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Abstract: E. coli cells overexpressing the enzyme atrazine chlorohydrolase were coated using layer-
by-layer self-assembly. The polymeric coating was designed to improve the surface properties of
the cells and create positively charged, ecologically safe, bio-hybrid capsules that can efficiently
degrade the herbicide atrazine in soils. The physio-chemical properties of the bacteria/polymer
interface were studied as a function of the polymeric composition of the shell and its thickness.
Characterization of cell viability, enzyme activity, morphology, and size of the bio-capsules was done
using fluorescence spectroscopy, BET and zeta potential measurements and electron microscopy
imaging. Out of several polyelectrolytes, the combination of polydiallyldimethylammonium chloride
and polysodium 4-styrenesulfonate improved the surface properties and activity of the cells to the
greatest extent. The resulting bio-hybrid capsules were stable, well-dispersed, with a net positive
charge and a large surface area compared to the uncoated bacteria. These non-viable, bio-hybrid
capsules also exhibited a kinetic advantage in comparison with uncoated cells. When added to soils,
they exhibited continuous activity over a six-week period and atrazine concentrations declined by
84%. Thus, the concept of layer-by-layer coated bacteria is a promising avenue for the design of new
and sustainable bioremediation and biocatalytic platforms.

Keywords: polyelectrolytes; polydiallyldimethylammonium chloride; layer-by-layer (LbL);
biodegradation; herbicides; pollution; atrazine

1. Introduction

In situ bioremediation through bioaugmentation with an inoculum of a pure or mixed
culture could be highly efficient and environmentally safe remediation method [1], however,
the introduction of non-indigenous species into soil could also pose ecological stress, and
the use of genetically modified organisms (GMOs) is often regulatorily restricted [2,3].
Catalytic agents for field bioremediation must be stable, anchored to soil particles to
avoid being leached out and active under various physical and chemical environmental
conditions. While some bioremediation enzymes can transform toxic compounds into
less harmful metabolites, most enzymes are not applicable as biocatalysts outside of cells
or fail to retain their biodegrading activities for an adequate time span. Given the time-
consuming practices and relatively high overall cost associated with the production and
purification of enzymes, alternative bioremediating tools that are inexpensive, robust, and
environmentally responsible are in high demand [4,5].

In the last three decades, the layer-by-layer (LbL) self-assembly methods have been
widely used to synthesize various functional cell-based polymeric capsules [6,7]. This tech-
nology relies on different types of intermolecular interactions between the cell membrane
and the polymers, through a rapid self-assembly process. It does not require elaborate
synthesis nor is it based on toxic materials. The thickness of the LbL shells is tunable at
the nanometer scale by adjusting the number of layers, while the environment within the
shell remains controllable and steady over time. To date, cell encapsulation via LbL has
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been mainly utilized in cutting-edge biomedical fields such as cell-based biosensors, cell
transplantation, cell/molecule delivery, and tissue engineering [7]. However, in recent
years, bio-polymeric capsules have extended far beyond their scope in biomedicine, and
into the area of environmental science [6,8–11].

Pollutant removal strategies using LbL technologies have been previously demon-
strated, highlighting the ease of use, stability, and reusability of LbL capsules [12–15].
Most of the recent advances in LbL technologies for environmental purposes have been
established in membrane design and synthesis [11,14,16,17], while LbL-coating of bacteria
for remediating purposes has not been widely explored [12,18–20]. Sakkos et al. [20], used
a LbL coating based on a quaternary ammonium polyelectrolyte and silicon alkoxide (Poly-
DADMAC/silica) to create an exoskeleton which immobilized, protected, and enhanced
the activity of their chosen bacteria. They observed that the coating protected the cells from
desiccation, freeze/thaw, high temperatures, osmotic shock, enzymatic attack by lysozyme,
and predation by protozoa. Deng et al. [18], designed biochar-based LbL alginate/chitosan
microcapsules for the bioremediation of phenanthrene from polluted soil. Application
of the capsules improved phenanthrene removal in comparison with the control (80% vs.
62% removal) and enhanced the biodegrading microbial community in the soil. Applying
LbL techniques is therefore highly attractive for improving bioremediation platforms, as it
provides a well-controlled microenvironment for GMOs and mitigates the ecological risks
posed by the addition of non-indigenous microbial population into contaminated sites [21].
It also protects the remediating agents within from extreme soil conditions and natural
predation, which can hinder bacterial growth or limit the enzymes’ robustness.

