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Abstract 
 
Over the past two decades, rapid advancements in magnetic resonance technology have 

significantly enhanced the imaging resolution of functional Magnetic Resonance Imaging (fMRI), 

far surpassing its initial capabilities. Beyond mapping brain functional architecture at 

unprecedented scales, high-spatial-resolution acquisitions have also inspired and enabled 

several novel analytical strategies that can potentially improve the sensitivity and neuronal 

specificity of fMRI. With small voxels, one can sample from different levels of the vascular 

hierarchy within the cerebral cortex and resolve the temporal progression of hemodynamic 

changes from parenchymal to pial vessels. We propose that this characteristic pattern of temporal 

progression across cortical depths can aid in distinguishing neurogenic blood-oxygenation-level-

dependent (BOLD) signals from typical nuisance factors arising from non-BOLD origins, such as 

head motion and pulsatility. In this study, we examine the feasibility of applying cross-cortical 

depth temporal delay patterns to automatically categorize BOLD and non-BOLD signal 

components in modern-resolution BOLD-fMRI data. We construct an independent component 

analysis (ICA)-based framework for fMRI de-noising, analogous to previously proposed multi-

echo (ME) ICA, except that here we explore the across-depth instead of across-echo dependence 

to distinguish BOLD and non-BOLD components. The efficacy of this framework is demonstrated 

using visual task data at three graded spatiotemporal resolutions (voxel sizes = 1.1, 1.5, and 2.0 

mm isotropic at temporal intervals = 1700, 1120, and 928 ms). The proposed framework leverages 

prior knowledge of the spatiotemporal properties of BOLD-fMRI and serves as an alternative to 

ME-ICA for cleaning moderate- and high-spatial-resolution fMRI data when multi-echo 

acquisitions are not available. 
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1 Introduction 
High spatial resolution is a key feature that makes functional Magnetic Resonance Imaging (fMRI) 

one of the most widely-used non-invasive techniques for experimental human neuroscience. The 

rapid advancement of MR engineering over the past two decades has pushed the imaging 

resolution of fMRI to be far higher than what it was at inception. For instance, using Simultaneous 

Multi-Slice imaging (a.k.a. “multiband” echo-planar imaging or EPI) (Barth et al., 2016; Feinberg 

et al., 2010; Feinberg and Setsompop, 2013; Feinberg and Yacoub, 2012; Hennig et al., 2007; 

Lin et al., 2006; Moeller et al., 2010; Narsude et al., 2016; Setsompop et al., 2016, 2012; 

Zahneisen et al., 2011), several major, large-scale neuroimaging studies have collected and 

shared 3T whole-brain fMRI datasets with ~2-mm isotropic voxels sizes and sub-second repetition 

time (Bookheimer et al., 2019; Casey et al., 2018; Miller et al., 2016; Van Essen et al., 2013); 

and—when combined with ultra-high magnetic field scanners, advanced instrumentation, and 

parallel imaging strategies—state-of-the-art fMRI is able to achieve voxel sizes down to the sub-

millimeter scale (Berman et al., 2021; Feinberg et al., 2023, 2018; Han et al., 2021; Huber et al., 

2017; Vizioli et al., 2023). A compelling motivation for acquiring smaller voxel sizes is the potential 

for mapping the brain’s functional architecture at fine spatial scales, achieved by localizing 

hemodynamic responses within subcortical and brainstem nuclei as well as cerebral cortical 

columns and layers (De Martino et al., 2013; Faull et al., 2015; Koopmans et al., 2010; Nasr et 

al., 2016; Polimeni et al., 2010; Satpute et al., 2013; Yacoub et al., 2007), thus yielding 

unprecedented insights into the brain activity underlying human cognition. 

Accompanying the enthusiasm for high-resolution fMRI acquisitions are new challenges 

in denoising these data, especially the removal of structured noise sources, as denoising 

approaches suitable for conventional resolutions may not extend well to high-resolution data 

(Polimeni et al., 2018; Wang et al., 2022). For instance, multi-echo independent component 

analysis (ME-ICA) (Evans et al., 2015; Kundu et al., 2017, 2013, 2012; Lynch et al., 2020; 

