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Abstract

Steep canyons surrounded by high mountains resulting from large-scale landslides charac-

terize the study area located in the southeastern part of the Tibetan Plateau. A total of 1766

large landslides were identified based on integrated remote sensing interpretations utilizing

multisource satellite images and topographic data that were dominated by 3 major regional

categories, namely, rockslides, rock falls, and flow-like landslides. The geographical detec-

tor method was applied to quantitatively unveil the spatial association between the land-

slides and 12 environmental factors through computation of the q values based on spatially

stratified heterogeneity. Meanwhile, a certainty factor (CF) model was used for comparison.

The results indicate that the q values of the 12 influencing factors vary obviously, and the

dominant factors are also different for the 3 types of landslides, with annual mean precipita-

tion (AMP) being the dominant factor for rockslide distribution, elevation being the dominant

factor for rock fall distribution and lithology being the dominant factor for flow-like distribu-

tion. Integrating the results of the factor detector and ecological detector, the AMP, annual

mean temperature (AMT), elevation, river density, fault distance and lithology have a stron-

ger influence on the spatial distribution of landslides than other factors. Furthermore, the

factor interactions can significantly enhance their interpretability of landslides, and the top 3

dominant interactions were revealed. Based on statistics of landslide discrepancies with

respect to diverse stratification of each factor, the high-risk zones were identified for 3 types

of landslides, and the results were contrasted with the CF model. In conclusion, our method

provides an objective framework for landslide prevention and mitigation through quantita-

tive, spatial and statistical analyses in regions with complex terrain.

Introduction

Landslides have occurred at a high frequency in the southeastern part of the Tibetan Plateau

and feature a wide distribution, high activity, large number and large scale; they often cause
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road damage, blocking of rivers, casualties and property losses. One of most noticeable exam-

ples is the Yigong landslide, which occurred along Zhamunong Creek in 2000 and produced

several billion cubic meters of debris, resulting in a landslide dam that intercepted the Yigong

River. Dam failure after two months caused heavy casualties and massive property losses

downstream of the Yarlu Tsangpo River [1–3]. The Guxiang debris flow, which occurred in

1953, moved 1x107 m3 of debris and resulted in 140 casualties and intercepted the Palong

Tsangpo River [4]. Another large-scale glacial/rock fall occurred upstream of the Sedongpu

Basin on the left bank of the Yarlu Tsangpo River on October 17, 2018, deposited materials

with an estimated volume of 3.1 x107 m3 and blocked the Yarlu Tsangpo River for 56 hours

[5]. There have also been other severe geological disasters in this region, such as 102 landslides

along sections of roads, the Peilong Nongba debris flow, and the Layue landslide, which all

incurred heavy losses [6]. Therefore, the National Geological Park of Yigong located in Yigong

Township of Bomi County in Tibet is called the “Mountain Disasters Museum of China” [1,

6].

It is important to understand the spatial distribution of landslides by associating environ-

mental factors (or influencing/causative factors) with landslide occurrence [7]. A full study of

the spatial association between landslides and environmental factors is of great significance to

the evaluation of regional landslide occurrence, slope deformation prediction, spatial distribu-

tion and morphological characteristic analysis [8–10]. Reichenbach et al. [11] found 596

unique environmental factors, which can be classified into five clusters, including geological,

morphological, hydrological, land cover, and other factors. Altitude, slope angle, slope aspect,

distance to rivers, distance to faults, annual precipitation, land use, NDVI, lithology, seismic

activity, etc. are causative factors that are commonly used in recent research [7–11]. There has

been much research on relationship analyses between environmental factors and landslides,

the most frequently used of which include deterministic approaches, statistical analyses, and

computational intelligence methods [7, 11]. Deterministic models are typically used in small

areas because they require detailed engineering data of soils and rocks, slope geometry and

hydrological conditions [12, 13]. Statistical analyses comprise a large proportion, e.g., logistic

regression, weight evidence analysis, frequency ratio, weighted linear combination, index of

entropy [11, 14, 15]. These methods are simple and widely used, but many problems, such as

factor selection, spatial correlation analysis and significance evaluation, have not been solved

systematically because of the complex nonlinear characteristics of landslide occurrences. In

recent years, there has been a growing trend towards machine learning methods, such as neu-

ral network analysis, random forest, naïve Bayes tree, and support vector machine [12, 16–19].

These algorithms are suitable for nonlinear relations among variables and have strong robust-

ness. However, these models are complex, it is difficult to control their internal operations,

and they may not produce better results with fewer data features.

As the most typical mountainous area in China, there have been many studies on geological

disasters conducted in southeastern Tibet. Through data collection and field investigation,

Shang et al. [6] studied the formation mechanism and distribution characteristics of major

geological disasters in the northern section of the Great Canyon of the Yarlu Tsangpo River.

They believed that the strong tectonic activities, mountain landforms, abundant rainfall, defor-

estation, road and slope cutting and human activities in this region are mainly responsible for

the frequent occurrence of landslides. According to the distribution density of geological disas-

ters and their damage, Liao et al. [20] divided the Nyingchi to Baxoi sections of the Sichuan-

Tibet Highway into three subsections and suggested that the geological hazards in the study

area show intensive development characteristics, include multiple types and have significant

segmentation. Qualitative analysis concludes that loose debris is the material source for land-

slides, while water-rock actions and river cuttings are the important factors influencing
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landslides. From the perspective of climate change, Chen et al. [4] studied the debris flow

types, distribution and activity characteristics in the Nyingchi region and concluded that tem-

perature and precipitation changes and different hydrothermal combinations affected the

debris flows in the Nyingchi region. Wang [21] investigated the volume and distribution of

landslides, rock falls, debris flows and mudslides based mainly on Landsat-7 data through

remote sensing survey methods. Topography, geological structures, lithology and precipitation

are considered to be the main causes of serious geological disasters in this region.

Although many studies have proceeded on landslide hazards in southeastern Tibet, China,

due to the complexity of the relationship between landslides and environmental factors,

explicit and systematic explanations are rare. To study the relationship between landslide haz-

ards and reveal the dominant factors and the interactions between these factors, the geographic

detector (GeoDetector) method is used in this article. GeoDetector is a new spatial statistical

method developed to assess the associations between human disease risks and environmentally

feasible risk factors [22–24], and it has already been successfully applied in many fields of natu-

ral and social sciences [25–29]. In recent years, it has been proven to be effective in the analysis

of landslides and their conditional factors [30–33]. The main goals of this paper are ① to pres-

ent a landslide inventory of the entire territory of the study area based on multisource images

and topographic data and distinguish the major types of landslides and ② to explore the spa-

tial association between different types of landslides and environmental factors and unveil the

contributions of various influencing factors based on spatial statistical methods and geographi-

cal detectors. Our results are useful for landslide prevention and mitigation in regions of com-

plex terrain such as southeastern Tibet, China.