In the present work, LbL assembly was applied to atrazine (herbicide)-degrading
bacteria to enhance biodegradation, while creating positively charged, high surface area
and non-viable bioparticles, that can be well retained in soils. Atrazine (ATZ) is a toxic
endocrine disruptor according to World Health Organization (WHO), with high persistence
in soil and water sources. It has a maximum contaminant level (MCL) in drinking water of
3 µg/L. However, its metabolite hydroxyatrazine (OH-ATZ), does not have any regulations
regarding its amount in drinking water, nor any neuroendocrine-disrupting properties; it
is not considered a product of concern by WHO [22]. The enzyme atrazine chlorohydrolase
(AtzA) is responsible for the dechlorination of ATZ, leading to the formation of OH-ATZ.
Studies by Wackett and his group have provided ample evidence to the advantages of using
E. coli overexpressing AtzA for reaching higher degradation rates than typically observed
in native bacteria both in the lab and in the field [23–25]. Nevertheless, drawbacks related
to limited bioavailability caused by low concentrations of the pollutant, sustainability over
time and the use of GMO remain.

Herein, we fabricated biohybrid LbL capsules, designed for an improved, environ-
mentally safe, and continuous remediation regime (Figure 1). As a proof of concept, we
coated biodegrading bacteria, able to transform ATZ into OH-ATZ, via the LbL technique
using several polyelectrolytes. In-depth characterization of the coated surface of the cells
was done using BET, fluorescent and zeta potential measurements and electron microscopy
imaging. Activity and kinetics of ATZ degradation were tested in batch experiments and
in soil microcosms. We believe that such confinement of microbial cells within layers
of polyelectrolytic matrix can allow for the physical isolation of cells from the external
environment and hinder undesired proliferation while maintaining a favorable internal
micro-environment in the bacterial cell.
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Figure 1. illustration of the biohybrid LbL capsule based on alternating, oppositely charged poly-
electrolytes, coating bacteria overexpressing the enzyme AtzA. 
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45% charged monomers, producing H-PVPcoS in a final solution of 3 mg∙mL−1 [26]. All 
reagents used for high pressure liquid chromatography (HPLC) were purchased from 
Sigma-Aldrich. ATZ (94% technical grade) was acquired from Agan Chemicals (Ashdod, 
Israel). ATZ stock solution (0.05 millimolar) was prepared in methanol and stored at −16 
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Figure 1. Illustration of the biohybrid LbL capsule based on alternating, oppositely charged polyelec-
trolytes, coating bacteria overexpressing the enzyme AtzA.

2. Materials and Methods
2.1. Materials

E. coli DH5α (pMD4) were kindly received from Prof. Wackett from the Biotechnol-
ogy Department at the University of Minnesota (Minneapolis, MN, USA). Poly(sodium
4-styrenesulfonate) (PSS, Mw = 70 kDa), poly(dimethyldiallylammonium chloride) (Poly-
DADMAC, Mw = 100–200 kDa), chitosan (Mw = 50–190 kDa, ≥75% deacetylation degree)
and poly-4-vinylpyridine-co-styrene (PVPcoS, Mw = 60 kDa) were obtained from Sigma-
Aldrich (Jerusalem, Israel). PSS and PolyDADMAC were dissolved in deionized water
(DIW), reaching a final solution of 2 mg/mL, at neutral pH. Chitosan was dissolved in
0.1% acetic acid then pH was adjusted to 5 with 0.1 M NaCl, reaching a final solution of
2 mg·mL−1. PVPcoS was dissolved in a 6.5 mM sulfuric acid solution, resulting in a total
of 45% charged monomers, producing H-PVPcoS in a final solution of 3 mg·mL−1 [26].
All reagents used for high pressure liquid chromatography (HPLC) were purchased from
Sigma-Aldrich. ATZ (94% technical grade) was acquired from Agan Chemicals (Ashdod,
Israel). ATZ stock solution (0.05 millimolar) was prepared in methanol and stored at
−16 ◦C in a freezer.

2.2. Bacterial Cultures

E. coli cells were taken from a frozen stock (stored at −80 ◦C), streaked on an agar
plate supplemented with 30 µg·mL−1 chloramphenicol, and incubated overnight at 37 ◦C.
All plates were stored at 4 ◦C for up to 1 month. Precultures of bacteria were made by
inoculating a single bacterial colony in 5 mL Luria-Bertani medium and incubated at 37 ◦C,
shaken at 250 revolutions per minute (RPM) for 6 h. Intermediate cultures were grown
by inoculation with 1% (v/v) starter culture into Erlenmeyer flask containing superbroth
medium: [24] 1.2% tryptone (w/v), 1.4% yeast extract (w/v), 0.5% glycerol (v/v), 0.38%
(w/v) monobasic potassium phosphate, and 1.25% (w/v) dibasic-potassium phosphate,
supplemented with 30 µg·mL−1 chloramphenicol (at pH 7.4), and grown at 37 ◦C with
vigorous agitation for 18 h. Bacteria were harvested by centrifugation at 6000 RPM for
20 min (min) at 4 ◦C and resuspended in potassium-phosphate buffer (PBS) (0.1 M, pH 7.4)
to a final concentration of 1 g of cell·mL−1.