Olafsson et al., 2015), a robust and efficient method for addressing nuisance factors in 

conventional blood-oxygenation-level-dependent (BOLD) fMRI, is less accessible in high-

resolution applications. This approach leverages the echo time (TE) dependence of BOLD 

contrast to distinguish functional information from noise, thereby enhancing the neuronal 

specificity of fMRI. Yet, incorporating multiple echoes in an fMRI acquisition typically incurs 

penalties in temporal resolution (due to the need to sample multiple echoes during the readout) 

or spatial resolution (as achieving increased image encoding typically requires reduced k-space 

coverage). Although high spatial resolution limits the feasibility of multi-echo acquisitions, it 

inspires new analytical strategies for denoising fMRI data. With small voxels, one can consider 
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the cerebral cortex as a 3D volume instead of a 2D sheet, and sample from different levels of the 

cortical vascular hierarchy. Neurogenic BOLD changes are known to initiate within the 

parenchyma and drain outwards toward the pial surface (Tian et al., 2010), thus the ability to 

resolve this characteristic across-cortical temporal progression pattern offers a promising 

opportunity to distinguish functional signals from nuisance factors (such as head motion, cardiac 

pulsatility, etc.) in fMRI time series. See Section 2 Theory below for a detailed rationale. 

In this study, we test the feasibility of differentiating between BOLD signal components 

and non-BOLD nuisance factors based on the temporal progression of BOLD-fMRI signals across 

cortical depths and establish an integrated, data-driven framework to automatically denoise 

moderate- and high-spatial-resolution BOLD-fMRI datasets. The framework is analogous to ME-

ICA, except that here, we propose to examine the signal dependence across cortical depths 

instead of echoes. This article is organized as follows: we first introduce the rationale behind the 

idea of isolating functional BOLD signal components from non-BOLD artifacts according to the 

specific cross-cortical temporal lag patterns. We then introduce the overall scheme of the 

proposed framework and demonstrate its efficacy in enhancing the sensitivity of detecting visual 

task activation in gradient-echo (GE) BOLD-fMRI data at three graded spatiotemporal resolutions. 

Next, we show that integrating fMRI time series across voxels spanning the cortical thickness in 

an appropriate weighted average can produce activation maps with higher sensitivity than those 

based on data from any single cortical depth, analogous to optimized across-TE combination in 

ME-ICA. Finally, we discuss the pros and cons of the proposed de-noising framework relative to 

ME-ICA, and the feasibility of extending our denoising scheme to fMRI data acquired at lower 

spatial resolutions.  

 

2 Theory 
Because neural activity initiates the hemodynamic response within the parenchyma via 

neurovascular coupling, and the BOLD signal propagates downstream along ascending venules 

toward the pial surface, BOLD time courses from superficial cortical depths lag in time behind 

those of the deeper cortical depths (Havlicek and Uludağ, 2020; Markuerkiaga et al., 2016). 

Empirical animal and human experiments have shown that the neurogenic hemodynamic lag 

between parenchymal and surface vessels is on the order of several hundred milliseconds (Siero 

et al., 2011; Tian et al., 2010) (illustrated in Fig. 1). Such cortical-depth-dependent temporal lag 

patterns (CTLPs), by contrast, are not anticipated in major nuisance sources that confound fMRI 

signals. For instance, head movement-induced instantaneous intensity changes (from 

displacements of head position) and slower-scale intensity changes (from spin-history effects 
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(Muresan et al., 2002)) should yield synchronous fMRI signal changes across cortical depths 

(except, perhaps, for special locations at which the slices run perfectly parallel to the cortex). 

Artifacts stemming from image acquisition or reconstruction such as Nyquist ghosting are also 

unlikely to exhibit specific spatial patterns that track the cortical geometry (Griffanti et al., 2017; 

Jezzard and Clare, 1999). As for quasi-periodical physiological artifacts time-locked to 

respiratory/cardiac cycles—including both magnetic field changes driven by changes in chest 

volume while breathing, and dynamic partial volume effects caused by pulsatile vessel/tissue 

displacement driven by the cardiac pressure wave—a zero or a minimal temporal lag, if it exists, 

would manifest across cortical depths. Therefore, CTLPs provide an excellent opportunity to 

differentiate between neural activity and various forms of structured noise in BOLD fMRI time-

series data.  

Given the limited spatiotemporal resolution of GE-BOLD fMRI, what are the lower bounds 

of temporal sampling intervals and voxel sizes needed to resolve differentiable CTLPs between 

functional BOLD signals and non-BOLD noise? From a temporal-resolution perspective, as will 

be shown later in this article, even conventional sampling rates (e.g., ~2 s) are sufficient to detect 

hemodynamic lags across cortical depths. As for spatial resolution, although it is unlikely to have 

multiple voxels spanning the entire cortical thickness at any given location with supra-millimeter 

resolutions, an approximately even distribution of voxel centroids across cortical depths can be 

achieved if a sufficiently large number of contiguous voxels are pooled (Polimeni et al., 2018). It 

is also of note that the across-depth distance between voxels exhibiting the earliest and latest 

BOLD responses can be larger than the cortical thickness (1–4.5 mm), due to the extravascular 

susceptibility field of large draining veins that can extend into subarachnoid CSF above the gray-

pial border; hence voxel sizes as large as 2–3 mm isotropic, as employed in conventional fMRI 

studies, may suffice to dissociate earlier response in parenchyma from later responses observed 

in the CSF in most cortical areas. Taken together, although high-resolution acquisitions (e.g., 

approaching sub-second TRs or sub-millimeter voxel sizes) undoubtedly improve the detection of 

CTLPs, distinct CTLPs between BOLD and non-BOLD signal components may also be detectable 

in moderate-resolution acquisitions (with 1–2 s TR and 2–3 mm iso. voxel size).  