Study area and data

Study area

Geomorphologic and geographic conditions. The study area is located in the eastern

part of Nyingchi city in the southeastern part of the Tibet Autonomous Region in China and

covers parts of Bomi County, Bayi District and Metok County. Its geographic coverage is

approximately 94˚200-95˚560E longitude and 29˚050-30˚260N latitude with an area of 15,181.5

km2 [21]. The study area is mainly accessed by highways, with the southern route of the Sich-

uan-Tibet Highway (G318) running through this region, which is also the intersection of the

Sichuan-Tibet Highway, Yunnan-Tibet Highway and construction of the Sichuan-Tibet Rail-

way. This area’s location is very important because it serves as a traffic pivot point and is the

main access to Tibet. However, as the “Mountain Disaster Museum of China”, frequent geolog-

ical disasters have threatened the safety of transportation, residents and property.

The study area is located at the junction of the southeastern and southern Tibetan climate

zones and is dominated by subtropical and tropical mountain humid climates, with annual

average temperatures of -15–20˚C [34]. Due to large altitude discrepancies and deep canyons,

a stereoscopic effect on the climate has formed, which means that the annual mean tempera-

ture is higher in the south and in the valley and lower in the north and at the summit. The

approximate 4,100 m elevation is the isotherm of the annual mean temperature of 0˚, and

most of the mountains experience frost weathering and cryoplanation [35]. Water vapor from

the Indian Ocean enters downstream of the Yarlu Tsangpo River and is blocked and con-

densed in the Nyenchen Tanglha Mountains, resulting in abundant rainfall in the region, with

an average annual precipitation reaching 600–1,300 mm [34].

The regional terrain is characterized by high mountains and very steep canyons, with the

eastern branch of Nyenchen Tanglha in the north and the northeastern branch of the Himala-

yas in the south. Namkyabawa is one main peak in the Himalayas and is 7782 m above sea
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level, which is the highest point in this area [21] (Fig 1). Many rivers flow through this area, all

of which belong to the Yarlu Tsangpo River system [6]. In addition to the Parlung Tsangpo

River, the other main tributaries include the Yigong Tsangpo, Lulang and Niyang Rivers [35].

The relative elevation differences between mountains and valleys along these tributaries are

generally above 1500 m, with a maximum value above 2800 m, and the slope gradients are gen-

erally above 30˚, with a maximum value of 80˚. The water and glacial deposits provide abun-

dant material sources for landslides and debris flows [21]. The hillsides are covered with forest

and grassland, and populated residential areas and farmland are scattered in narrow valleys.

Geological environment. The study area is located in the subduction zone of the Indian

and Eurasian Plates [21, 36], and the Yarlu Zangbo River is developed along the suture zone.

The early Proterozoic crystalline basement mainly occurs in Nyenchen Tanglha, and the main

lithologies are schist, gneiss, marble, metamorphic rock, etc. Limestone, marble, slate, con-

glomerate and sandstone of the Devonian, Carboniferous and Jurassic and a large area of Yan-

shanian granite are developed in the Parlung Tsangpo Basin, and modern glaciers exist in the

northeastern part of the study area. The trending direction of tectonic lines are NWW- in

most places, and there are SW-, NW-, SE- and SN-oriented faults around the Yarlu Canyon.

The Jiali-Ranwu and Bomi Faults, which run through the east and west of this area, have a

range of influence of up to 30 km [37] and are closely related to neighboring geological

disasters.

Due to its straddling a plate boundary, the study area is an earthquake-prone region.

According to the records of the Earthquake Disasters Program of the United States Geological
Survey (https://earthquake.usgs.gov/), there were 134 earthquakes with magnitudes above 4.5

in this region from 1950 to 2019 (Table 1). Most of the earthquakes are concentrated in a circu-

lar area in the northwestern part of the region and north of Yigong Lake.

Data

Landslide inventory. Translational and rotational rockslides, rock falls, and debris flows

are the main types of geological disasters, which in total account for 92% of the geological

disasters identified in the southeastern part of the Tibetan Plateau [1]. Wang [21] pointed out

that translational and rotational rockslides, rock falls, debris flows and mudslides are geologi-

cal disasters with wide distributions, strong activities, large quantities and large scales in the

study area. They adopted a remote sensing survey method based on Landsat-7 data and

mapped a total of 406 mass movements in this area, including 224 large rockslides, 50 rock

falls, 41 large debris flows, 86 V-shaped mudslides and 5 slope mudslides. The remote sensing

survey method is efficient for identifying catastrophic landslides after heavy storms or high-

intensity earthquakes, which means that shortly after sliding, there are obvious marks in

remote sensing images [38–40]. However, shadows and low resolution in single optical images

hinder landslide detection, especially for old landslide recognition. Therefore, a combined

multisource image and topographical data method is adopted for landslide identification in

our study. GF-1 images with 16-meter resolution, GF-2 images with 2-meter resolution and

Landsat-8 fusion images with 15-meter resolution are used for landslide interpretation, and

SRTM-based digital elevation models (DEMs) are used for visual interpretations of landslides

based on their morphometric context.

Based on remote sensing and geomorphologically recognizable characteristics, we simpli-

fied combined translational and rotational rockslides into a series of rockslides, debris flows,

mudslides and complex landslides, which were simplified into a series of flow-like landslides

and rock falls. In this paper, the term landslide is used to indicate all 3 types of mass move-

ments mentioned above. The new landslides are easily identified in optical images, and the old
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Fig 1. Map of the study area.

https://doi.org/10.1371/journal.pone.0251776.g001

Table 1. Statistics of earthquakes with ML�4.5 in the study area.

Magnitude, ML 4.5~5 5~6 �6

Times 117 16 1

https://doi.org/10.1371/journal.pone.0251776.t001
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landslides can be found by combining hillshade, slope and contour maps derived from the

DEM with optical images. Therefore, new rockslides (Fig 2B), flow-like landslides (Fig 2D)

and rock falls (Fig 2F) are identified in optical images, and old rockslides (Fig 2A) and flow-

like landslides (Fig 2C) are identified by combining slope, relief and hillshade maps derived

from the DEM with optical images. The image features we used for the 3 types of mass move-

ment detections are main scarps, counterscarps, deflected drainages, accumulation areas,

source areas, flow areas and flow lobes (Fig 2). Google Earth and some studies [5, 6, 21, 51]

were adopted to assist in the determinations, and the interpretations along the G318 highway

were also edited through field investigations. The Qinghai-Tibet Plateau has unique topo-

graphical landscape and scientific research significance, and the Chinese Academy of Sciences

and other scientific research institution in China carries out various scientific research investi-

gations here every year. Our Field work obtained the permission from our work units and

local government.