2.3. Encapsulation of Bacteria by LbL Self-Assembly

Biohybrid capsules were fabricated by using the LbL assembly technique [27,28],
which is performed through the alternate deposition of oppositely charged polyelectrolytes
onto the cells. Fabrication process started by adding 150 µL resuspended cells (in PBS)
to 1.5 mL polycation solution (either polyDADMAC, chitosan or H-PVP-co-S) in 2 mL
Eppendorf tubes. Polycations were allowed to adsorb for 10 min under constant agitation
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in room temperature. Tubes were then lightly centrifuged (6000 RPM for 5 min), the
supernatant was discarded, and 3 washing steps using PBS were followed. One tube was
resuspended DIW and set to the side to determine the ζ-potential in Zetasizer Nano ZS
(Malvern Instruments, Malvern, UK) at 25 ◦C. If charge reversal was confirmed, all other
tubes were then added to a PSS solution. This process was repeated a maximum of seven
cycles, reaching one, three, five or seven layers. ζ-potentials reported in this work are an
average of ten measurements each.

2.4. Characterization of Biohybrid LbL Capsules

Size analysis: Mean particle size diameter and polydispersity index (PDI) of coated
or uncoated bacterial cell suspensions were detected using dynamic light scattering (DLS)
and measured using a Zetasizer Nano ZS. The specific surface areas, Brunauer-Emmett-
Teller (BET), and nitrogen sorption isotherms were obtained using a surface area analyzer
(NOVAtouch LX4, Quantachrome, Boynton Beach, FL, USA) at liquid nitrogen temperature
(77.35 K), with adsorption branch from P/P0 = 0.02–0.99. 300–400 milligrams of dried LbL
coated cells or free cells (FCs) were degassed under a nitrogen atmosphere at 80 ◦C for 6 h
prior to the analysis.

Morphological analysis: images were taken by scanning electron microscopy (SEM,
Ultra-Plus High-Resolution SEM, Zeiss, Oberkochen, Germany) with an acceleration volt-
age of 1.5–2.5 kV, and transmission electron microscopy (TEM, Talos L120C, Thermo-
Scientific, Waltham, MA, USA) with an acceleration voltage of 120 kV. The samples were
prepared in a 1 mL solution of coated or uncoated cells, centrifuged for 5 min and resus-
pended in 1 mL fixative (2.5% glutaraldehyde (GA) in PBS buffer (0.1 M, pH 7.4) for 1 h
at room temperature for SEM, and 2% paraformaldehyde and 2% GA in 0.1 M cacodylate
buffer for 90 min at room temperature for TEM). After fixation, a few microliters of cells
were dropped onto silicon chips for SEM, washed with PBS, and dehydrated through sev-
eral washes in a gradually increasing ethanol solutions (30, 50, 70, 80, 90 and 100% ethanol,
15 min each). Samples were then left to dry overnight and sputter-coated with carbon. For
TEM, cells were washed with cacodylate buffer and embedded in agarose. Following the
wash with cacodylate buffer, the samples were postfixed for 1 h on ice with 2% osmium
tetra oxide, block stained with 1% uranyl acetate and dehydrated using graded ethanol
series. Finally, the samples were embedded in Epon812 and polymerized for 24 h at 60 ◦C.
Thin 75 nm sections were cut using a UC7 ultramicrotome (Leica, Wetzlar, Germany) and
post-stained with 2% uranyl acetate.

Cell viability was quantified using a live/dead cell viability assay, performed with
propidium iodide (PI, Mw of 668). A solution of 0.1 mg·mL−1 of the LbL coated bacteria
(1, 3, 5 and 7 layers) and FCs was doped with 2 µL of a 20 mM solution of PI in dimethyl
sulfoxide. The consequent fluorescence of the doped cells was quantified by a fluorescence
spectrometer (FS-2, SCINCO, Seoul, Korea), at excitation and emission wavelengths of
535 nm and 619 nm, respectively. All measurements were conducted in a quartz cuvette at
24 ◦C.

Viable count method: encapsulated cells or FCs were plated on selective agar plates
supplemented with 25 mg·mL−1 chloramphenicol, to examine formation of colonies. Inoc-
ulation of cells was processed right after the LbL depositing procedure or after incubation
in soil for 1 week, 2 weeks and 6 weeks. The plates were incubated at 37 ◦C for 1 day.

