisphere fossil carnivore guilds (including ‘creodonts’, meso-

nychians, carnivoramorphans and other groups) were compiled

from Morlo et al. [27] and the primary literature (electronic

supplementary material, table S9).

( f ) Analytical methods
Analytical methods for calculating disparity follow Werdelin &

Lewis [28] and Werdelin & Wesley-Hunt [18]. Disparity (occu-

pied morphospace [29]) was calculated as the convex hull area

encompassing the taxa on a bivariate plot of the first two axes

of a correspondence analysis. All OTUs (sparassodonts, dasyur-

omorphians, didelphimorphians, North American Cenozoic

carnivoramorphans and modern carnivorans) were included

in a single analysis to obtain individual scores that were

subsequently used to determine occupied morphospace. Mor-

phospace analyses were performed in PAST v. 3.10 for Mac

[30], which uses column average substitution to accommodate

missing data. Other statistical analyses and data visualization

were conducted in JMP PRO
w 13.0 for Mac [31].
3. Results
(a) Diversification and decline of sparassodonts
Sparassodont disparity is positively correlated with diversity

(Spearman’s r ¼ 0.8350 excluding intervals with ,3 OTUs;

p , 0.0002), and maximal disparity coincides with maximal

diversity during the late Early Miocene (Santacrucian inter-

val; figure 2). Disparity increases from the Early to Middle

Eocene (Barrancan interval), drops during the Late Eocene

(Mustersan interval) and gradually increases up to the late

Early Miocene peak. It decreases gradually during the

Middle Miocene, drops during the early-Late Miocene, sub-

sequently rebounds and then drops again by the end of the

Miocene (see also Discussion). Diversity shows a similar

but exaggerated trend, particularly when intervals with less

than three OTUs are ignored (i.e. those for which disparity

cannot be calculated). Disparity relative to diversity is

highest during the Late Miocene (Huayquerian interval),

which plots as an outlier relative to other points based on

Mahalanobis and jackknife distances at a ¼ 0.05 (but not

a ¼ 0.01).
(b) Diversification of carnivoramorphans
Carnivoramorphan disparity is also positively correlated

with diversity (Spearman’s r ¼ 0. 8922; p , 0.0001). Disparity

decreases after the Early Eocene and reaches a low point

during the Late Eocene (40–38 Ma) but generally increases

throughout the remainder of the Cenozoic. Dips in disparity

occur during the Oligocene (30–26 Ma), Early Miocene (20–

18 Ma) and Middle Miocene (14–10 Ma), and disparity rises

steeply in the Late Miocene (after 6 Ma). Diversity outpaces

disparity 29–27 Ma but decreases during the Late Oligocene

and Early Miocene (26–20 ma), while disparity remains

generally constant. Disparity and diversity show congruent

patterns in the Early to Middle Miocene (20–12 Ma), but a

decrease in disparity coincides with an increase in diversity

in the late Middle Miocene (12–10 Ma), and the opposite

occurs during the Late Miocene (after 6 Ma). This final inter-

val (6–4 Ma) plots as an outlier relative to other points based

on Mahalanobis and jackknife distances (p , 0.01).

(c) Sparassodonts and North American
carnivoramorphans compared

Carnivoramorphan diversity exceeds that of sparassodonts

throughout the Cenozoic except during the late Middle

Eocene (42–40 Ma; Barrancan interval), when five OTUs are

recorded in South America and only four in North America.

In nearly every other interval in which a direct comparison is

possible, carnivoramorphan diversity is at least twice that of

sparassodonts. The only notable exception to this pattern is the

Early Miocene (Colhuehuapian and Santacrucian intervals),

when carnivoramorphan diversity is only approximately

1.3–1.5� that of sparassodonts.

Disparity displays a similar pattern to diversity. Carnivor-

amorphan disparity exceeds that of sparassodonts throughout

the Cenozoic, though values are nearly identical during the

late Middle Eocene (Barrancan interval; 0.66163 versus

0.64365, respectively). Carnivoramorphan disparity is 2–2.3�
that of sparassodonts prior to this time and generally approxi-

mately 4–7� that of sparassodonts thereafter. Much greater

discrepancies (approx. 26–29�) correspond to the two late

Cenozoic dips in sparassodont disparity (Chasicoan and

Montehermosan intervals).