 

3 Methods 

3.1 Volunteers and task 
All experimental procedures were approved by the Massachusetts General Hospital Institutional 

Review Board. Twelve healthy subjects (24.7±4.3 years old, six females) were enrolled for this 

study, after providing written informed consent. 
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Each participant underwent three visual task scans with graded spatiotemporal resolutions 

(scan orders were counterbalanced across subjects). Visual stimuli were implemented using the 

MATLAB-based psychtoolbox (http://psychtoolbox.org), projected onto a screen mounted at the 

end of scanner bore, and viewed through a mirror fixed in front of the subjects’ eyes. A block-

design paradigm was employed (task ‘on’: radial “checkerboards” counterphase flickering at 12 

Hz; task ‘off’: gray background; 16/19 s on/off per block, 8 blocks per scan).  

 
3.2 Acquisition 
MR images were collected on a 7T Siemens MAGNETOM whole-body scanner (Siemens 

Healthineers, Erlangen, Germany) equipped with SC72 body gradients and an inhouse-built 32-

channel brain receive-coil array (Keil et al., 2010). High-resolution anatomical data: High-

resolution T1-weighted MPRAGE images (0.75-mm isotropic spatial resolution, with a 13-ms FOCI 

adiabatic inversion pulse (Zaretskaya et al., 2018)), TR = 2530 ms, TE = 1.76, 3.70 ms, flip angle 

= 7°, FOV = 240´240´168 mm3, bandwidth = 615 Hz/pixel, and acceleration factor R = 2) were 

acquired for anatomical reference and cortical surface reconstruction. Functional data: A single-

shot gradient-echo EPI sequence, using simultaneous multi-slice (SMS) with blipped Controlled 

Aliasing in Parallel Imaging (CAIPI) sequence (Setsompop et al., 2012), was used to acquire the 

GE-BOLD fMRI data at three graded spatiotemporal resolutions. Acq. 1: 1.1-mm isotropic nominal 

voxel size, TR/TE = 1700/26 ms, flip angle = 72°, FOV = 192´192 mm2, 87 slices with no gap, 

acceleration factor R = 4, multiband factor = 3, nominal echo spacing = 0.79 ms, bandwidth = 

1512 Hz/pixel; Acq. 2: 1.5-mm isotropic nominal voxel size, TR/TE = 1120/23 ms, flip angle = 62°, 

FOV = 192´192 mm2, 63 slices with no gap, acceleration factor R = 3, multiband factor = 3, 

nominal echo spacing = 0.69 ms, bandwidth = 1776 Hz/pixel; Acq. 3: 2.0-mm isotropic nominal 

voxel size, TR/TE = 928/26 ms, flip angle = 58°, FOV = 192´192 mm2, 51 slices with no gap, 

acceleration factor R = 2, multiband factor = 3, nominal echo spacing = 0.57 ms, bandwidth = 

2170 Hz/pixel. 

 
3.3 Cortical depth estimation 
The high-resolution MPRAGE images were bias corrected (Zaretskaya et al., 2018) and used to 

automatically reconstruct cortical surfaces with FreeSurfer (Fischl, 2012) 

(https://surfer.nmr.mgh.harvard.edu). Normalized or “equidistant” cortical depth (‘0%’: white/gray 

matter boundary; ‘100%’: pial surface) was computed for each EPI voxel using a voxel-based 

cortical-depth analysis under which depth is defined as the relative distance between the voxel 

centroid coordinate and the nearest white surface and pial surface normalized by the cortical 
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thickness at the corresponding cortical location (Polimeni et al., 2018, 2010). Depths < 0% denote 

white matter locations below the cortex and depths > 0% denote CSF locations above the cortex 

(see Fig. 1).   

 

3.4 Preprocessing and ICA 
Following standard slice-time and motion correction (rigid-body co-registration) using AFNI (Cox, 

1996) (https://afni.nimh.nih.gov), functional images were spatially decomposed into multiple 

independent components (ICs) using FSL’s MELODIC ICA (Beckmann, 2012; Beckmann and 

Smith, 2004) (https://fsl.fmrib.ox.ac.uk/fsl) with the optimal component number automatically 

estimated. Functional images were spatially smoothed until they reached 3D FWHM = 2 mm using 

AFNI 3dBlurToFWHM to increase the image SNR for ICA. Of note, this spatial smoothing step 

was only applied as a preprocessing step for ICA, i.e., to compute ICs; estimations of CTLPs and 

task activation estimations were performed on the non-smoothed data.  