2.5. ATZ Biodegradation Activity Assays

Activity measurements of coated and uncoated cells were performed at room tem-
perature in 2 mL Eppendorf tubes under constant agitation, for 20 min. The reaction was
initiated by adding 15 µM atrazine in PBS to the resuspended cells (final bacterial concentra-
tion of 2.5 mg/mL). Enzymatic reaction was terminated by immersing the Eppendorf tubes
in a water bath heated to 95 ◦C for 10 min. Samples were then filtered through 0.22 µm pore
size polytetrafluoroethylene syringe filters and placed in HPLC vials. HPLC measurements
were carried out on an 1260 Infinity series HPLC system (Agilent Technologies, Santa Clara,
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CA, USA) equipped with a photodiode array detector. An analytical C18 reversed phase
Agilent column was used (25 cm × 4.6 mm I.D.), with a wavelength of 220 nm selected for
all measurements. The derivatives were eluted with methanol and water (65:35, v/v) at a
flow rate of 1 mL·min−1.

Kinetic experiments were carried out at a fixed concentration (15 µM) at allotted times
or at fixed time (20 min) with varying concentrations. The relationship between OH-ATZ
formation and initial concentration of ATZ was described with Michaelis–Menten (MM)
kinetics model. The Michaelis-Menten equation for this system is:

v =
Vmax[S]

KM + [S]

where Vmax is the maximum velocity at maximum substrate [S] concentration, and KM is
the substrate concentration at which the reaction velocity is 50% of Vmax [29]. The fitting
was preformed using the Origin software (vs. 9.7, OriginLab Corporation, North Hampton,
MA, USA).

2.6. Removal of ATZ from Soil

Soil sample collection and bacterial incubation: two different types of soil were
selected; (1) Grumusol—coarse grained soil with high clay content (montmorillonite >59%).
(2) Brown-red Loam—sandy soil with low clay content (7%). Soil samples were taken from
northern Israel, from the upper 30 cm of the profiles, air–dried and sieved through a 2-mm
mesh. Shortly before the experiments, soil samples were autoclaved and hydrated with
autoclaved DIW, then stored in closed buckets at room conditions throughout the period
of experiment. Soil inoculation experiments were conducted in 50-mL screw cap centrifuge
tubes containing 10 g of soil (20% moisture), with added bacteria in a concentration of
30 mg·mL−1 in PBS. ATZ biodegradation experiment in soil was initiated by adding 2 mL
of 15 µM ATZ in PBS with constant agitation at room temperature for 20 min, following
similar reaction termination and filtration as in the solution experiments.

To ensure proper extraction of ATZ/OH-ATZ from soil, 15 mL of 100% MeOH was
added to soil samples, prior to incubation for 24 h at 37 ◦C under constant agitation.
Samples were then centrifuged, and supernatant was collected, filtered, and analyzed by
HPLC.

2.7. Statistical Analysis

It should be noted that biological activity may vary slightly between bacteria grown
on different days due to different amounts of expressed proteins. To account for these
differences, each experiment was performed with three replicates and all treatments were
performed on the same batch of bacteria. The results indicate the means ± standard
deviation (SD). Differences between groups were compared by t-test: two-sample assuming
unequal variances (p < 0.05), using the Excel software (Microsoft, Redmond, WA, USA).

3. Results

ATZ degrading bacteria were chosen as a model for active and efficient herbicide-
biodegrading agents. Several polyelectrolytes were chosen for the LbL coating based on
previous findings describing ATZ adsorption, biocompatibility, low-cost, toxicity, and
ecological safety: PSS-an anionic, low-cost, non-toxic polymer with hydrophobic functional
groups [30,31]. PolyDADMAC-a highly positively charged polymer with tertiary amine
groups, chosen due to its wide application as a safe coagulant in drinking water remediation
technologies [32]. HPVP-co-S, a copolymer composed of benzene and pyridine rings at
a ratio of 1:9, in which only 40% of the monomers were charged, was chosen due to its
previously establish ATZ adsorption capability [26]. And chitosan, a high molecular-weight
linear polymer, which is biodegradable and has also been shown to adsorb ATZ [33].
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3.1. Synthesis of Biohybrid LbL Capsules

The LbL coated bacteria were fabricated by the self-assembly of polyelectrolytes as
shown in Figure 2a. At pH 7.2, the surface of uncoated E. coli cells carries a net negative
charge of −44.77 mV ± 1.3 (Figure 2c). Adsorption of the first layer of polycation resulted
in charge reversal of the surface. Surface charge alternation with sequential deposition
of polycation and polyanion layers was observed for all polyelectrolyte combinations:
PolyDADMAC/PSS, chitosan/PSS, and H-PVP-co-S/PSS, confirming that the assembly
took place on the surface.

