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Abstract

Accuracy of genome-wide association studies, and the successful implementation of geno-

mic selection depends on the level of linkage disequilibrium (LD) across the genome and

also the persistence of LD phase between populations. In the present study LD between

adjacent SNPs and LD decay between SNPs was calculated in three Iranian water buffalo

populations. Persistence of LD phase was evaluated across these populations and effective

population size (Ne) was estimated from corrected r2 information. A set of 404 individuals

from three Iranian buffalo populations were genotyped with the Axiom Buffalo Genotyping

90K Array. Average r2 and |D’| between adjacent SNP pairs across all chromosomes was

0.27 and 0.66 for AZI, 0.29 and 0.68 for KHU, and 0.32 and 0.72 for MAZ. The LD between

the SNPs decreased with increasing physical distance from 100Kb to 1Mb between mark-

ers, from 0.234 to 0.018 for AZI, 0.254 to 0.034 for KHU, and 0.297 to 0.119 for MAZ,

respectively. These results indicate that a density of 90K SNP is sufficient for genomic anal-

yses relying on long range LD (e.g. GWAS and genomic selection). The persistence of LD

phase decreased with increasing marker distances across all the populations, but remained

above 0.8 for AZI and KHU for marker distances up to 100Kb. For multi-breed genomic eval-

uation, the 90K SNP panel is suitable for AZI and KHU buffalo breeds. Estimated effective

population sizes for AZI, KHU and MAZ were 477, 212 and 32, respectively, for recent

generations. The estimated effective population sizes indicate that the MAZ is at risk and

requires careful management.

Introduction

The water buffalo (B. bubalis) is an important livestock resource in many regions of the world,

particularly in tropical and subtropical countries. Water buffalo produce milk and meat, and

are used as draught animals in developing countries [1,2]. There are two types of domestic
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water buffalo. The river buffalo, which originated in the Indian sub-continent and are now

spread widely from India to Europe. The swamp buffalo, which originated in Northern Thai-

land or Laos, is the most common buffalo type in Asia, from India to the Philippines. Water

buffalo and cattle (Bos taurus) belong to the sub-family, Bovinae. While cattle were domesti-

cated between 8000 and 10,000 years ago [3], domestication of river and swamp buffalo was

more recent and has been estimated to have been between 5000 and 7000 years ago [2,4,5].

Accuracy of genome-wide association studies, and also genomic selection, is dependent on

the level of LD across the genome [6], which is influenced by population history, the breeding

systems used, e.g. natural mating or artificial insemination, and admixture among populations

[7]. Therefore, an LD map of the species is a fundamental tool for the application of genetic

selection to improve economically important traits [8]. Information on genome-wide LD is

also essential for choosing SNP to locate QTL in a genome wide association studies [8–10],

for the investigation of the diversity among breeds [6], to trace selective sweeps [10,11] and to

assess the distribution of recombination events [6]. Population demography may also be stud-

ied based on LD information, e.g. to assess the changes in the effective population size through

generations [9]. Methods for estimating the effective population size (Ne) are either demo-

graphic, pedigree-based, of marker-based [12]. Marker-based methods to estimate Ne use

information extracted from genetic data, such as heterozygosity excess, LD, changes in allele

frequency, and amount of genetic variation within and between populations [13].

LD has been widely studied in various domestic species [6,8,14–19]. The two most com-

monly used measures to evaluate LD, for bi-allelic markers, are r2 and |D’| [6,20]. The r2 value

is the correlation between two loci [21] and is preferred for association studies, because there

is a simple inverse relationship between r2 and the sample size that is required to discover asso-

ciations between a QTL and SNP [22]. |D’| varies between 0 and 1: values below 1 indicate

recombination between two loci, while a value of 1 indicates lack of recombination between

two loci. The accuracy of estimating |D’| depends on sample size and allele frequency [6], and

is severely inflated for small sample sizes and in the presence of rare alleles [23]. Calculating r2

is much less affected by low allele frequencies and small sample size [24,25].