 
3.5 Differentiating between BOLD and non-BOLD components based on CTLPs 
After decomposing the 4-D fMRI data into multiple spatial components using ICA, we categorized 

the resulting ICs as BOLD or non-BOLD components according to the associated CTLPs, which 

we refer to as “CTLP-ICA” (as it is akin to assessing TE dependence in ME-ICA), as illustrated in 

Fig. 2.  

 For each IC, above-threshold voxels (z-score > 2.3, direct outputs from MELODIC 

following mixture modeling) were retained and separated into five groups based on their 

normalized cortical depths (D1: 0–40%, D2: 40–80%, D3: 80–120%, D4: 120–160%, D5: 160–

200%). The representative signal of each cortical depth group was derived by averaging the time 

series across all voxels within the group, after temporal up-sampling to a 0.1-s temporal grid 

spacing. The time series of each voxel was weighted by the z-score of the corresponding IC map 

prior to this averaging. Relative temporal lags between depth-specific signals and the D3 signal 

were estimated using temporal cross-correlation, yielding a five-element temporal lag vector, 

including positive and negative lags (with the third element being 0-s lag), that represents the 

global CTLP of each IC. We then tested whether the CTLP was consistent with greater positive 

lags of responses sampled from the superficial depths, representing a greater time delay, to 

determine whether an IC was consistent with a proper BOLD signal component. Specifically, we 

correlated the five-element lag vector of each IC with an ‘order vector’, i.e., a five-element vector 

of the integers 1 to 5, using Spearman’s rank correlation (i.e., the correlation of ordered ranks of 

the elements of the two vectors), yielding a coefficient rlag (with rlag = 1 indicating monotonically 
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increasing temporal lags across depths). ICs with both high rlag values (≥ 0.2) and high tlag values 

(≥ 0.2 s, defined as the temporal lag between D5 and D1 signals) were labeled as BOLD signal 

components. 

 
3.6 Influence on visual task activation 
We evaluated the performance of this CTLP-ICA de-noising framework using visual task data at 

graded spatiotemporal resolutions. Task activation in response to flickering checkerboard stimuli 

was inferred using a standard general linear model (GLM) framework, with the task-evoked 

response modeled by convolving the stimulus paradigm timing with a canonical hemodynamic 

response function (Glover, 1999). The temporal derivative of the modeled time series was also 

included as a covariate in the GLM to account for regional delays in the evoked responses.  

To demonstrate the ability of our framework to identify and remove noise components, for 

each resolution the non-BOLD components identified using the procedure described above in 

Section 3.5 were first orthogonalized against the stimulus responses and then included as 

additional nuisance regressors in the GLM analysis.  

To benchmark the efficiency of the CTLP-ICA framework, we also examined an 

anatomical component-based method (aCompCor) (Behzadi et al., 2007) for noise removal. 

White-matter and CSF masks were derived from FreeSurfer segmentation, and further eroded 

using the 3dmask_tool in AFNI (with erosion steps of 4, 3, and 2 for the 1.1-, 1.5-, and 2.0-mm 

isotropic data, respectively). The first five principal components of time-series data within the 

combined white-matter and CSF masks were extracted as the aCompCor nuisance regressors. 

These aCompCor nuisance regressors, along with six rigid-body motion parameters, were 

orthogonalized against the stimulus responses and then included as additional nuisance 

regressors in the GLM analysis to quantify task activation. 

For all GLM analyses, serial correlations of the residuals were modelled using the SPM 

FAST option (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/).    

 
3.7 Weighted combinations of fMRI data across cortical depths 
Having established the CTLP-ICA framework of cleaning BOLD-fMRI data, we further tested 

whether forming suitable weighted combinations of the fMRI data across different depths could 

result in improved functional sensitivity, in a manner analogous to the optimal across-echo 

averaging in ME-ICA method. In contrast to the analyses described above where we estimated 

the normalized cortical depth of each voxel and performed a voxel-based cortical-depth analysis, 

in the analysis described in this section we project the fMRI data onto each subject’s native 
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surface space and employ a surface-based cortical-depth analysis. For this, we first generated 

four intermediate cortical surfaces equally spaced between the white and pial surfaces (i.e., four 

equi-distant intracortical surfaces at 20, 40, 60, and 80% cortical depth) between the white matter 

(0%) and pial (100%) surfaces using FreeSurfer. 