Polymers 2021, 13, x 6 of 14 
 

 

ecological safety: PSS-an anionic, low-cost, non-toxic polymer with hydrophobic func-
tional groups [30,31]. PolyDADMAC-a highly positively charged polymer with tertiary 
amine groups, chosen due to its wide application as a safe coagulant in drinking water 
remediation technologies [32]. HPVP-co-S, a copolymer composed of benzene and pyri-
dine rings at a ratio of 1:9, in which only 40% of the monomers were charged, was chosen 
due to its previously establish ATZ adsorption capability [26]. And chitosan, a high mo-
lecular-weight linear polymer, which is biodegradable and has also been shown to adsorb 
ATZ [33]. 

3.1. Synthesis of Biohybrid LbL Capsules 
The LbL coated bacteria were fabricated by the self-assembly of polyelectrolytes as 

shown in Figure 2a. At pH 7.2, the surface of uncoated E. coli cells carries a net negative 
charge of −44.77 mV ± 1.3 (Figure 2c). Adsorption of the first layer of polycation resulted 
in charge reversal of the surface. Surface charge alternation with sequential deposition of 
polycation and polyanion layers was observed for all polyelectrolyte combinations: Poly-
DADMAC/PSS, chitosan/PSS, and H-PVP-co-S/PSS, confirming that the assembly took 
place on the surface. 

 
Figure 2. (a) Illustration of the LbL deposition of polyelectrolytes. (b) Chemical structure of the polyelectrolytes used in 
this study. (c) ζ potential measurements showing charge reversal after each layer added. 

3.2. Biodegradation of ATZ by the Biohybrid LbL Capsules 
All capsules composed out of the different polycations along with PSS exhibited a 

high positive ζ-potential, associated with the formation of stable complexes, which repel 
each other in colloidal dispersions and have a minor tendency to aggregate [34]. The abil-
ity of the LbL coated bacteria to transform ATZ into OH-ATZ improved significantly (p < 
0.05) compared to free cells (FC) only when the bacteria were coated with  
polyDADMAC/PSS (Figure 3a). The other capsules, based on chitosan or HPVP-co-S, 
seemed to hinder ATZ biodegradation. It should be noted that FC controls were subjected 
to the same treatment steps as encapsulated cells, including centrifugation cycles, rinsing 
steps and resuspensions in PBS, however the results were not significantly different than 
fresh free cells not subjected to the same treatment regime. 

Figure 2. (a) Illustration of the LbL deposition of polyelectrolytes. (b) Chemical structure of the polyelectrolytes used in this
study. (c) ζ potential measurements showing charge reversal after each layer added.

3.2. Biodegradation of ATZ by the Biohybrid LbL Capsules

All capsules composed out of the different polycations along with PSS exhibited a
high positive ζ-potential, associated with the formation of stable complexes, which repel
each other in colloidal dispersions and have a minor tendency to aggregate [34]. The ability
of the LbL coated bacteria to transform ATZ into OH-ATZ improved significantly (p < 0.05)
compared to free cells (FC) only when the bacteria were coated with polyDADMAC/PSS
(Figure 3a). The other capsules, based on chitosan or HPVP-co-S, seemed to hinder ATZ
biodegradation. It should be noted that FC controls were subjected to the same treatment
steps as encapsulated cells, including centrifugation cycles, rinsing steps and resuspensions
in PBS, however the results were not significantly different than fresh free cells not subjected
to the same treatment regime.

The difference in the biodegradation ability observed for polyDADMAC/PSS coated
microbes in comparison to the other polyelectrolytes could be attributed to increased
diffusion of ATZ intercellularly, due to: (i) increased surface area of the LbL bacteria cap-
sule, and/or (ii) increased diffusion into the bacterial membrane. We suggest the higher
charge density of polyDADMAC compared to chitosan or HPVP-co-S can be the con-
trolling parameter—effecting LbL growth patterns, coating configuration and membrane
interactions.
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To examine the LbL coating configuration, BET and size measurements were per-
formed on polyDADMAC/PSS coated cells and compared to FC. As seen in Figure 3b, FC
exhibited the smallest diameter and the hydrodynamic diameter of polyDADMAC/PSS
coated cells increased as more layers were added to the LbL structure. However, specific
surface area analysis performed by BET showed a higher surface area for coated cells,
increasing from 4.89 m2·g−1 for uncoated cells, reaching 7.02 m2·g−1 for the 3-layers LbL
capsule and 9.1 m2·g−1 for the 7-layers capsule (Figure 3c). The increased surface area
attributed to the polyelectrolytic layers is postulated to increase the flux of ATZ and its
metabolite OH-ATZ in and out of the cells, increasing ATZ transformation rates. The data
obtained from DLS and BET measurements show counterintuitive results, as surface to
volume ratio should decrease as size increases. This could be explained by the arrangement
of the PSS/PolyDADMAC layers on the membrane surface (loops and tails) [35–37]. The
larger surface area of the capsules compared to FC is also speculated to aid the prob-
lem of limited bioavailability. Often the pesticide concentrations in soils are too low for
the bacteria to efficiently degrade it, resulting in a slow process of several months. The
physicochemical properties of contaminated soils are known to dramatically affect the
bioavailability of pollutants, by means of adsorption and desorption from soil particles
and transport. As a result, native microorganisms improve bioavailability by enlarging
their external surface areas and by developing high fractal structures, such as hyphae [38],
which increase the organisms contact with pollutants. The LbL coating is not only expected
to improve bioavailability of pollutants due to its spiky structure and larger surface area;
its high positive charge will also allow the biohybrid capsules to attach to soil particles,
which has been shown to contribute to the bioavailability of soil-adsorbed atrazine [39].