A complete landslide inventory is essential to understand the mechanism and characteris-

tics of landslides in a region [41]. Landslides in the study area were primitively mapped by Lv

et al. [42] in 2002 and Wang [21]. Although once comprehensive source material about the

spatial distribution and type of landslides in the study area, we found this inventory to be inac-

curate and incomplete in some places (Fig 3). This may be because the main purpose of that

study focused on the impact of geological disasters on traffic into Tibet and the use of single

and low-resolution data resources. Therefore, for the purpose of studying the relationship

between landslides and environmental factors, a new landslide inventory is formed based on

our methods. A total of 1766 large landslides were identified in the study area, including 698

rockslides, 343 rock falls, and 725 flow-like landslides.

Environmental factors. A total of 12 environmental variables (factors) are used for spatial

association analysis in our study, and their basic data are all available in the public domain and

may be correlated with geological disasters according to previous studies [11, 43–45]. The

Shuttle Radar Topography Mission (SRTM) and earthquake data are collected from the Land
Processes Distributed Active Archive Center (https://lpdaac.usgs.gov/) and the Earthquake
Disasters Program of the USGS. The geological data are collected from the National Geological
Archives of the China Geological Survey (http://ngac.org.cn/). Meteorological data are acquired

from the Earth Big Data Science and Engineering Data Sharing Service System of the Chinese
Academy of Science (http://data.casearth.cn/) [46], and land use and land cover data are col-

lected from the National Geomatics Center of China (http://www.globallandcover.com/

GLC30Download/index.aspx). All these data have passed stringent quality validation and are

reliable, which has been verified by many public papers and reports [47, 48].

The 12 environmental factors considered in this paper can be divided into geological factors

(lithology and fault distance), earthquake factor (epicenter distance), topographic factors (ele-

vation, slope, and aspect), hydrological factors (river distance and river density), meteorologi-

cal factors (annual mean precipitation (AMP) and annual mean temperature (AMT)), and

land use and land cover (vegetation fractional cover (VFC) and land cover). Details of these

factors are shown in Table 2.

The independent variables must be categorical (discrete) type data when performing a spa-

tial analysis based on geographical detectors, in which continuous variables need to be con-

verted into discrete variables. The elevation data were produced from SRTM-1 with a spatial

resolution of 30 m, which was divided into 10 levels according to the equidistance (Fig 4A).

According to natural breaks, the slope data were generated from SRTM-1 and divided into 9

levels (Fig 4B). The aspect data, which were divided into 10 types, were also generated from

SRTM-1 at the same spatial resolution (Fig 4C). The aspect factor plays an important role in

mountain ecology through its influence on sunshine duration and solar radiation intensity,
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Fig 2. Examples of different types of landslides in our study area and their features. (A) Rockslides and their diagnostic features on a DEM image,

(B) rockslides and their diagnostic features on a Landsat-8 image, (C) flow-like landslides and their diagnostic features on a DEM image, (D) flow-like

landslides and their diagnostic features on a Landsat-8 image, (E) rock falls along the river on a DEM image, and (F) rock falls along the river on a GF-1

image.

https://doi.org/10.1371/journal.pone.0251776.g002
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Fig 3. Comparison of landslide inventories obtained by our methods and previous landslide inventories by Wang [21].

https://doi.org/10.1371/journal.pone.0251776.g003

Table 2. Information on landslide points and influencing factors.

Variables Name Original Data Structure Variable Type Data Description Class

Y Landslide points point continuous The center point of landslide, debris flow or rock fall source area Landslides

X1 Fault distance Line continuous Distance to the fault Geological

X2 Lithology polygon discrete Different types of rock masses Geological

X3 Epicenter distance point continuous Distance to the epicenter earthquake

X4 Elevation Raster continuous SRTM-1 DEM with 30 m resolution Topographic

X5 Slope Raster continuous Derived from DEM Topographic

X6 Aspect Raster continuous Derived from DEM Topographic

X7 River distance Line continuous Derived from river line Hydrological

X8 River density Line continuous Derived from river line Hydrological

X9 AMP Raster continuous Annual mean precipitation Meteorological

X10 AMT Raster continuous Annual mean temperature Meteorological

X11 VFC Raster continuous Derived from the remote sensing images Land cover and land use

X12 Land cover Raster discrete Derived from the remote sensing images Land cover and land use

https://doi.org/10.1371/journal.pone.0251776.t002
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which may influence rock weathering. The digitized river system in the study area was mainly

acquired from SRTM-1 and partially digitized from remote sensing images as a supplement. The

distance to rivers was divided into 6 levels, as shown in Fig 4D. The river density was also acquired

based on a digitized river system using the kernel density tool provided by ARCGIS10. Four types

of river densities were determined in the study area: sparse, relatively sparse, relatively dense and

dense (Fig 4E). River erosion is an important factor in mass movements, and the loose deposits in

the watershed also provide sufficient materials for the occurrence of landslides.

Lithology is believed to be related to landslides in similar external environments. The engi-

neering properties (e.g., hardness and weathering ability) of the rock mass in which the land-

slides occur vary greatly [49, 50]. The lithology data in our study area were digitized from

1:500,000 geological maps and related references [51, 52] and included 9 categories (Fig 5A).

The main type of lithology in the study area is Presinian deep metamorphic rock, and Miocene

granite is also widely distributed in the eastern and northeastern parts of the study area. Faults

are an important factor that influence the spatial distribution of landslides. Shang et al. [6]

pointed out that the major fault zone often controls the location and scale of the landslide. The

faults in our study area were obtained from 1:500,000 geological maps combined with the

remote sensing interpretation of linear features. There are a large number of landslides and

rock falls along some faults, and the displacement field caused by fault activities has destructive

effects on the slopes [37, 53]. The distances to faults were divided into 6 levels, as shown in Fig

5B, as the influence of the fault can simply be determined by the distance in a similar geological

environment. Earthquakes usually induce mass movement directly and cause slope instability

[49, 53–56]. The epicentral distance of the earthquake is positively correlated with the land-

slide. The Euclidean distance to the epicenter in our study area is divided into 7 levels by natu-

ral breaks (Fig 5C).

Fig 4. Topographic and hydrological factors, including (A) elevation, (B) slope, (C) aspect, (D) distance from river, and (E) density of river.

https://doi.org/10.1371/journal.pone.0251776.g004
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The mean values of annual mean temperature (AMT) and annual mean precipitation

(AMP) grid data with a 1 km resolution ranging from 1980 to 2000 were calculated [46] and

then divided into 6 levels (Fig 6A) and 5 levels (Fig 6B), respectively, by manual breaking using

Fig 5. Geological influencing factors, including (A) lithology, (B) distance from fault, and (C) distance from epicenter.

https://doi.org/10.1371/journal.pone.0251776.g005

Fig 6. Meteorological factors, including (A) Annual Mean Temperature (AMT) and (B) Annual Mean Precipitation (AMP).

https://doi.org/10.1371/journal.pone.0251776.g006
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the meteorological influencing factor. Snowmelt, change in the cover and rock weathering

caused by temperature change are closely related to landslides [3–6], and rainfall is an impor-

tant triggering factor for debris flows and other types of landslides [4, 6].