This proof-of-principle analysis was carried out using the 1.1-mm iso. visual task data. We 

projected the 4-D fMRI data onto each surface mesh using the nearest-neighbor interpolation. 

This analysis assumes that the neuronal activity is similar across cortical depths (i.e., that the 

functional organization is largely “columnar”) (Polimeni et al., 2018). The combined signal at each 

vertex of white-matter surface mesh was computed from the weighted average of fMRI 

fluctuations across corresponding vertices of the white and intracortical surface meshes (i.e., at 

0, 20, 40, 60, and 80% cortical depth). Note that supra-millimeter voxels may intersect with more 

than one cortical surface mesh spaced across depths, thus all voxels intersecting with the pial 

surface were excluded from this weighted average to mitigate potential contamination from large 

pial veins. To test whether functional sensitivity (t-score and the spatial extent of task activation) 

can be boosted using a plausibly physiologically-informed weighted combination, signals of each 

cortical depth were first converted to percent signal changes (PSCs) and then weighted by the 

depth-specific PSC level predicted by a cortical vascular model (Fig. 3b from (Markuerkiaga et al., 

2016)): the fMRI data from cortical depths [0% 20% 40% 60% 80%] were weighted by [0.014 

0.022 0.029 0.032 0.037], respectively, prior to combination. This model-based PSC weighting 

scheme is termed as “mPSC”. As a control analysis, we also tested two alternative approaches 

to combining the fMRI data across cortical depths: (i) assigning equal weights to all depths (‘equal 

weights); and (ii) weighting each depth by the reverse order of mPSC, i.e., [0.037 0.032 0.029 

0.022 0.014] (‘rev mPSC’). We then conducted GLM analyses on the combined across-depth 

time-series data using different weighting schemes to assess visual task activation. Statistical 

scores resulting from the two control analyses were expected to be smaller than those derived 

using the proposed “mPSC” combination.   

 

4 Results 
4.1 Distinct CTLPs of functional BOLD signal components and non-BOLD noise 
Figure 3 illustrates that distinct CTLPs reflecting either functional signal components or noise 

components can be identified in the measured GE-BOLD fMRI data. In this representative dataset, 

the functional connectivity patterns that correspond to resting-state networks (“Visual network” 

and “Default-mode network”) exhibited the expected progression of temporal delays from deep to 
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superficial depths; apparent artifacts, including motion and quasi-periodical fluctuations time-

locked to respiratory and cardiac cycles, exhibited no clear delays across cortical depths.   

Overall, as illustrated by the IC sorting results of an exemplar subject (Fig. 4), ICs with the 

highest rlag and tlag values, i.e., ICs exhibiting a delay from deeper to superficial depths, generally 

exhibited structured spatial patterns that resembled known task-relevant or resting-state 

functional networks; ICs with zero across-depth temporal lags were associated more with 

physiological (> 0.1-Hz fluctuations) or motion-like spatial patterns (high z-scores at the edges of 

the brain), suggesting that the CTLP-ICA framework can isolate functional BOLD signal 

components from common forms of non-BOLD noise at the spatiotemporal resolutions of our 

dataset, as intended. Distributions of rlag and tlag values across all ICs of each subject are 

summarized in Supplementary Fig. S2.  

 

4.2 Enhanced sensitivity to visual activation post removal of non-BOLD ICs 
Figure 5 compares the individual-level visual task activation for the data denoised by including 

the aCompCor plus motion regressors and the data denoised by including the non-BOLD ICs (rlag 

< 0.2 or tlag < 0.2 s) as nuisance covariates in the GLM analysis. Compared to the aCompCor 

method, the proposed CTLP-ICA approach resulted in notable increases in both the t-score 

values and the number of task-active voxels for all imaging resolutions (note that the observed 

trends persisted when varying the t-score thresholds for task-active voxel counts or increasing 

the number of aCompCor regressors from five to ten principal components of white-matter/CSF 

signals), suggesting that nuisance components identified by the CTLP criteria can better capture 

the regional physiological and motion artifacts in gray matter than those derived from white matter 

and ventricles and those based on rigid-body motion parameter estimates. These results 

demonstrate the efficacy of the CTLP-ICA framework in de-noising moderate- and high-resolution 

fMRI data.   