Total disparity of Cenozoic North American carnivora-

morphans (14.046; n ¼ 95) is approximately 85% of that

of extant carnivoramorphans worldwide (16.536; n ¼ 216).

Total disparity of sparassodonts (2.2386; n ¼ 41) is approxi-

mately 15% that of carnivoramorphans today and throughout

the Cenozoic.

(d) Morphospace occupation (disparity)
The first two canonical axes (CAs) encompass 55.3% of the

variation among taxa (figure 3a). The distributions of taxa

and characters strongly resemble the results of Werdelin &

Wesley-Hunt [17]; the x-axis is inversely correlated with

carnivory (hypercarnivores towards the left, hypocarnivores

towards the right), whereas the y-axis correlates negatively

with body mass and upper carnassial occlusal angle, and

positively with the number of upper premolars anterior to

the carnassial and shape of the largest upper premolar

anterior to the carnassial.

Nearly all metatherians plot negatively on CA1; excep-

tions include Pseudolycopsis, IGM 251108, Stylocynus and



10

41
Bar

39 37
Mus

35 33
(Tin)

31
(LC)

29
Des

27
Des

25
Des

23 21
Coh

19 17
San

15
Coc

13
Lav

11
(May)

9
Chs

7
Huy

5
Mon

43
Vac

45
(Rio)

4749
LF

0

5

10

15

20

25

0

2

4

6

1

3

5

disparity

diversity Eocene MioceneOligocene

SA sparassodonts

NA carnivoramorphans

NA carnivoramorphans

SA sparassodonts

(a)

(b)

Figure 2. Graphs of diversity (a) and disparity (b) through time for South American (SA) sparassodonts and North American (NA) carnivoramorphans. Only Eocene to
Early Pliocene bins are shown because sparassodont disparity cannot be calculated beyond this range (less than 3 OTUs). X-axis values are midpoints of 2-million-
year time bins. Bins represented in the South American fossil record are labelled with the corresponding interval (see the electronic supplementary material, table S1
for abbreviations); parentheses indicate bins with fewer than three sparassodont OTUs (for which disparity cannot be calculated). (Online version in colour.)

rspb.royalsocietypublishing.org
Proc.R.Soc.B

285:20172012

4

Hondadelphys, which have low positive values (approx. less

than or equal to 0.25), and Nemolestes and Notogale, which

have values close to zero (less than 0.005). On CA2, metather-

ians straddle the origin, well within the range spanned by

modern carnivorans. Didelphimorphians and sparassodonts

occupy distinct morphospaces in figure 3a except for Thy-
latheridium, which is just within hathliacynid morphospace.

This agrees with the findings of Zimicz [32].

Total sparassodont disparity (2.0765; n ¼ 41) is approxi-

mately 12% that of modern carnivorans worldwide (17.468;

n ¼ 216) and approximately 15% that of Cenozoic North

American carnivoramorphans (13.93; n ¼ 95). It is only

approximately 15% that of modern South American carnivorans

(13.681), which are similarly diverse (n ¼ 40). Sparassodont

disparity is comparable to that of extant canids (2.1477) but

less than that of moderately disparate families such as

Eupleridae (2.4035) and Procyonidae (2.5734) (see the elec-

tronic supplementary material, table S12).

(e) Sparassodont diets
Sparassodonts scored for all or nearly all (12 out of 13) char-

acters (n ¼ 14) plot most closely to modern hypercarnivorous

species (figure 3b). Most occupy a morphospace between

felids and hypercarnivorous canids that overlaps hyaenids

and highly carnivorous mustelids including the honey

badger (Mellivora capensis), African striped weasel (Poecilogale
albinucha), beech martin (Martes foina), wolverine (Gulo
gulo) and weasels of the genus Mustela. Hondadelphys is an

outlier among sparassodonts, plotting near hypercarnivorous

canids and a variety of carnivorous to omnivorous feliforms

(herpestids, viverrids and Nandinia). Dasyuromorphians

largely overlap sparassodonts, occupying positions relative

to placental carnivorans similar to those found by Jones [33].