Another reason for increased activity could be attributed to enhanced ATZ passive
diffusion intracellularly. It was recently shown that the cell envelope of the Gram-negative
Polaromonas sp. Nea-C, which is similar in structure to E. coli, acts as a barrier for ATZ
biodegradation due to passive cell wall permeation [40]. The amine groups of poly-
DADMAC can disrupt the configuration of the outer membrane leading to increased
permeability and at times bacteriostasis [41–43]. Therefore, the contaminant flux across
the penetrated bacterial membrane/capsule interface is greater than that of intact bacterial
membranes in free cells. This can also explain the advantage of the polyDADMAC cap-
sules compared to chitosan and HPVP-co-S, as the high charge density and reactivity of
quaternary amines is expected to promote higher membrane disruption [44].
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When testing activity as a function of polyDADMAC/PSS layers (Figure 3d), it was
visible that the intercellular ATZ flux decreased as the number of layers coating the cell
increased, resulting in maximal biodegrading efficiency with one layer of the positive
polycation. This is because the first layer of polyDADMAC damages the bacterial cell
envelope resulting in high diffusion of ATZ, while the additional layers form a tight
surrounding which hinders substrate diffusion. Similar observations were made by Sakkos
et al. (2019) when coating of E. coli cells was performed with PolyDADMAC and silica
alkoxide [20].

In addition, 1–3-layer capsules showed a lower polydispersity index (PDI) compared
to 4–7 layer capsules, indicating good dispersion of 1–3 layered coated cells. A low PDI
(<0.3) is typically a measurement of a sample containing a monodisperse population of
particles, while a higher PDI (>0.7) is indicative of a highly polydispersed sample with
multiple particle size populations [45]. The average PDI of 1–3 layers was 0.262 ± 0.13
while that of 4–7 layers was 0.848 ± 0.09. The PDI of FCs was lower than coated cells,
0.121 ± 0.04. Due to all these observations further in-depth characterization and activity
assays were performed with the three layers polyDADMAC/PSS coated bacteria only.

3.3. Viability and Activity Assays

To further examine their potential as improved remediating agents, we focused on
the ability of the coated cells to biodegrade ATZ without undesired proliferation. The
AtzA enzyme is Fe(II)-dependent, operating without any other internal or external co-
factors, thus the E. coli cells can be rendered non-viable yet remain active [46,47]. This is an
important aspect in bioaugmentation; first, it can prevent the ecological stress associated
with introducing non-indigenous populations into the well-defined natural hierarchy of soil
microorganisms [48,49]. Also, it allows for a stable and continuous application of whole-cell
biocatalysts, under undesired environmental conditions (salinity, temperature, availability
of nutrients, etc.) that hinder microbial growth [50]. For this, the viability of the 3-layers
PolyDADMAC/PSS biohybrid capsules was estimated by a colony formation assay, with
plating done on solid LB medium with chloramphenicol and, in comparison to free cells.
Plating was performed either immediately after the encapsulation process (resuspension
in PBS) or after one week of incubation in sterile moistened soil, as described in Figure 4a.
In addition, we performed a dead/live assay using propidium iodide (Figure 4b). PI
is a cell-impermeant red-fluorescent stain that only labels cells with damaged cellular
membranes. All the biohybrid capsules, regardless of the number of layers, showed
high PI fluorescence intensity compared to the free cells, reinforcing the premise that
polyDADMAC compromises the bacterial cell envelope facilitating diffusion of small
organic molecules. In addition, combined with the colony formation assays, the dead/live
viability assay further confirmed that encapsulated E. coli cells are non-vital.