The land use and land cover data were certified by the National Geomatics Center of China

as the global geo-information public product-Globeland30 [47] and were classified as culti-

vated land, forest, grassland, shrub, wetland, water bodies, artificial surfaces, and permanent

snow and ice, totaling 8 categories in our study area (Fig 7A). The vegetation fractional cover

(VFC) data were extracted from the Landsat 8 data in ENVI and then divided into 4 levels

according to the following division criteria: VFC<0.2 as unvegetated, 0.2–0.5 as low vegetated,

0.5–0.8 as moderately vegetated and 0.8–1 as highly vegetated (Fig 7B).

All raster data were resampled to a 30 m resolution to ensure the consistency of the spatial

resolution among different environmental factors. The fishnet function of ARCGIS10 was

applied to obtain evenly distributed points in the entire region with a 2 km interval, achieving

a total of 3,795 points (Fig 7C). The values of the 12 influencing factors and the landslide den-

sity data were then extracted as the operational data for the geographic detector software.

Method

GeoDetector

The geographic detector method as a spatial statistical method can be used for detecting spatial

variations and revealing driving factors [22–24]. In GeoDetector, the independent variable X is

taken as the environmental (influencing) factor that contributes to the spatial distribution of

geological disasters, and the dependent variable Y is introduced to represent geological disas-

ters. We use kernel density to calculate Y, as the original data are center points in the source

regions of landslides. Because GeoDetector works with the independent variable X as a cate-

gorical variable, the variable Xmust either be a categorical layer or needs to be partitioned.

The lithology, watershed and land use data are already categorical variables in our dataset, and

other continuous variables are partitioned by natural, manual or equidistance breaks

(Table 2). The GeoDetector software developed in Excel is freely available at http://www.

GeoDetector.cn/ [24].

The key assumption of the GeoDetector method is listed as follows: if the independent vari-

able X has an important influence on the independent variable Y, then they would represent a

similar spatial distribution [24, 27]. Spatial variations and factor analysis are measured by the q

Fig 7. The influencing factors of land use and land cover for geological disasters. (A) Land cover, (B) vegetation fractional cover (VFC), and (C) sampling points of the

entire region.

https://doi.org/10.1371/journal.pone.0251776.g007
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values acquired from GeoDetector. There are four modules in GeoDetector: the factor detec-

tor, the risk detector, the ecological detector and the interaction detector [24].

A factor detector is used to detect the spatial heterogeneity of the dependent variable Y and

the explanatory power of the independent variable X to the dependent variable Y, which is

measured by the power of the derived q value, q2[0,1]. The equations are listed below:

qX ¼ 1 �

XL

h¼1

Nhs
2

h

Ns2
¼ 1�

SSW
SST

ð1Þ

SSW ¼
XL

h¼1

Nhs
2

h; SST ¼ Ns
2 ð2Þ

where h = 1, 2,.., L is the number of categories of the independent variable X, Nh is the unit

number in zone h, N is the unit number in the whole region, s2
h is the variance of Y in zone h,

and σ2 is the global variance of Y in the whole region. SSW represents the weighted sum of the

local variance (weighted by the number of samples in each zone), and SST is the global vari-

ance. The definition equations of s2
h and σ2 are as follows:

s2

h ¼
1

Nh

XNh

i¼1

ðDh;i � DhÞ
2

ð3Þ

where Dh,i is the value of the ith unit of Y, and Dh is the average of D in subsegmented zone h.

s2 ¼
1

N

XN

j¼1

ðDj � DÞ
2

ð4Þ

In there, Dj is the value of the jth unit of the whole study area and D is the global average of

D in the entire study area.

From Eq (1), we know that qX is inversely related to the ratio of the weighted sum of the

local variance (SSW) to the global variance (SST). In an ideal situation, if the environmental

factor X entirely controls the spatial distribution of Y, the SSW is 0 and qX = 1. In contrast, if

the environmental factor X is completely unrelated to the spatial distribution of Y, the SSW is

the same as the SST, and qX = 0. Above all, the factor detector with qX as the proportion of the

spatial variation of Y is explained by the environmental factor X. The larger the qX, the stronger

the interpretability of factor X on the spatial distribution of Y. Note that the influencing factor

assesses the spatial association degree between X and Y, which does not explain their causal

relationship.

The risk detector can determine whether there exist significant discrepancies in the density

of landslides between zones with different influencing factors X and identify the high-risk

zones of landslides.

The ecological detector compares the differences in the effects of various environmental

factors on landslides, and the F test is adopted for this determination. Through computation

and comparison of the q values of two different environmental factors X1 and X2, qX1 and qX2,

with the q value of a new factor is created by overlaying factors X1 and X2 as qX1\X2.

An interaction detector can determine whether there exists an interaction between the two

factors, the intensity of the interaction, and the directionality of this relationship: linear or

nonlinear. It may detect the multiplication and any other relationship of the two-factor super-

position. If qX1\X2>qX1 and qX1\X2>qX2, it indicates that the varieties may enhance each other;

if qX1\X2>qX1+qX2, the varieties may enhance each other in a nonlinear relationship; if
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qX1\X2<Min(qX1,qX2), the varieties may weaken each other in a nonlinear relationship; if

qX1\X2 = qX1+qX2, then they are independent from each other (see Table 3).

Certainty factor model

The certainty factor (CF) model is based on a probability function, which was first proposed

by Shortliffe and Buchanan [57] and later modified by Heckerman [58]. The CF model has

been applied by different researchers in susceptibility analyses of landslide triggering factors

[10, 59–61]. The function of the CF model is as follows:

CFij¼

fij � f
fijð1 � f Þ

; if fij � f

fij � f
f ð1 � fijÞ

; if f � fij

ð5Þ

8
>>>><

>>>>:

where fij is the conditional probability that having a number of landslides happening in layer i
of factors j and f is the prior probability of having all the landslides occurring in the whole

area; the result, CFij, is the certainty factor given to a certain layer i of factor j.
The value of the certainty factor CFij ranges from -1 to 1. A positive value represents the

increase in the certainty of an event occurrence, which means that the certainty of landslide

occurrence is high, while the negative value represents the decrease of an event certainty, indi-

cating that the certainty of landslide occurrence is low. The value of a certainty factor close to 0

represents that the prior probability is close to the conditional probability, and it is impossible

to determine the certainty of landslide occurrence, which means this layer cannot determine

whether it is a landslide prone area [10].