( f ) Carnivore guilds
Disparity of the Santa Cruz carnivore guild (0.74619) is far

less than that of the modern carnivore guilds of Malaysia

(11.409), the Serengeti (5.5325) and Yellowstone (11.566).

This fits with the low trophic diversity inferred for the
Santa Cruz carnivore guild; all sparassodonts from the site

have been interpreted as hypercarnivores, congruent with

their positions in figure 3, whereas only one-half to two-

thirds of species in modern and fossil carnivore guilds from

other continents are hypercarnivores (figure 4; electronic

supplementary material, table S9). If the four Santa Cruz

phorusrhacids (terror birds) are included, trophic diversity

remains unchanged, as phorusrhacids are also interpreted

as hypercarnivores [10,22]. Species diversity of the Santa

Cruz carnivore guild is 40–65% that of the modern guilds

analysed and 40–75% that of most fossil guilds; with phor-

usrhacids, this increases to 55–90% compared to modern

guilds and 55–100% for most fossil guilds. The number of

hypercarnivores at Santa Cruz (15 including phorusrhacids)

is comparable to that of Malaysia (n ¼ 17) and Serengeti

(n ¼ 14) but 1.5–5� the number recorded at other fossil sites.
4. Discussion
(a) Completeness of the fossil record
More than one-third of sparassodont character states could

not be coded (257 of 697 states; electronic supplementary

material, table S7). This reflects the rarity of sparassodont

specimens in the fossil record [9,12,13,34] as well as their

generally poor preservation (cf. [11,35,36]). The relative contri-

butions of ecology, taphonomy, sampling and other factors to

such scarcity remain unresolved, but the sparassodont record

should be interpreted with caution, given the large amount of

missing data. Hence, we focus our discussion on broad tem-

poral patterns, a well-sampled fossil site (Santa Cruz) and

taxa known from relatively complete remains.

(b) Evolution of the Sparassodonta
Sparassodont diversity and disparity are positively correlated

and generally increase from the group’s earliest record to its

Early Miocene peak. This most closely corresponds to the

idealized diversification model C of Foote [37], a pattern in

which diversity and disparity are concordant that can result
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from diffusion in morphospace or adaptive radiation [37].

The Early Oligocene (Tinguirirican) drop in diversity

(figure 2) is almost certainly an artefact of the very limited
fossil record for this interval, which is only sampled from a

few sites [38,39] and has not yielded specimens complete

enough to be analysed. Curiously, sparassodonts do not
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appear to have decreased in diversity or disparity during the

Middle Eocene, unlike North American carnivoramorphans,

‘creodonts’ and other groups [40–42]. This could indicate

little significant climate/habitat change in Patagonia during

this interval, as has been documented for the later Palaeogene

[43], or be an artefact of comparatively poor sampling of

earlier intervals.

The relatively high disparity recorded before the extinction

of the sparassodonts (figure 2) corresponds most closely to

Foote’s model G of clade decline in which ‘selection against

morphological intermediates causes an increase in morpho-

logical variance, analogous to disruptive selection within

populations’ [37]. In other words, sparassodonts remained

broadly separated in morphospace despite decreasing Late

Cenozoic diversity (electronic supplementary material, figure

S1). Based on our analysis, Late Miocene sparassodont dis-

parity was greater than Late Oligocene disparity, and we

find no support for a protracted decline after the Deseadan

interval (Late Oligocene), as postulated by Marshall [10]. A

decrease in disparity may have commenced after the Early

Miocene, but a post-Middle Miocene or even post-Miocene

decline is more likely given sampling differences among inter-

vals; the early Late Miocene represents a large gap in

knowledge, with only one well-sampled site of Chasicoan age

and no sparassodonts yet discovered from the few known
Mayoan sites [5]. Sparassodont diversity broadly parallels

disparity except that diversity is greater during the Late

Oligocene than the Late Miocene.