The level and pattern of LD observed in a population is influenced by factors such as;

the sub-division and admixture of populations [24], genetic bottlenecks [26], genetic drift,

inbreeding, recombination rate, gene conversion [27,28] and selection [27–29]. Persistence of

LD phase can be used to trace history of a species and relationships among individuals within

that species [30]. The extent and persistence of LD in livestock [25,31–33] is much higher than

that found in human populations [28], because genetic selection and breeding methods tend

to reduce the effective population size [34].

The objectives of this study were to assess: (i) LD between adjacent SNPs and LD decay

according to physical distance between bi-allelic SNPs in three Iranian indigenous water buf-

falo populations using the statistics (r2) and |D’|; (ii) the consistency of the LD phase across

studied populations; and (iii) the effective population size in relation to LD decay.

Materials and methods

Animal and DNA samples

Selection of animals and collection of samples for Azeri (AZI) and Khuzestani (KHU) breeds

is described in Mokhber et al. [35]. Samples from the Mazandarani (MAZ) breed were col-

lected from the Miankaleh wildlife sanctuary of Mazandaran province (36.81˚ N, 53.41˚E),

located in the northern part of Iran (S1 Fig) [36]. The majority of MAZ buffaloes (about half of

the living MAZ buffaloes) are raised at Miankaleh. The MAZ buffaloes outside of the Mianka-

leh are mostly raised at Golestan province and were not sampled.
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Genotyping and data quality control

Genomic DNA was extracted from blood by the modified salting out method [37] and from

hair samples as described by Alberts et al. [38]. The set of 412 water buffalo samples from AZI

(n = 262), KHU (n = 123) and MAZ (n = 27) were genotyped using the Axiom Buffalo Geno-

typing 90K Array. Genotyping was carried out by Affymetrix (Sana Clara, Ca, USA). SNP

genotypes were extracted from raw data using the AffyPipe workflow [39]. The genotypes for

each population were filtered for quality separately, using PLINK software [40]. Single nucleo-

tide polymorphisms (SNPs) with minor allele frequencies (MAF) below 0.05, SNPs with call

rate below 0.05 or which were not in Hardy-Weinberg Equilibrium (P-value >10e-6) were

removed. Individuals with more than 5% missing genotypes, were excluded from data set.

After quality control for each population, genotypes from the three breeds were merged into a

single file, and SNPs that were common across all three populations were retained for further

analyses. The Axiom Buffalo Genotyping 90K Array was designed based on alignment of buf-

falo sequences to the bovine UMD3.1 genome assembly [41], therefore this bovine reference

genome sequence and relative bovine positions were used in the present study.

Measures of linkage disequilibrium

The LD between two SNPs was evaluated using the statistics r2 [20] and the absolute D-value

(|D’|) [42], which were calculated as follows:

r2 ¼
ðDÞ2

ðfreq A � freq a � freq B � frq bÞ

Where

D ¼ freq AB � freq A � freq B

And

D0 ¼

D
min ðfreq A � freq b; freq B � frq aÞ

if D > 0

D
min ðfreq A � freq B � freq a � frq bÞ

if D < 0

8
>><

>>:

Where SNP pairs had alleles A and a at the first locus and B and b at the second locus, freq A,

freq a, freq B and freq.b denote frequencies of alleles A, a, B, and b, respectively, and freq AB
denote frequency of haplotype AB in the population. The r2 and |D’| were calculated between

adjacent markers and SNP pairs with physical distances from 0 to 15 Mb for each population,

using SnppLD software (Sargolzaei M, University of Guelph, Canada) [25].

The average r2 and |D’| of adjacent SNPs were estimated for each chromosome. SNP pairs

were grouped by their pairwise physical distance, based on their position in the UMD3.1 refer-

ence cattle sequence, into intervals of 100 Kb (from 0 to 15 Mb). Average r2 for SNP pairs in

each interval was estimated [32]. The consistency of LD between populations was measured by

the correlation of the root of r2 of adjacent marker pairs on each chromosome [32]. The con-

sistency of LD phase between two populations was measured by persistence of phase. The cor-

relation of LD between two populations A and B for a common set of markers was calculated

as [32]:

rij ¼
P
ði;jÞ ðrijðAÞ � �rAÞðrijðBÞ � �rBÞ

SASB
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Where rij is the correlation of phase between rij(A) in population A and rij(B) in population

B, SA and SB are the standard deviation of rij(A) and rij(B) respectively, and rA and rB are the

average rij across all SNP i and j within the common set of markers.