Activity assays showed that despite their non-viability, the coating did not diminish
the intracellular AtzA activity. Enzymatic kinetics experiment (Figure 4c) demonstrated
that the 3-layers PolyDADMAC/PSS biohybrid capsules biodegraded 15 µM of ATZ more
rapidly than free cells. In addition, concentration dependent assays (Figure 4d), were used
to describe ATZ biodegradation according to a Michaelis−Menten-type kinetic model. Both
assays demonstrated the superiority of the LbL coated bacteria over FCs in biodegrading
ATZ. The KM value of FCs was higher than the KM of the 3-layers polyDADMAC/PSS
biohybrid capsules (89.12 ± 29.48 µM and 74.51 ± 26.82 µM, respectively), while both
were lower than previously reported free AtzA enzyme [25]. However, our findings are
incomparable to previously reported values, including Vmax and Kcat, because whole cells
do not encompass similar enzyme concentrations nor comparable molecular crowding [51].
Overall, the biohybrid capsules containing E. coli overexpressing AtzA, demonstrated
strong biodegradation activity over the range of ATZ concentrations tested (1 to 20 mg·L−1).



Polymers 2021, 13, 3814 9 of 13Polymers 2021, 13, x 9 of 14 
 

 

 
Figure 4. (a) Colony formation assay post resuspension in PBS and post incubation in soil (b) Rela-
tive fluorescence intensity in arbitrary units (c) Concentration of ATZ in the solution over time (in-
itial concentration of 15 µM) (d) OH-ATZ formation at different initial ATZ concentrations. * Indi-
cates significant difference between the groups (p < 0.05). 

Activity assays showed that despite their non-viability, the coating did not diminish 
the intracellular AtzA activity. Enzymatic kinetics experiment (Figure 4c) demonstrated 
that the 3-layers PolyDADMAC/PSS biohybrid capsules biodegraded 15 µM of ATZ more 
rapidly than free cells. In addition, concentration dependent assays (Figure 4d), were used 
to describe ATZ biodegradation according to a Michaelis−Menten-type kinetic model. 
Both assays demonstrated the superiority of the LbL coated bacteria over FCs in biode-
grading ATZ. The KM value of FCs was higher than the KM of the 3-layers  
polyDADMAC/PSS biohybrid capsules (89.12 ± 29.48 µM and 74.51 ± 26.82 µM, respec-
tively), while both were lower than previously reported free AtzA enzyme [25]. However, 
our findings are incomparable to previously reported values, including Vmax and Kcat, be-
cause whole cells do not encompass similar enzyme concentrations nor comparable mo-
lecular crowding [51]. Overall, the biohybrid capsules containing E. coli overexpressing 
AtzA, demonstrated strong biodegradation activity over the range of ATZ concentrations 
tested (1 to 20 mg∙L−1). 

3.4. Morphology of the LbL Coated Cells 
Scanning electron micrographs of the 3-layers LbL coated cells, compared to FCs, are 

presented in Figure 5a,b. FCs exhibited a typical rod-like shape, whereas coated cells were 
less elongated and more rounded. The bio-hybrid capsules also showed some irregular 
fragments and loss of membrane integrity, similar to SEM images taken by Ansari et al., 
corroborating the speculated damage caused to the bacterial envelope by polyDADMAC 
[52]. Cross-sectional TEM images of the LBL bio-hybrid capsules revealed the presence of 
a thin, floccose layer, which is heterogeneous in shape and clearly different than the 
darken bacterial envelope of FCs (Figure 4c,d). 

In addition to differences in the morphology of the bacterial envelopes, TEM images 
also revealed interior damages to the cells coated by the LbL polymer film. Healthy E. coli 
cells exhibit a homogeneous interior material distribution, which corresponds to proteins 
and DNA molecules, as seen in the free cell in Figure 4c. In the coated cells, however, a 
couple of dark, aggregated zones are seen, instead of a uniform cytoplasmic density. This 

Figure 4. (a) Colony formation assay post resuspension in PBS and post incubation in soil (b) Relative
fluorescence intensity in arbitrary units (c) Concentration of ATZ in the solution over time (initial
concentration of 15 µM) (d) OH-ATZ formation at different initial ATZ concentrations. * Indicates
significant difference between the groups (p < 0.05).

3.4. Morphology of the LbL Coated Cells

Scanning electron micrographs of the 3-layers LbL coated cells, compared to FCs,
are presented in Figure 5a,b. FCs exhibited a typical rod-like shape, whereas coated
cells were less elongated and more rounded. The bio-hybrid capsules also showed some
irregular fragments and loss of membrane integrity, similar to SEM images taken by
Ansari et al., corroborating the speculated damage caused to the bacterial envelope by
polyDADMAC [52]. Cross-sectional TEM images of the LBL bio-hybrid capsules revealed
the presence of a thin, floccose layer, which is heterogeneous in shape and clearly different
than the darken bacterial envelope of FCs (Figure 4c,d).