It has been suggested that constraints on molar mor-

phology related to tooth replacement in metatherians may

have limited the diversity and disparity of carnivorous

forms [44]. Our analysis of the entire dentition supports this

conclusion. At nearly every point throughout the Cenozoic,

the terrestrial carnivore guild of South America was less

disparate than that of North America (figure 2). Moreover,

sparassodonts as a clade are less disparate than South

American carnivorans today (electronic supplementary

material, table S11), despite comparable diversity (41 versus

40 OTUs, respectively). Sparassodonts are also less disparate

than euplerids, which include a mere seven species that

evolved to occupy hypocarnivore, mesocarnivore and hyper-

carnivore niches in Madagascar in fewer than 25 Ma [17,45].

The reasons for the decline and extinction of the Sparas-

sodonta remain unknown. Competition with North American

carnivorans appears to be an unsatisfactory explanation

[20,46], as does displacement by didelphoids [6,32]. A recent

study [47] concluded that the primary factor may have been

non-competitive ecological interactions, perhaps coupled with

climate, though precisely what those ecological interactions

may have been is unclear.
(c) Ecological communities
Comparing the terrestrial carnivore guild of Santa Cruz,

Argentina to selected modern and fossil guilds from other con-

tinents yields two noteworthy observations (figure 4). First,

diversity is low: the guild includes fewer mammal species

than all three modern carnivore guilds and all but one fossil

guild. Second, the distribution of species among trophic cat-

egories is unlike any other guild. If this accurately represents

the Santa Cruz carnivore guild, it presents an ecological

anomaly: why are there no mesocarnivores or hypocarnivores?

One potential explanation is sampling: sparassodonts

filled these niches but simply were not preserved in the

fossil record. This is a reasonable explanation for most

fossil sites, but the Santa Cruz Fauna derives from what is

probably South America’s most productive fossil mammal-

producing formation and is considered to faithfully represent

its ancient carnivore guild [9,23]. In fact, the abundance

of Santa Cruz specimens, combined with the formation’s

broad geographical extent and stratigraphic thickness, has

resulted in the opposite problem for most mammal groups:

a plethora of invalid junior synonyms and an overestimation

of diversity [35,48,49]. Thus, it is unlikely that a significant

portion of the Santa Cruz carnivore guild remains

unsampled.

Alternatively, Santa Cruz may not represent a typical

Cenozoic South American ecological community. This rela-

tively high-latitude site (approx. 518 S) is characterized by

an unexpectedly low diversity of arboreal and/or frugivor-

ous mammals [14,50], potentially reflecting a scarcity of

fruit owing to pronounced Patagonian seasonality [14,51].

Thus, Santa Cruz may be missing hypocarnivorous or meso-

carnivorous species that would be present at a lower-latitude

site of similar age. In this respect, it is worth noting that the

two Neogene sparassodonts universally regarded as omni-

vorous, Hondadelphys and Stylocynus [11,20,52], come from

extra-Patagonian localities [5]. Similarly, low-latitude species
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of Lycopsis (L. longirostrus and L. padillai) have proportionally

larger molar grinding areas than Patagonian L. torresi
(R. Engleman 2017, personal observation), suggesting more

omnivorous habits. Additional sampling of middle- and

low-latitude sites may eventually make it possible to test

for regional differences in guild structure in South America.

Another possibility is that mesocarnivore and hypocarni-

vore niches at Santa Cruz were filled by mammals other

than sparassodonts. The palaeothentid metatherian Acdestis
may have included some vertebrate prey in its diet [53], per-

haps warranting consideration as a small (approx. 350 g [54])

hypocarnivore. Other possible hypocarnivores include arma-

dillos, particularly euphractines, which are more omnivorous

than other extant armadillos and are known to catch and eat

vertebrates [55]. Euphractines were the predominant arma-

dillos during much of the Cenozoic [56], and some were

apparently specialized for preying on vertebrates [57]. Arma-

dillos may even have prevented sparassodonts from entering

more omnivorous niches owing to ecological incumbency

[58]. However, only a single Santa Cruz armadillo, Prozaedyus,
may have had omnivorous habits like those of modern

euphractines [59]. All other Santa Cruz mammals were

primarily insectivorous, frugivorous and/or herbivorous

[14,54,60]. Didelphoids are not recorded at Santa Cruz or

many other fossil sites outside equatorial latitudes prior to

the Late Miocene, and those that are known are small (less

than 500 g) and non-carnivorous [52,61]. In summary, one or

two non-sparassodont mammals could potentially be con-

sidered broadly hypocarnivorous, but the Santa Cruz

carnivore guild would still be anomalous in its proportion of

hypercarnivores and lack of mesocarnivores.