According to the statistical relationship between landslide events and environmental factors

[59–61], the CF model could be used to determine the high-risk zones and the key factors of

landslides occurrence. The results of the CF model are compared with GeoDetector to ensure

the spatial association analysis between landslides and environmental factors.

Results and discussion

Landslide inventory and their spatial distribution

A total of 1766 total landslides were identified in the study area, including 698 rockslides, 343

rock falls, and 725 flow-like landslides. The locations of landslides are the locations of the cen-

ter points of the source regions (Fig 8). The landslides that occurred in the study area are char-

acterized by intense, periodic, repeatable and grouped landslides [5, 21], which indicate that

the distribution of the landslides is spatially heterogeneous. Spatial heterogeneity means the

uneven distribution of a trait, event, or relationship across a region [62]. According to the

Table 3. Types of interaction between two covariates.

Criterion Type of interaction

qX1\X2<Min(qX1,qX2) Nonlinear weakened

Min(qX1,qX2)<qX1\X2<Max(qX1,qX2) Univariate nonlinear weakened

qX1\X2>Max(qX1,qX2) Bivariate enhancement

qX1\X2 = qX1+qX2 Independent

qX1\X2>qX1+qX2 Nonlinear enhancement

Note: X1 and X2 represent two different environmental factors of landslides.

https://doi.org/10.1371/journal.pone.0251776.t003
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inventory, the northwestern part of the study area and the great canyon of the Yarlu Tsangpo

River are the areas with the highest concentrations of landslides, such as the Layue Qu River-

banks, the Bitong to Tongmai section of Parlung Tsangpo, upstream of Dongjiu Qu, and the

neighboring and eastern areas of the Great Canyon of the Yarlu Tsangpo River, which

Fig 8. Landslides inventory map in the study in the southeastern part of the Tibetan Plateau. Red triangles represent flow-like landslides, green diamonds represent

rock falls, and blue crosses represent rockslides.

https://doi.org/10.1371/journal.pone.0251776.g008
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contribute 58% of the landslides. The others are usually scattered along the rivers in other

parts of the study area.

The concentration areas of the 3 different types of landslides varied. The rockslides are con-

centrated in the Layue Qu riverbanks, the neighborhood of Bitong County and Tongmai

County, and the eastern area of the Great Canyon. The new recognized rock falls are concen-

trated in the downstream area of Parlung Tsangpo and in the neighborhood of the Great Can-

yon of Yarlu Tsangpo River, which may be caused by an Ms 6.8 earthquake that occurred

nearby in November 2017. Flow-like landslides are distributed along rivers and their tributar-

ies, which are scattered throughout the study area. Due to the significant differences in topog-

raphy, geological environments and climatic distribution in the study area, the spatial

differentiation of different types of geological disasters is obvious.

Quantitative analysis of the spatial association between geological disasters

and environmental factors

The dominant factors and interactions of the environmental factors. To detect the

individual and combined effects of environmental factors on different types of landslides, a

geographical detector analysis was used. The results show that the dominant factors and the

interaction of the environmental factors on different types of landslides are not the same, and

the explanatory power (q value) of the combined factors is higher than that of a single factor.

We use the word “dominant” to indicate that the environmental factor or interaction has the

largest explanatory power (q value).

(1) Landslides. According to a previous study, intense water-rock interactions and tempera-

ture, rainfall, river erosion, physical weathering, etc. are important factors for the occurrence

of landslides in the study area [3, 20]. In the running results of the factor detector, AMP, AMT,

elevation, river density and fault distance contribute more to landslide occurrence than other

environmental factors. The influencing sequence of these factors by the q value is AMP

>AMT > elevation > river density> fault distance, which means that the dominant factor for

the landslides is AMP (q = 0.1549) (Table 4, Fig 9). The ecological detector of GeoDetector

shows that the influences of the environmental factors, including AMP, AMT, elevation, river

Table 4. The q values of the influencing factors with respect to different types of landslides.

Factor No. Rockslides Rock falls Flow-like landslides Total landslides

X1 0.0603 0.0211 0.0098 0.0641

X2 0.0393 0.0603 0.0729 0.0245

X3 0.0180 0.0400 0.0142 0.0306

X4 0.1119 0.1711 0.0228 0.1132

X5 0.0098 0.0175 0.0070 0.0219

X6 0.0101 0.0035 0.0130 0.0136

X7 0.1010 0.0611 0.0295 0.0860

X8 0.0522 0.0326 0.0117 0.0548

X9 0.1604 0.1489 0.0194 0.1549

X10 0.1164 0.1668 0.0174 0.1167

X11 0.0341 0.0181 0.0046 0.0300

X12 0.0356 0.0380 0.0086 0.0291

Note: X1 represents the fault distance, X2 represents the lithology, X3 represents the epicenter distance, X4 represents the elevation, X5 represents the slope, X6

represents the aspect, X7 represents the river distance, X8 represents the river density, X9 represents the AMP, X10 represents the AMT, X11 represents the VFC, and

X12 represents the land cover.

https://doi.org/10.1371/journal.pone.0251776.t004
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density and fault distance on the spatial distribution of landslides are significantly different

from those of other factors.

The interaction detector results show that the interaction of environmental variables

enhances the influence on landslides. The interaction modes with the top 3 explanatory powers

were recorded, and the statistical results are shown in Table 5. The dominant interaction fac-

tors for landslide distribution are the lithology and AMP (q = 0.2365), which means that in

areas with different lithologies and annual mean precipitation values, the incidence of land-

slides varies greatly. The interaction between lithology and epicenter distance (q = 0.2217) and

the interaction between lithology and AMT (q = 0.2211) also play a great role in landslide dis-

tribution. Although lithology has a low q value, it is also important because of the interaction

of lithology and AMP and epicenter distance, and AMT can explain over 22% of the spatial

distribution of landslides.

(2) Rockslides. For the rockslide type, AMP was also the dominant factor (q = 0.1604)

(Table 4, Fig 9). The environmental factors of AMT, elevation, river density and fault distance

have higher explanatory power than others. Ecological detectors show that AMP, AMT, eleva-

tion, river density and fault distance are significantly different from the others.

Table 5. The dominant interactions between two environmental factors in different types of landslides.