 

4.3 Optimal combination of information across cortical depths 
Having established that the CTLP-ICA framework can be employed to de-noise GE-BOLD fMRI 

data, we additionally evaluated whether weighted combination of information across all cortical 

depths could further enhance the sensitivity to detect brain activity, compared to the activation 

estimated using a single depth. Figure 6 summarizes the statistical estimates of visual task 

activation at each cortical depth and following different schemes of weighted combinations of the 

data across depths. It is noteworthy that, at the group level, weighting the data sampled at each 

depth by unoptimized, model-based PSCs (“mPSC”) derived from an independent simulation 
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already yielded higher functional sensitivity (largest number of statistically-significant vertices) 

than the activation measured at any given depth, as well as the other two schemes shown for 

comparison (i.e., weights derived from uniform values (“equal weights”), or the reverse of mPSCs 

(“rev mPSC”)). These observations suggest that an informed weighted combination of data across 

cortical depths could further enhance the functional sensitivity of small-voxel GE-BOLD fMRI data. 

 

5 Discussion 
5.1 General findings 
In this work, we demonstrated the feasibility of leveraging cortical-depth-dependent analysis to 

enhance the sensitivity and neuronal specificity of moderate- and high-spatial-resolution GE-

BOLD fMRI data. First, we showed that functional BOLD signal components and non-BOLD noise 

components exhibited distinct CTLPs, which could aid in identifying and removing noise 

fluctuations from fMRI data. We then demonstrated that, by appropriately combining data across 

cortical depths, the overall statistical sensitivity to detect functional activity could be further 

increased.  

 

5.2 Comparison with alternative data-driven approaches 
The CTLP-ICA de-noising framework proposed here is analogous in many ways to ME-ICA. 

However, instead of evaluating the dependence on TE, we mapped the temporal progression of 

hemodynamic changes across cortical depths to distinguish BOLD signal components from 

potential noise components. Additionally, rather than forming weighted combinations of the fMRI 

time-series data across echoes, we formed weighted combinations of fMRI data across cortical 

depths to improve CNR. 

In theory, the CTLP-ICA framework should achieve denoising efficacy comparable to that 

of ME-ICA for GE-BOLD fMRI. Typical nuisance factors that exhibited no TE dependence—e.g., 

intensity changes related to head movements, quasi-periodical respiration, pulsatility and imaging 

acquisition/reconstruction artifacts—are not expected to exhibit graded, hundred milliseconds-

scale temporal lags across cortical depths, and thus ought to be categorized as noise under the 

CTLP framework as well. Previous studies have cautioned that TE dependence alone cannot 

separate components of interest from nuisance components, since many forms of physiological 

noise will generate changes in blood oxygenation and thus will manifest as BOLD-like 

components, while neuronal activation may cause non-BOLD modulations. For example, slow 

hemodynamic variations driven by the autonomic nervous system (i.e., changes in heart rates 

and end-tidal CO2 levels (Birn et al., 2008; Shmueli et al., 2007; Wise et al., 2004)) will cause 
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BOLD-like changes similar to changes driven by local neuronal activity (Kundu et al., 2012; Power 

et al., 2018), given that both dynamics generate changes in blood oxygenation and therefore will 

exhibit “BOLD-like” signal changes in T2*-weighted acquisitions. Also, neuronal activation can 

cause inflow effects, blood volume changes, and tissue/CSF displacement, which may generate 

non-BOLD intensity modulations that appear in T2*-weighted data (Gao et al., 1996; Jin and Kim, 

2010; Liu et al., 2008; Piechnik et al., 2009; Scouten and Constable, 2008), especially when using 

short TR values that impart additional T1 weighting. Unfortunately, this limitation extends to the 

CTLP method as well. Although these “systemic” changes in blood oxygenation propagate 

through the cortical vasculature in a purely anterograde fashion, as opposed to expected 

“neurogenic” changes triggered by neurons that cause retrograde dilations progressing from 

parenchymal microvessels to the feeding arterioles, the neurogenic hemodynamics will also result 

in anterograde draining of deoxygenated hemoglobin into the veins, and so in both cases we 

would expect that the corresponding BOLD changes would appear first in the parenchymal and 

then later in time in pial veins. Supplementary Fig. S3 offers an illustrative case in which an IC 

correlated with respiratory variation also demonstrates apparent timing differences across depths. 

Collectively, CTLP- and ME-ICA are similarly limited in their ability to separate BOLD-like noise 

components from those signals of interest. 

Apart from sharing strengths and limitations with the ME-ICA framework, a major 

advantage of the CTLP-based framework is that it can be applied to single-echo acquisitions. 

Thus our framework may be preferable for fMRI applications that necessitate high spatiotemporal 

resolutions, e.g., recent studies into rapid brain oscillations (Lee et al., 2013; Lewis et al., 2016), 

and imaging of small nuclei in brainstem regions (Bianciardi et al., 2016; Sclocco et al., 2018). 