A fourth possible explanation is that current palaeodie-

tary reconstructions of sparassodonts are inaccurate, and

that not all Santa Cruz species were hypercarnivorous. This

hypothesis cannot presently be tested, though it may be poss-

ible in the future using stable isotopes, dental wear or another

‘taxon-independent’ method of dietary inference [62,63].

Caution is warranted when interpreting the palaeobiology

of any extinct clade based on extant representatives of other

groups, as there is no unequivocal way to ‘calibrate’ bound-

aries of ecological categories (e.g. dietary categories) along

a morphological continuum (e.g. relative grinding area).

This phenomenon is well illustrated by South American

notoungulates; most notoungulates have long been inter-

preted as grazers or open-habitat feeders based on their

very high-crowned (hypsodont) teeth (e.g. [64]), but recent

studies using stable isotopes and dental wear have demon-

strated that a simple relationship between hypsodonty and

diet does not hold for this group [65,66], despite its use for

many other clades. Studies of mandible shape in sparasso-

donts have interpreted some species as more omnivorous

(mesocarnivorous or hypocarnivorous) than suggested by

their dentition [20,67], and this could reflect inaccuracies in

interpreting sparassodont dental ecomorphology based on

metrics derived from modern carnivorans. Interestingly, Mar-

shall’s [10] qualitative analysis of sparassodonts envisaged

much greater dietary breadth in the group, with three

Santa Cruz genera classified as large carnivores (Acrocyon,

Arctodictis, Borhyaena), two as large omnivores (Lycopsis,

Prothylacynus), and the remainder as small to medium carni-

vores or omnivores similar to modern mustelids, mephitids,

canids and didelphids (see his fig. 1). Marshall [10] had
little objective basis for this classification, but the resulting

carnivore guild has a trophic structure similar to those of

other continents (figure 4).

If most sparassodonts truly were hypercarnivorous, cer-

tain trophic niches in South America were apparently

unoccupied by mammals during much of the Cenozoic. Spar-

assodonts appear to have become hypercarnivorous early in

their evolutionary history [5], and this may have precluded

them from later exploiting meso- and hypocarnivorous

niches despite ecological opportunity. Such a scenario is com-

patible with the concept of a macroevolutionary ratchet that

favours hypercarnivory and selects against omnivory, as

has been described for many other groups of carnivorous

mammals [68–70].

Our palaeoecological analyses suggest that carnivore

guilds of ancient South America were not analogous to

modern carnivore guilds or fossil guilds from other conti-

nents. This seems to be partly or principally owing to the

particular clade (sparassodonts) that dominated mammalian

carnivore niches there for most of the Cenozoic. Although

no analyses of fossil carnivore guilds on other continents

that lack carnivoramorphans have yet been published, pla-

cental ‘creodonts’ apparently displayed significant dietary

breadth in Africa [71], and the same may also have been

true of marsupials in Australia [72]. How sparassodonts

were able to coexist with one another despite low trophic

diversity is unclear. There is no strong evidence for character

displacement in body size [23], and although some species

clearly differed in postcranial morphology, locomotor habits

can only currently be assessed for about half of Santa Cruz

species. More precise characterization of the terrestrial preda-

tor guild of Santa Cruz and other localities in South America

will require more complete specimens and additional analy-

tical techniques. Our analyses highlight that the Santa Cruz

carnivore guild, and probably the entire mammal commu-

nity, was structured very differently from modern mammal

communities. This presents a challenge for accurately charac-

terizing the palaeoecology of this and other such faunas but

also an opportunity to document ecological configurations

of mammalian communities that extend beyond those that

exist today.
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