Estimation of historical effective population size

The historical effective population size for AZI, KHU and MAZ was calculated for t genera-

tions in the past as follows:

Ne ¼
1

4c

� �
1

r2
� 1

� �

[43],

where Ne is the effective population size, c is the genetic distance between the SNPs in

Morgans. The physical distances between SNPs were converted to genetic distances using

the approximation 1 cM~1 Mb for all the chromosomes [19,44]. r2 is the average corrected r2

value at a given distance. A sample size correction was carried out for all of the computed r2

values using the following equation

Corrected r2 ¼
Computed r2 � 1

n

1 � 1

n

[19]

where, n is the number of haplotypes in the sample. It should be noted, the estimated Ne

value is infinite at r2 = 0 and zero at r2 = 1. Therefore. Only values of r2 between 0.01 and 0.99

were used to estimate Ne.

The generation of Ne for a given distance was estimated by:

t ¼
1

2c

[45],

where t was calculated for the corresponding genetic distance (c) in intervals of 100 Kb

(from 0 to 15 Mb). The historical Ne was investigated at 150 time points from recent to 500

generations in the past.

Results

SNP frequency and distribution

After quality control for each population, a set of 63824, 62667 and 58588 SNPs remained for

AZI, KHU and MAZ breeds, respectively. SNPs that were in common across all breeds, were

merged in single file. The final data set comprised 57212 SNPs from 396 individuals (253 AZI

and 118 KHU and 25 MAZ) which was used for further analyses. After removing SNP with a

MAF less than 0.05, the mean MAF observed in the Iranian populations was 0.333, 0.321 and

0.299 for AZI, KHU and MAZ, respectively, for the common SNP set. As the buffalo genome

available is highly fragmented SNPs were mapped to the bovine sequence (version Btau

UMD3.1). A summary of SNP numbers for each bovine chromosome with MAF in each popu-

lation is shown in S1 Table.

Distribution of SNPs with the distance between adjacent SNPs as mapped to the bovine

genome sequence (version Btau UMD3.1), is shown in S2 Table. Distances between 93% of

adjacent SNPs were less than 100 Kb, while the distances between 60% of adjacent SNPs were

between 20-40Kb for all of the three breeds (S2 Table.).
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The average estimated physical distance between adjacent markers in the common set

was 46 Kb, and covered 2.65 Gb of total genome length (Table 1). The highest number of poly-

morphic SNPs was on BTA1 (N = 3549) and the lowest on BTA 27 (N = 1004). The longest

interval between polymorphic SNP was 2461.72 Kb on BTA10 and the shortest was 0.008 Kb

on BTA15.

Linkage disequilibrium

Linkage disequilibrium and consistency of LD between adjacent SNP. LD was calcu-

lated separately for each of the three Iranian buffalo breeds using r2 and |D’| statistics. Average

r2 and |D’| between adjacent SNP pairs were 0.27 and 0.66 for AZI, 0.29 and 0.68 for KHU,

and 0.32 and 0.72 for MAZ (see Table 1). The proportion of r2 values higher than 0.2 and 0.3

were 44.7 and 34.8% for AZI, 46.7 and 36% for KHU, 50.8 and 40.1% for MAZ, respectively

(S3 Table). The correlation of LD between the AZI and KHU breeds was 0.83 (ranging from

0.78 to 0.88 across all chromosomes) which was higher than the correlation between AZI and

KHU (0.61), and KHU and MAZ (0.57) (Table 1 and S2 Fig).

Linkage disequilibrium decay and persistence of LD phase. The average decay of LD

over physical distance was calculated by chromosome (S3–S5 Figs), and the overall genome

LD was also calculated for each breed for an averaged interval of 100 Kbp (Fig 1 and S4 Table).

Comparing the different breeds, the LD was highest for MAZ and lowest for AZI for all SNP

distances. The patterns of LD decay was similar for AZI and KHU but differed in MAZ. As

expected, the persistence of LD phase decreased with increasing physical distance between

markers for all breeds (S5 Table). This decrease was rapid for distances shorter than 300 Kb,

while the reduction in LD for distances of 1Mb to 15Mb was very small. At all intervals, the

highest correlation was between AZI and KHU and the lowest was between KHU and MAZ.