Yet the CTLP-based framework also faces additional limitations. First, to resolve timing 

differences across cortical depths, both the spatial and temporal resolution of fMRI must fall above 

certain thresholds. According to our results, the graded delays across cortical depths can be well 

detected in data with TR values up to 1.7 s, and voxel sizes up to 2 mm. This suggests that our 

method may be compatible with existing large-scale neuroimaging datasets such as that provided 

by the Human Connectome Project (Van Essen et al., 2013). Second, since the CTLP 

characterization relies on the stereotyped pattern of blood supply and drainage to the cortex, it 

may have diminished denoising efficiency in acquisitions with limited cortical coverage. 

Of note, while we present CTLP-ICA as an alternative to ME-ICA throughout this article, it 

can also be readily combined with ME-ICA to enhance the overall statistical sensitivity of BOLD 

fMRI. Although echo- and cortical-depth-dependent information may appear redundant in the 

denoising step, integrating information across echoes and cortical depths jointly can be 
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complementary, i.e., weighted combinations across cortical depths can be performed in addition 

to BOLD-sensitivity-weighted combinations across acquired echoes to maximize the overall 

functional sensitivity of a dataset. 

In addition to ME-ICA, approaches based on pretrained classifiers have also gained 

popularity, such as FMRIB’s ICA-based Xnoiseifier (FIX) (Griffanti et al., 2014; Salimi-Khorshidi 

et al., 2014) and ICA-based strategies for Automatic Removal of Motion Artifacts (AROMA) (Pruim 

et al., 2015). However, the accuracy of these methods depends on the availability of suitable 

training datasets. A preliminary assessment of FIX applied to our moderate-resolution fMRI data 

(1.5-mm and 2.0-mm isotropic voxel sizes), using a classifier trained on the public 7T HCP dataset 

(Thanh Vu et al., 2017), demonstrated general consistency in noise component classification with 

our proposed CTLP-ICA approach (see Supplementary Methods I and Figs. S4 and S5). This 

suggests that the CTLP-ICA method could be a promising alternative for fMRI de-noising, 

particularly in the absence of either multi-echo acquisitions and suitable training datasets.  

 

5.3 Outlook 
5.3.1 Applicability to lower-resolution fMRI data 
What is the lowest spatial resolution suitable for CTLP-ICA? Here, we only reported denoising 

results using voxel sizes up to 2-mm isotropic spatial resolution. However, theoretically, due to 

the “extravascular blooming” effect, the physical distance between the white matter surface 

(having the earliest hemodynamic responses) and the CSF regions (having the latest detectable 

responses) with measurable BOLD signals can range from 2–6 mm. This implies that the 

proposed denoising approach may be applicable to acquisitions at even lower spatial resolutions. 

While lagged responses across cortical depths may be blurred at larger voxel sizes, this drawback 

may, to a certain extent, be compensated by increased temporal resolution (i.e., shorter TRs) that 

can enable better discrimination of across-depth delays. As a preliminary test of this idea, we 

evaluated the performance of CTLP-ICA on five additional datasets with 3-mm isotropic voxel 

sizes (using data from (Blazejewska et al., 2019)) and demonstrated enhanced task activation 

after denoising in these lower-resolution data (see Supplementary Methods II and Supplementary 

Fig. S6 for detailed descriptions of the relevant data and results). Thus the proposed framework 

shows a potential to aid de-noising fMRI data acquired at more conventional spatial resolutions 

when neither external physiological recordings nor multi-echo acquisitions are available. 

 

5.3.2 “Optimal” integration of information across depths 
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Unlike large-voxel acquisitions where all cortical depths inherently have equal weights, small-

voxel acquisitions permit the flexibility of weighting the depth-specific fractional contributions such 

that the sensitivity and neuronal specificity of fMRI measures can be balanced or maximized. In 

the proof-of-principle analysis using our 1.1-mm iso. visual task data, we demonstrated that 

weighting depth-specific information by a simple vascular model-based PSC can boost the overall 

sensitivity to detect task activation in cases where the neuronal activation is known to be similar 

across depths at any given cortical location. Nevertheless, we do not believe that this particular 

weighting scheme is the only weighting scheme (or an optimal weighting scheme) that would 

provide such a boost in sensitivity, however this scheme did provide a useful proof of concept. In 

practice, rather than using this particular physiologically-motived vascular model, other similar 

models may also help boost sensitivity, and appropriate region-specific weighting schemes may 

be derived from empirical measurements from an independent resting-state scan akin to a 

“functional localizer”. Additionally, one dataset may be collected to serve multiple investigations—

for instance, activation elicited by several distinct stimuli or tasks using mixed presentation 

designs, or functional connectivity estimated with respect to distinct network seeds—and the 

weights for the cortical-depth combination can therefore be tailored separately to optimize 

different metrics of interest. This new data-driven and “anatomically-informed” (or perhaps 

“physiologically-informed”) analysis approach further motivates small-voxel acquisitions and 

investments in improving imaging resolution (Blazejewska et al., 2019). 