Rockslides Rock falls Flow-like landslides Total landslides

Top 1 Dominant interaction

(q) and type

X2\X9 (0.2201), Nonlinear

enhancement

X3\X4 (0.2619), Nonlinear

enhancement

X2\X4 (0.1292), Nonlinear

enhancement

X2\X9 (0.2365), Nonlinear

enhancement

Top 2 Dominant interaction

(q) and type

X1\X9 (0.2069), Nonlinear

enhancement

X2\X4 (0.2595), Nonlinear

enhance

X2\X10 (0.1269), Nonlinear

enhancement

X2\X3 (0.2217), Nonlinear

enhancement

Top 3 Dominant interaction

(q) and type

X2\X7 (0.2021), Nonlinear

enhancement

X2\X9 (0.2568), Nonlinear

enhancement

X2\X9 (0.1047), Nonlinear

enhancement

X2\X10 (0.2211), Nonlinear

enhancement

Note: Variables X4, X5, X6, X8, X9, X10, etc. in this table have the same meanings as those in Table 4.

https://doi.org/10.1371/journal.pone.0251776.t005

Fig 9. The q-statistic indices of different types of landslides calculated by GeoDetector. A graphic representation of the relative

contributions of environmental factors to their formation.

https://doi.org/10.1371/journal.pone.0251776.g009
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Similar to the results of total landslides, the explanatory powers of combined factors on

rockslides are stronger than those of individual factors. The results show that the top 3 domi-

nant interactions for rockslides are the interaction between lithology and AMP (0.2201), the

interaction between fault distance and AMP (0.2069), and the interaction between lithology

and river density (0.2021).

In conclusion, AMP, AMT, river density and fault distance are important factors on rock-

slides, which is a similar to that of previous studies in this area [1–6, 20, 21]. Although lithology

has a low q value, it is also important because of the interaction of lithology and AMP, and the

interaction of lithology and river density can explain over 20% of the distribution of

rockslides.

(3) Rock falls. The situation is different for the rock fall type, for which elevation is the dom-

inant factor (q = 0.1711); the environment factors of AMT, AMP, river density and lithology

have a stronger influence on the spatial distribution of rock falls with the sequence of

AMT > AMP > river density > lithology. Ecological detectors show that AMP, AMT, eleva-

tion, river density and lithology are significantly different from the other factors.

The top 3 dominant interactions for rock falls are the interaction between epicenter dis-

tance and elevation (0.2619), the interaction between lithology and elevation (0.2595), and the

interaction between lithology and AMP (0.2568). Although epicenter distance has a low q
value, it is important because the interaction of epicenter distance and elevation can explain

over 26% of the distribution of rock falls. This result is consistent with the phenomenon found

in our inventory, which is that many of the rock falls are caused by an Ms 6.8 earthquake that

occurred nearby in November 2017. In addition, lithology is an important factor, which has

been proven in many previous studies [49, 50].

(4) Flow-like landslides. Contrary to conventional viewpoints, lithology is the dominant fac-

tor for the distribution of flow-like landslides (q = 0.0729), and no other environmental factor

has higher explanatory power, which may be because of the relatively dispersed distribution of

flow-like landslides. Regarding the spatial distribution of flow-like landslides, lithology is the

only factor that differs from the other environmental factors.

The top 3 dominant interactions for flow-like landslides are the interaction between lithol-

ogy and elevation (0.1292), the interaction between lithology and AMT (0.1269) and the inter-

action between lithology and AMP (0.1047). Lithology is also a very important factor in the

interactions because detrital material produced by rock weathering is the main source of flow-

like landslides, and the physical properties of rocks are closely related to the occurrence of

complex landslides.

From these results, it can be concluded that: ① all the dominant interactions are nonli-

nearly enhanced, which means that the q value of the interaction of two factors is higher than

the sum of the q values of the individual. ② Although the dominant interaction types and q-

values varied with respect to different types of landslides, interactions between environmental

factors significantly enhance the spatial distribution of landslides.

Identification of high-risk areas of landslides contrasted with the results of the CF

model. Identifying high-risk areas is critical for understanding the development of regional

landslides [63]. In the risk detector of GeoDetector, a t-test is used to compare the differences

in average values between strata [23]; the larger the difference is, the larger the danger of land-

slides in the subregion. The CF model recognizes the high-risk zones by computing the land-

slide frequency in different areas [59–61]. The results of the risk detector of the GeoDetector

(GD) and CF models (Table 6 and Fig 10) are calculated, the similarities and differences

between them are analyzed, and the high-risk zones in our study area are achieved based on

these results.
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Table 6. The CF values and risk detector results of geodetector calculated between landslides and environmental factors.

Factors Class No. CF-

rockslide

CF-rock

fall

CF-flow-

like

CF-total

landslide

GD-

rockslide

GD-rock

fall

GD-flow-

like

GD-total

landslide

Fault distance (m) 0–500 1 0.323 0.331 0.120 0.26 0.067 0.034 0.051 0.150

500–1000 2 0.218 0.277 0.047 0.17 0.060 0.031 0.052 0.142

1000–1500 3 0.059 0.065 0.036 0.05 0.050 0.028 0.048 0.127

1500–2000 4 -0.185 -0.014 0.086 -0.04 0.042 0.020 0.050 0.113

2000–2500 5 -0.226 -0.475 -0.073 -0.21 0.036 0.021 0.049 0.109

>2500 6 -0.434 -0.535 -0.135 -0.32 0.024 0.009 0.038 0.072

Lithology L1 7 -0.155 -1.000 -0.185 -0.33 0.034 0.001 0.032 0.070

L2 8 -0.754 -1.000 0.746 0.42 0.026 0.002 0.156 0.182

L3 9 -0.285 -0.488 0.225 -0.05 0.029 0.010 0.067 0.104

L4 10 -0.596 -1.000 -0.225 -0.52 0.017 0.000 0.045 0.065

L5 11 0.275 -0.869 -0.752 -0.32 0.070 0.006 0.021 0.096

L6 12 0.330 -0.146 0.110 0.18 0.069 0.017 0.052 0.137

L7 13 0.351 0.712 -0.504 0.35 0.073 0.083 0.022 0.175

L8 14 0.106 -0.842 0.114 -0.05 0.050 0.005 0.051 0.106

L9 15 -0.012 0.130 -0.120 -0.01 0.045 0.030 0.038 0.113

Epicenter distance

(km)