For distances below 100Kb (with an average of 56.9 Kb), the correlation varied from 0.82 for

AZI and KHU to 0.54 for KHU and MAZ. While for distances greater than 1Mb the correla-

tions varied from 0.36 for AZI and KHU to 0.10 for KHU and MAZ (Fig 2 and S5 Table). At

all distances between SNP, average LD was highest for MAZ, intermediate for KHU and lowest

for AZI.

Effective Population Size (Ne) based on genomic data

In the absence of pedigree information, analysis of LD can be used to estimate the effective

population size, Ne [12]. LD between SNPs that are close together reveals historic events, while

LD between more distant SNPs can be used to explore more recent population history. Ne in

the recent generations was estimated to be 477, 212 and 32 for AZI, KHU and MAZ, respec-

tively. While for 500 generation ago, Ne was estimated as 826, 748 and 632 for AZI, KHU and

MAZ, respectively (Fig 3 and S6 Table). However, changes were not linear, and the intensity

and direction of changes differed over time for each population. The reduction in Ne in AZI

and KHU has been rapid over the last 20 generation. Ne for AZI seems to have increased

between 100–40 generation ago.

Discussion

SNP frequency and distribution

After quality control, at total of 57,212 common SNPs remained across all chromosomes for

the three Iranian buffalo breeds, which is comparable with the number of polymorphic SNP

found in Brazilian dairy buffaloes [46] but lower than 67,580 polymorphic SNPs, seen in Ital-

ian Mediterranean buffalos [47]. As would be expected, the Axiom Buffalo Genotyping 90K
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Table 1. Distance and linkage disequilibrium (r2 and |D’|) between adjacent polymorphic SNP and consistency of r2 between breeds based on Bos Taurus chromo-

some (BTA).

Chr Number of

SNP

Mean

Distance

(Kb)

MinDistance

(Kb)

Max

Distance

(Kb)

Length

(Mb)

AZI_ (Mean±
SD)

KHU__ (Mean

± SD)

MAZ__ (Mean

± SD)