 

6 Conclusions 
In this work, we demonstrate that the temporal progression of hemodynamic signals across 

cortical depths can be leveraged to differentiate between BOLD and non-BOLD components in 

T2*-weighted fMRI, effectively enhancing its sensitivity and neuronal specificity. The approach is 

particularly suitable for moderate- and high-resolution acquisitions when multi-echo acquisitions 

are less advantageous. Our study also highlights the potential of small-voxel acquisitions in 

facilitating novel preprocessing and analytical strategies for fMRI, extending beyond their well-

established usefulness for producing fine-grained depictions of brain functional architecture. 
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Figures  
 

                         
Figure 1: Neuronally-driven hemodynamic responses with graded temporal delays across cortical 

depths, illustrated using single-subject fMRI responses evoked by the flickering checkerboard 

visual stimulation (7T, 0.8-mm isotropic nominal voxel size, TR/TE = 1010/28 ms; data from study 

of Chen et al. (2021)). 

 

 

 
Figure 2: Overview of the proposed CTLP-ICA de-noising scheme. The across-cortical-depth 

delay pattern of each IC was characterized following steps highlighted in the yellow box; identified 

noise components were then included as additional nuisance covariates in the GLM to infer the 

visual task activation of interest. 
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Figure 3: Distinct functional BOLD signal components (“Visual network” and “Default-mode 

network” ICs) and non-BOLD noise components (subject “Motion”, “Respiration” and “Pulsatility” 

ICs) identified using the CTLPs, illustrated using a 2-mm iso. visual task data from a 

representative subject. Top row: the spatial map of each example IC; middle rows: the time course 

and the power spectrum of the time course corresponding to each IC; bottom rows: the 

corresponding temporal lag values of each cortical depth (D1–D5) relative to the middle depth 

(D3). Note that the cardiac peak was aliased into low frequencies (~0.15 Hz) with this TR (0.928 

s) used for this acquisition (“Pulsatility” IC); see Supplementary Fig. S1 for another illustrative 

case in which the cardiac peak was resolved at a shorter TR value. 
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Figure 4: Illustration of the efficacy of employing CTLPs to differentiate between BOLD signal 

and non-BOLD noise components. (A) Exemplar functional BOLD signals (ICs with high rlag and 

tlag values) and (B) non-BOLD noise (ICs with low rlag or tlag values; all displayed ICs showed zero 

across-depth lags), demonstrated using the 1.5-mm iso. visual task data from a representative 

subject. Each panel shows the time course and spatial pattern of each IC. Components with the 

highest rlag and tlag values comprised the task-active (IC 13) and common functional networks; 

whereas components with the lowest rlag or tlag values resembled typical structured-noise patterns 

or artifacts. 
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Figure 5: Influence of de-noising on visual task activation based on the aCompCor versus the 

CTLP-ICA method. Both (A) the mean t-score values within the FreeSurfer segmented primary 

visual cortex, V1 (“mean T value”) and (B) task-active voxel counts (“# of voxels”, t-score > 4) in 

the entire occipital cortex were quantified for comparison. “aCompCor” included six motion 

parameters and five aCompCor principal components as nuisance regressors in the GLM analysis; 

“CTLP” included noise ICs (rlag < 0.2 or tlag < 0.2 s) as nuisance regressors in the GLM analysis. 

Each blue line represents the results of a single subject. Mean and standard errors across 

subjects are displayed in gray. Statistical significance of paired t-test results (“aCompCor” vs. 

“CTLP”) is indicated above the columns of de-noising summary metrics: (*) p < 0.05; (**) p < 0.005; 

(***) p < 0.0005. 
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Figure 6: Impact of different schemes of weighted combination of fMRI data across cortical 

depths on functional sensitivity, illustrated using the 1.1-mm iso. visual task data. (A) Task-active 

(t-score > 4) vertex counts at different cortical depths and after weighted combination of data 

across all depths (“mPSC”: weights given by the modeled PSC of each depth (Markuerkiaga et 

al., 2016); “equal weights”: uniform weights across all depths; “rev mPSC”: weights given by the 

reverse order of modeled PSC across depths). Each trace represents results of a single subject. 

Statistical significance of paired t-test results (“mPSC” vs. “80%”, “equal weights”, and “rev mPSC”) 

is indicated above the associated pairs of weighting schemes: (*) p < 0.05; (***) p < 0.0005. (B) 

Visual task activation maps presented on the inflated cortical surface for three representative 

subjects, thresholded to facilitate visual comparison across different combination methods. 
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