0–6 16 0.156 0.323 -0.030 0.14 0.058 0.042 0.045 0.145

6–12 17 -0.048 -0.053 -0.067 -0.06 0.044 0.020 0.042 0.106

12–18 18 -0.109 -0.567 -0.018 -0.15 0.038 0.010 0.047 0.094

18–25 19 -0.130 -0.574 0.201 -0.05 0.037 0.008 0.062 0.106

25–30 20 -0.186 -0.418 0.268 0.00 0.035 0.012 0.057 0.103

30–37 21 -0.756 -0.834 0.074 -0.42 0.017 0.003 0.041 0.061

>37 22 0.412 -1.000 -1.000 -0.33 0.048 0.000 0.007 0.045

Elevation (m) <1500 23 0.380 0.528 -0.692 0.16 0.099 0.075 0.032 0.199

1500–2000 24 0.429 0.812 -0.549 0.51 0.082 0.107 0.022 0.205

2000–2500 25 0.418 0.730 -0.517 0.41 0.101 0.093 0.033 0.220

2500–3000 26 0.377 0.368 -0.553 0.14 0.067 0.037 0.039 0.142

3000–3500 27 0.059 -0.153 -0.222 -0.09 0.052 0.023 0.045 0.121

3500–4000 28 -0.094 -0.427 0.054 -0.09 0.035 0.011 0.051 0.097

4000–4500 29 -0.391 -0.800 0.247 -0.12 0.030 0.006 0.052 0.087

4500–5000 30 -0.283 -0.907 0.320 -0.05 0.025 0.002 0.058 0.085

5000–5500 31 -0.545 -1.000 -0.102 -0.45 0.022 0.001 0.043 0.067

>5500 32 -0.754 -1.000 -0.881 -0.85 0.008 0.000 0.020 0.030

Slope (˚) <10 33 -0.834 -0.924 -0.770 -0.82 0.036 0.009 0.034 0.080

10–19 34 -0.592 -0.830 -0.361 -0.54 0.038 0.014 0.049 0.101

19–27 35 -0.266 -0.659 -0.104 -0.27 0.040 0.015 0.043 0.098

27–33 36 0.029 -0.324 0.005 -0.05 0.041 0.022 0.050 0.112

33–39 37 0.169 -0.071 0.201 0.15 0.049 0.024 0.049 0.122

39–44 38 0.269 0.380 0.212 0.27 0.051 0.027 0.044 0.122

44–50 39 0.315 0.455 0.194 0.31 0.056 0.037 0.052 0.143

50–59 40 0.299 0.615 0.085 0.35 0.053 0.042 0.049 0.144

59–88 41 0.274 0.798 -0.056 0.48 0.046 0.025 0.054 0.124

(Continued)
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Table 6. (Continued)

Factors Class No. CF-

rockslide

CF-rock

fall

CF-flow-

like

CF-total

landslide

GD-

rockslide

GD-rock

fall

GD-flow-

like

GD-total

landslide

Aspect Flat 42 -1.000 -1.000 -1.000 -1.00 0.037 0.003 0.011 0.057

North 43 -0.389 -0.858 -0.369 -0.47 0.036 0.021 0.043 0.102

Northeast 44 -0.164 -0.743 -0.111 -0.25 0.040 0.019 0.050 0.109

East 45 -0.083 -0.069 -0.167 -0.11 0.050 0.020 0.046 0.117

Southeast 46 0.208 0.470 0.079 0.25 0.051 0.027 0.049 0.125

South 47 0.293 0.532 0.377 0.39 0.047 0.024 0.053 0.121

Southwest 48 0.339 0.253 0.346 0.33 0.055 0.027 0.055 0.135

West 49 -0.166 -0.652 -0.183 -0.26 0.045 0.027 0.045 0.116

Northwest 50 -0.548 -0.918 -0.576 -0.63 0.039 0.017 0.036 0.093

North 51 -0.588 -0.800 -0.603 -0.63 0.033 0.019 0.036 0.089

River density Sparse 52 -0.578 -0.942 -0.247 -0.50 0.021 0.003 0.037 0.063

Relatively sparse 53 -0.224 -0.493 0.181 -0.05 0.035 0.014 0.056 0.105

Relatively dense 54 0.175 0.320 0.035 0.17 0.058 0.038 0.052 0.147

Dense 55 0.476 0.505 -0.453 0.31 0.088 0.047 0.029 0.161

River distance (m) 0–500 56 -0.283 0.286 -0.581 -0.22 0.065 0.034 0.043 0.142

500–1000 57 0.364 0.315 -0.154 0.22 0.053 0.031 0.053 0.136

1000–1500 58 0.234 -0.133 0.322 0.23 0.042 0.028 0.048 0.114

1500–2000 59 -0.083 -0.349 0.466 0.23 0.039 0.020 0.049 0.105

2000–2500 60 -0.453 -0.716 0.332 -0.09 0.033 0.021 0.058 0.098

>2500 61 -0.525 -0.945 -0.287 -0.50 0.021 0.009 0.037 0.063

AMP (mm) 600–700 62 0.597 0.727 -0.590 0.50 0.112 0.099 0.032 0.236

700–800 63 0.297 0.417 -0.228 0.21 0.074 0.043 0.043 0.157

800–900 64 -0.146 -0.564 0.132 -0.07 0.038 0.013 0.055 0.107

900–1000 65 -0.520 -0.890 0.086 -0.28 0.021 0.003 0.047 0.073

1000–1300 66 -0.629 -1.000 -0.412 -0.61 0.011 0.002 0.024 0.038

AMT (˚) <0 67 -0.483 -1.000 0.077 -0.32 0.022 0.002 0.046 0.071

0–2 68 -0.468 -0.896 0.231 -0.19 0.027 0.003 0.056 0.086

2–5 69 -0.357 -0.657 0.175 -0.15 0.031 0.008 0.053 0.093

5–8 70 0.116 -0.238 -0.176 -0.06 0.047 0.019 0.044 0.112

8–12 71 0.340 0.400 -0.303 0.20 0.075 0.046 0.041 0.160

>12 72 0.497 0.721 -0.484 0.46 0.094 0.095 0.029 0.211

VFC Unveg 73 -0.389 -0.741 -0.097 -0.31 0.034 0.016 0.043 0.095

Low 74 -0.134 0.232 0.202 0.11 0.040 0.019 0.045 0.105

Medium 75 0.123 0.404 0.120 0.20 0.048 0.018 0.054 0.119

High 76 0.323 0.187 -0.078 0.18 0.066 0.039 0.047 0.148

Land cover Cultivated land 77 -0.156 -0.570 -1.000 -0.58 0.077 0.012 0.027 0.116

Forest 78 0.061 -0.287 -0.311 -0.12 0.056 0.035 0.043 0.132

Shrub land 79 0.199 0.514 0.235 0.32 0.045 0.020 0.050 0.115

Grassland 80 0.640 0.821 0.700 0.72 0.034 0.006 0.069 0.100

wetland 81 -1.000 -1.000 -1.000 -1.00 0.000 0.000 0.048 0.045

waterbodies 82 -1.000 -1.000 -1.000 -1.00 0.063 0.023 0.018 0.102

Artificial surfaces 83 -1.000 -1.000 -1.000 -1.00 0.024 0.007 0.041 0.078

Perennial snow or

ice

84 -0.403 -0.796 0.209 -0.14 0.026 0.004 0.051 0.083

Note: For the class of lithology, L1 represents modern glacier, L2 is Middle Permian limestone and sandy slate, L3 is Miocene granite, L4 is Jurassic carbonate rock with

clastic rock interlayers, L5 is Quaternary deposits, L6 is Early Carboniferous slate and phyllite rock, L7 is Late Jurassic mélange, L8 is Jurassic flysch clastic rock, and L9

is Presinian deep metamorphic rock.

https://doi.org/10.1371/journal.pone.0251776.t006
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(1) Fault, lithology and epicenter. The risk detector shows that the closer an area is to a fault,

the higher the probability of landslide occurrence. The zones with 0–500 m distances from

faults are the highest risk areas for all types of landslides, except for the flow-like landslides, the

highest value of which is 500–1000 m away from faults, which is still very close to faults. The

correlation between the distribution of landslides and fault distance given by the CF model is

similar. The 0–500 m distance away from the fault is the high-risk area for all types of land-

slides, and the landslide probability decreases as the fault distance increases, except for flow-

like landslides, which have the highest CF value in the zone of 1500–2000 m of distance.