Consistency1

r2 |D’| r2 |D’| r2 |D’| AZI and

KHU

AZI and

MAZ2
KHU and

MAZ

1 3549 44.6 211.69 0.027 158.1 0.28

±0.29

0.67

±0.32

0.29

±0.29

0.69

±0.32

0.32

±0.32

0.71

±0.31

0.83 0.61 0.58

2 2997 45.5 414.07 0.629 136.5 0.28

±0.29

0.66

±0.33

0.30

±0.31

0.69

±0.32

0.33

±0.32

0.72

±0.31

0.82 0.63 0.56

3 2680 45.2 471.66 0.137 121.2 0.28

±0.29

0.66

±0.32

0.31

±0.31

0.70

±0.32

0.33

±0.32

0.72

±0.32

0.84 0.61 0.56

4 2677 45.0 292.12 0.062 120.4 0.28

±0.28

0.66

±0.33

0.29

±0.30

0.69

±0.32

0.32

±0.32

0.70

±0.32

0.83 0.61 0.58

5 2607 46.2 552.62 0.279 120.5 0.29

±0.30

0.67

±0.33

0.31

±0.31

0.70

±0.32

0.34

±0.32

0.73

±0.30

0.86 0.62 0.57

6 2599 45.9 929.84 0.503 119.4 0.27

±0.28

0.65

±0.33

0.29

±0.29

0.69

±0.32

0.33

±0.32

0.71

±0.31

0.84 0.63 0.60

7 2456 45.8 1101.73 0.201 112.4 0.26

±0.29

0.62

±0.34

0.28

±0.30

0.66

±0.32

0.30

±0.31

0.69

±0.31

0.83 0.63 0.57

8 2405 47.1 517.16 0.404 113.2 0.29

±0.30

0.68

±0.33

0.31

±0.31

0.70

±0.32

0.32

±0.31

0.72

±0.30

0.85 0.60 0.58

9 2304 45.8 384.01 0.708 105.5 0.26

±0.28

0.65

±0.33

0.28

±0.29

0.68

±0.32

0.30

±0.30

0.72

±0.31

0.84 0.62 0.59

10 2222 46.7 2461.72 1.553 103.9 0.28

±0.29

0.65

±0.33

0.29

±0.30

0.67

±0.32

0.35

±0.33

0.73

±0.30

0.83 0.57 0.53

11 2353 45.5 395.13 0.135 107.1 0.27

±0.29

0.66

±0.33

0.29

±0.30

0.68

±0.32

0.35

±0.33

0.74

±0.30

0.84 0.60 0.57

12 1881 48.4 1731.46 0.617 91.0 0.27

±0.28

0.66

±0.33

0.28

±0.29

0.67

±0.32

0.32

±0.32

0.72

±0.31

0.83 0.63 0.60

13 1880 44.5 634.95 1.086 83.7 0.25

±0.27

0.64

±0.33

0.27

±0.29

0.66

±0.33

0.31

±0.31

0.71

±0.31

0.83 0.59 0.56

14 1893 44.0 414.42 0.112 83.3 0.26

±0.27

0.65

±0.33

0.29

±0.29

0.68

±0.32

0.32

±0.31

0.73

±0.31

0.83 0.58 0.53

15 1845 46.0 1212.36 0.008 84.8 0.26

±0.27

0.65

±0.33

0.27

±0.29

0.67

±0.32

0.32

±0.32

0.72

±0.31

0.82 0.67 0.60

16 1737 46.7 1310.90 0.027 81.2 0.29

±0.30

0.67

±0.33

0.29

±0.29

0.69

±0.32

0.34

±0.33

0.73

±0.31

0.84 0.63 0.60

17 1621 46.3 573.05 1.913 75.0 0.28

±0.30

0.66

±0.34

0.30

±0.31

0.69

±0.33

0.32

±0.31

0.71

±0.31

0.85 0.61 0.59

18 1417 46.3 721.85 0.086 65.6 0.24

±0.26

0.63

±0.33

0.26

±0.29

0.67

±0.33

0.31

±0.31

0.72

±0.3

0.82 0.58 0.55

19 1409 45.1 431.85 2.880 63.5 0.27

±0.29

0.66

±0.34

0.28

±0.28

0.68

±0.32

0.33

±0.32

0.74

±0.29

0.80 0.63 0.56

20 1559 46.0 310.67 1.589 71.8 0.27

±0.28

0.64

±0.33

0.28

±0.30

0.66

±0.33

0.30

±0.30

0.71

±0.30

0.83 0.63 0.58

21 1512 45.7 394.36 2.625 69.1 0.27

±0.29

0.65

±0.33

0.28

±0.30

0.67

±0.33

0.34

±0.33

0.72

±0.32

0.84 0.65 0.60

22 1400 43.7 381.49 0.651 61.2 0.25

±0.29

0.63

±0.34

0.26

±0.29

0.65

±0.33

0.32

±0.33

0.71

±0.31

0.84 0.61 0.56

23 1152 45.2 1154.70 0.291 52.0 0.27

±0.29

0.65

±0.34

0.29

±0.30

0.68

±0.33

0.31

±0.31

0.69

±0.32

0.84 0.62 0.57

24 1443 43.0 236.15 0.014 62.0 0.25

±0.26

0.64

±0.34

0.27

±0.28

0.68

±0.33

0.33

±0.32

0.72

±0.32

0.82 0.56 0.51

25 1053 40.5 216.00 0.688 42.6 0.23

±0.27

0.62

±0.34

0.26

±0.29

0.65

±0.34

0.31

±0.32

0.71

±0.32

0.84 0.60 0.58

(Continued)
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Table 1. (Continued)

Chr Number of

SNP

Mean

Distance

(Kb)

MinDistance

(Kb)

Max

Distance

(Kb)

Length

(Mb)

AZI_ (Mean±
SD)

KHU__ (Mean

± SD)

MAZ__ (Mean

± SD)