In addition to differences in the morphology of the bacterial envelopes, TEM images
also revealed interior damages to the cells coated by the LbL polymer film. Healthy E. coli
cells exhibit a homogeneous interior material distribution, which corresponds to proteins
and DNA molecules, as seen in the free cell in Figure 4c. In the coated cells, however,
a couple of dark, aggregated zones are seen, instead of a uniform cytoplasmic density.
This lack of cytoplasmic content is representative of ‘ghost cells’—damaged cells that have
undergone apoptosis [53]. These microscopic images further confirm the coating and the
nonviable state of LbL-encapsulated cells.
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3.5. Removal of ATZ from Soil

To resemble a more realistic and systematic setting for bioremediation of ATZ, the
3-layered LbL biohybrid capsules were immobilized (by electrostatic interactions between
the positively charged capsules and the negatively charged soil) onto two sterile, moistened
soil samples, a clay rich Grumusol and a red-brown loam, which is low in clay content.
The removal efficiencies of ATZ from spiked soils at 1–6 weeks of incubation are presented
in Figure 6a,b (with time 0 being 30 min post incubation in soil). The bioremediation by
biohybrid capsules was more successful in red-brown loam, with more than 84% accu-
mulated total degradation of ATZ (calculated by mass balance with ATZ and OH-ATZ
extraction in methanol after 6 weeks). The removal percentage was lower in clay-rich
grumusol, with a total of ~69% accumulated degradation. These results are typical for the
two soil types, since grumusol can retain organic pollutants via chemical adsorption to its
clay and organic matter, whereas red-brown loam promotes higher mobility of pollutants.
Thus, ATZ bioavailability is lower in clay-rich soils. In both soils, there was no significant
difference (<0.05%) between LbL coated cells and FCs (data not shown in graphs). This
could be attributed to the fact that FCs were able to proliferate in the soil as indicated by
colony formation assays, therefore increasing the number of biodegrading agents over time.
However, the non-viable biohybrid capsules maintained their biodegrading activity for
6 weeks, exhibiting stability of the AtzA enzyme and exceptional durability of the original
capsules. Further investigation could include a more thorough soil analysis, such as an
actual mimicking of a permeability barrier platform, to confirm suitability of the biohybrid
capsules to existing remediation strategies [54]. These results suggest that these biohybrid
LbL capsules possess high pollutant biodegradation ability unrelated to the increase in
cell count post incubation in soil. Rather, the capsules can provide the AtzA enzyme with
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a protected, well-suited microenvironment, which allows the substrates and products to
move freely in and out through the capsule.
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4. Discussion

Herbicide-degrading bacteria were successfully coated with a thin polymeric casing
via an LbL approach. Three cationic polymers were initially examined, PolyDADMAC,
chitosan and H-PVP-co-S. All three polycation/PSS LbL coatings were successfully per-
formed on the ATZ-degrading bacteria, yet only the polyDADMAC/PSS coating resulted
in improved ATZ degradation rates. From the available data and the supporting literature,
we suggest that polyDADMAC damages the bacterial membrane increasing diffusion
rates into the cell and promoting degradation, whereas the other polymers create a diffu-
sional barrier. The polyDADMAC-based bio-capsules were highly reactive, non-viable and
carried a positive net charge to enable good adhesion to soil particles. Morphology obser-
vation with SEM and TEM confirmed the LbL layering, which led to bacterial envelope
damage and subsequent death of cells. Still, activity remained high and rapid, as indicated
by the kinetic and concentration activity assays. The biohybrid capsules provided an
advantageous microenvironment suitable for prolonged enzymatic activity, which lasted
for 6 weeks in polluted soil, and enhanced biodegradation by increasing specific surface
area and enabling adequate flow of ATZ and OH-ATZ in and out of the cells. Improved
biodegradation activity was noticeable in loamy soil, where pollutants are more prone to
transport and therefore pose a higher risk to contaminate water sources [55]. Additional
research is needed to evaluate the applicability of the coated cells in large scale systems,
still, this study presents a proof-of-concept that such LbL capsules can be advantageous
in complex environments. The versatility offered by the LbL encapsulation technique
suggests that similar encapsulation of bioremediating agents could be tailored and ad-
justed to remediate a wide range of organic pollutants and can potentially be applied as an
ecologically sustainable whole-cell enzyme delivery platforms for bioremediation and/or
biocatalysis.
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