Consistency1

r2 |D’| r2 |D’| r2 |D’| AZI and

KHU

AZI and

MAZ2
KHU and

MAZ

26 1154 44.3 256.76 0.489 51.1 0.24

±0.26

0.62

±0.33

0.27

±0.29

0.65

±0.33

0.30

±0.31

0.70

±0.31

0.81 0.56 0.52

27 1004 45.1 619.59 0.162 45.3 0.24

±0.26

0.62

±0.33

0.26

±0.28

0.67

±0.32

0.28

±0.30

0.69

±0.32

0.78 0.52 0.49

28 1045 44.1 796.62 0.141 46.0 0.27

±0.28

0.65

±0.33

0.28

±0.3

0.66

±0.33

0.31

±0.31

0.71

±0.30

0.83 0.61 0.58

29 1108 45.9 922.65 1.623 50.8 0.24

±0.27

0.62

±0.34

0.25

±0.28

0.65

±0.32

0.29

±0.30

0.67

±0.32

0.82 0.64 0.57

30 2250 66.1 1880.77 0.479 148.7 0.39

±0.36

0.74

±0.33

0.42

±0.38

0.77

±0.32

0.41

±0.35

0.76

±0.29

0.88 0.66 0.62

Total 57212 - - - 2647.0 - - - - - -

Mean - 46.0 - - 0.27

±0.33

0.66

±0.33

0.29

±0.32

0.68

±0.32

0.32

±0.31

0.72

±0.31

0.83 0.61 0.57

1-The correlation of r2 of adjacent SNP pairs between populations
2- Azeri and Mazandarani

https://doi.org/10.1371/journal.pone.0217687.t001

Fig 1. Average LD decay over physical distance For AZI, KHU and MAZ buffalo breeds.

https://doi.org/10.1371/journal.pone.0217687.g001
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Array had more polymorphic SNP in the three Iranian buffalo populations (65–75% polymor-

phic SNP) than the Bovine HD SNP chip (Illumina, Inc, San Diego, CA, USA), for which only

15,745 of the 777,962 (2%) SNPs on the array were polymorphic in buffalo [48]. After filtering,

the average MAF for the SNP on the Buffalo array, in the Iranian breeds, was between 0.29–

0.31. This is comparable with the average MAF for SNPs on the Illumina BovineSNP50K Bead-

Chip used routinely for cattle, where the average MAF is between 0.24 and 0.27 in different

cattle breeds [6,16,49]. SNP panels with this level polymorphism have been successfully used

to explore LD and carry out genome wide associations studies [14].

Linkage disequilibrium

Linkage disequilibrium and consistency of LD between adjacent SNP. The average r2

and |D’| between adjacent SNP pairs in the present study were consistent with the values

reported by Cardoso et al. for Brazilian dairy buffalos (0.29 and 0.72 for r2 and |D’|), using the

same SNP set [46]. The average r2 and |D’| values between adjacent SNP pairs reported here

are similar to those for Holstein cattle [6,14], but higher than those seen for other cattle breeds,

eg; composite Brazilian Beef cattle [50] and the Gyr [18]. Breeding strategies and practices for

dairy cattle breeds and domestic dairy buffalo are similar, using few bulls, while breeding strat-

egies for other breeds may use a wider genetic pool. McKay et al. [8] reported the average LD

between 0.15 to 0.20 for six taurine cattle breeds and two zebu breeds for and inter-marker

distance of 100Kb. This compares with LD between 0.20 and 0.26 reported here for buffalo

for same distance (S4 Table). The r2 and |D’| values are related to breed diversity, such that

Fig 2. Consistency of gametic phase at given distances for AZI and KHU, AZI and MAZ, and KHU and MAZ buffalo breed pairs.

https://doi.org/10.1371/journal.pone.0217687.g002
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populations with lower diversity have higher average LD between adjacent loci. It should be

noted that the level of LD differs across chromosomes e.g. Nelore cattle genotyped using a

high-density bovine SNP marker panel gave a wide range of LD estimates across different

chromosome regions, ranging from 0.17 to 0.24 for r2 and from 0.55 to 0.72 for |D’| [51].

These differences can be attributed to variable recombination rates between and within chro-

mosomes, heterozygosity, genetic drift and effects of selection [9]. In designing marker panels

for particular populations the density of loci could be varied depending on the level of LD at

specific regions of the genome to optimize the information recovered.

The consistency of LD is high between the AZI and KHU breeds, indicating the close

genetic relation of these breeds, whereas the comparison of AZI with MAZ, and KHU with

MAZ show lower preservation of LD. This is consistent with Colli et al [52] who reported the

lowest differentiation between AZI and KHU (0.021), moderate for AZI and MAZ (0.038),

and highest for KHU and MAZ (0.045).

Linkage disequilibrium decay and persistence of LD phase. The level of LD between

markers is important in the design and success of genome wide association studies and geno-

mic selection [53]: genomic breeding estimates are more accurate when the mean r2 between

adjacent SNPs is higher, as the makers are more likely to predict the alleles at adjacent QTLs.

Marker spacing giving an r2 of at least 0.2 is recommended to estimate genomic breeding val-

ues [27,53,54] while a r2 of 0.3 and above has been suggested for genome wide association stud-

ies and QTL mapping [27]. The average r2 values between adjacent markers obtained from

using the Axiom Buffalo Genotyping 90K Array were between 0.27 and 0.327 for the popula-

tions studied here, which is around the threshold of 0.3.

Fig 3. Past effective population size (Ne) over generations based on linkage disequilibrium calculations all genome. The Ne from 500 to 3 generations ago.

https://doi.org/10.1371/journal.pone.0217687.g003
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One of the factors impacting on the accuracy of genomic breeding estimates across-popula-

tions is the persistence of LD phase, which reflects the genetic relationship between the popula-

tions [55]. The maintenance of LD phase for adjacent SNPs and persistence LD phase between

AZI and KHU was higher than AZI and MAZ, and KHU and MAZ at all distances. These

results support the AZI and KHU being genetically closer than AZI and MAZ, and KHU

and MAZ. The persistence of marker phase between populations decreases as the divergence

between the populations increases, and hence a higher marker density is required for more

divergent breeds [56]. The present study suggests that the AZI and KHU breeds could be

treated as a single population for genomic selection when using the Axiom Buffalo Genotyping

90K Array.

Effective population size based on genomic data. Effective populations size (Ne) is

related to the history of a population [57] and is a key parameter used in conservation biology

[13]. The FAO (1992) reports that with effective population size of 50, the loss of genetic diver-

sity over 10 generations is approximately 10% [58]. LD-based methods with markers spaced at

1Mb tend to overestimate Ne for more than 50 generations ago, while estimates for recent gen-

erations are more accurate [12]. Ne estimates presented here are based on corrected r2 values,

which are less sensitive to allele frequency and a small sample size than |D’| [6]. In the present

study, Ne was estimated from SNP distance from recent generation (15Mb) to 500 generation

ago (100Kb). The results suggest that Ne has been lower in the recent generations compared

with more ancient generations for all three breeds, and that the effective population size is cur-

rently highest for AZI and lowest for MAZ. The first buffalo were imported to Iran from India

in 2000–2500 BC [59]. The higher Ne estimated for the ancient populations may reflect the

diversity in the original Iranian population before it separated into breeds [33]. Artificial

insemination has not been widely used in the AZI and KHU populations, which is likely to

have contributed to the relative high Ne values for both populations, which are above the

threshold (Ne = 100) to ensure that a population is viable for long-term survival [60]. The

MAZ population has been geographically isolated and managed in a protected natural area,

both of which are contributory factors to the low estimated Ne, which is below 100. Therefore,

the MAZ population can be considered as endangered and it is essential to monitor the popu-

lation and develop a breeding program to ensure viability and avoid inbreeding.

Conclusions

The average distance between adjacent SNPs in the current Axiom Buffalo Genotyping 90K

Array is 30 Kb, based on alignment with the bovine genome. After filtrating for quality and

MAF the between-marker distance for the 57212 common SNPs was 46 Kb. The level of LD in

Iranian buffalo using this set is above that recommended for genome wide association studies

(r2> 0.3) or to estimate genomic breeding values (r2> 0.2). The calculated Ne from LD decay

indicates that the AZI and KHU have a sufficiently large effective population size to be sustain-

able, while the MAZ has a low effective population and needs careful management to ensure

its survival.
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