In the case of lithology, the results of the GeoDetector risk detector show that the lithology

of the middle Permian limestone sandy slate is most prone to landslides. For the 3 types of

landslides, the Late Jurassic mélange is the most susceptible to rockslides and rock falls, and

the lithology of the middle Permian limestone and sandy slate is the most prone to danger in

terms of flow-like landslides. The results of the CF model are the same as the results of the risk

detector. The Late Jurassic mélange is the most prone to rockslides and rock falls, and middle

Permian limestone and sandy slate are the most prone to flow-like landslides. Previous studies

[3, 5] have confirmed that the interaction between soft rock and hard rock is one of the condi-

tions for the occurrence of landslides.

Similar to the fault distance, the risk detector results of the epicenter distance show that the

values closest to the epicenter (0–6 km) are highest for all types of landslides except for flow-

like landslides; however, they do not strictly follow the pattern of decreasing landslide proba-

bility with increasing distance. The CF value of the epicenter of 0–6 km is the highest and only

has a positive CF value for landslides, and the CF values also do not strictly follow the pattern

of decreasing landslide probability with increasing distance for the 3 types of landslides as the

risk detector results.

(2) Elevation, slope, and aspect. The risk detector results of elevation vary with the type of

landslide. The highest value for rockslides drops into the range of 2500 to 3000 m. Further-

more, the probability of rockslide occurrence decreases as the altitude increases. For rock falls,

the highest value ranges from 1500 to 2000 m, and then the risk detector value decreases to 0

when the altitude is higher than 5500 m, which means no rock fall is found at that altitude.

Fig 10. Graphical representation of the CF value and risk detector result of GeoDetector. The number on the horizontal axis has the

same meaning as the number listed in Table 6.

https://doi.org/10.1371/journal.pone.0251776.g010
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However, the highest value for flow-like landslides ranges from 4500 to 5000 m, and the risk

detector value decreases with both increasing and decreasing elevation ranges. The results of

the CF model of elevation are similar to the results of the risk detector. For rockslides and rock

falls, the highest value drops into the range of 1500 to 2000 m, the value decreases as the alti-

tude increases, and the highest value for flow-like landslides drops into the range of 4500 to

5000 m.

The highest value for rockslides occurred in slope classes of 44˚-50˚. For rock falls, the high-

est value drops into the slope class of 50˚-59˚ and 59˚-88˚ for flow-like landslides. The results

indicate that landslide-prone terrain is relatively steep (>44˚) in the study area. The CF values

of the slope also show that landslide-prone terrain is relatively steep (>44˚) in the study area

except for flow-like landslides, in which the highest value of CF drops into the range of 39˚-

44˚.

In the case of the aspect, south- and southwest-facing slopes are the most prone to land-

slides, as they have the highest risk detector value. The CF values of the south- and southwest-

facing slopes are also the highest, which means that south- and southwest-facing slopes are the

most prone to landslides. These aspects are the sunny sides, receiving the most intense light,

which can accelerate rock weathering and form landslides [64].

(3) River. The erosion of rivers will cause slope instability [6]. The value of the risk detector

of river density shows that the denser the rivers are, the more prone they are to landslides,

except for flow-like landslides, which have the highest value in relatively sparse areas of river

density. In the case of river distance, the risk detector value decreases as river distance

increases, which means that the closer to the river, the higher the occurrence probability of the

landslides, except for flow-like landslides, which have the highest value occurring in the range

of 2000 to 2500 m away from the river. The CF values of river density are similar to the values

of the risk detector; the denser the rivers are, the more prone they are to landslides, except for

flow-like landslides, which have the highest value in relativity dense areas of river density. The

CF value of river distance shows that 500–1000 m away from rivers is the highest occurrence

range, which is different from the results of the risk detector in that the range of 0–500 m away

from rivers is most prone to landslides.

(4) AMP and AMT. According to the results of the risk detector, the AMP and AMT ranges

defining the high-risk areas are 600–700 mm and 12–20˚C, respectively, except for flow-like

landslides, which are 800–900 mm and 0–2˚C, respectively. The CF value results are the same

as the risk detector results. Contrary to the conventional concept, the areas prone to landslides

are not those with the largest AMP, which may be because landslides are more susceptible to

instantaneous rainfall rather than the average annual rainfall.

(5) Land cover and VFC. Changes in land use and land cover can change landslide suscepti-

bility in mountainous areas [65]. According to the VFC results, high VFC areas rather than

low VFC areas are prone to landslides, except for flow-like landslides, and medium VFC areas

are the areas most at risk. Regarding the risk detector value of land cover, the situation changes

with the type of landslide; cultivated land is most prone to rockslides, forest is most prone to

rock falls, and grassland is most prone to flow-like landslides. The CF values of the VFC are

different with different types of landslides; the highest value for rockslides has high vegetation

coverage, the highest value for rock falls has medium vegetation coverage, and the highest

value for flow-like landslides has low vegetation coverage. Regarding the CF value of land

cover, grassland is most susceptible to all types of landslides, which are different from the

results of the risk detector.

The results of the high-risk areas show that the GeoDetector and CF models are similar

with most environmental factors in high-risk area detection and in the tendency of variation

of landslide spatial distribution; the influence of environmental factors on flow-like landslides
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is significantly different from that of rockslides and rock falls and may be caused by the com-

plex constitution of flow-like landslides, including debris flows, mudflows and complex land-

slides, which increases the complexity of their spatial distribution.

Combining the calculated results of risk zones and dominant single and interaction factors,

the important interaction for rockslides is between lithology and AMP (q = 0.2201), the Late

Jurassic mélange areas with annual mean precipitation between 600–700 mm are prone to

rockslides, the important interaction for rock falls is between epicenter distance and elevation

(q = 0.2201), the areas 0–6 km away from the epicenter and elevation range of 2500–3000 m

are prone to rock falls, the important interaction for flow-like landslides is between lithology

and elevation (q = 0.1292), and the middle Permian limestone, sandy slate and elevation range

of 4500–5000 m are prone to flow-like landslides.

Conclusion

The study area is located in the southeastern Tibetan Plateau, China, where the geological and

geographical environment is unique, landslides occur frequently, and the area acts as the key

access into Tibet. Since landslides pose a great threat to life, property and transportation, their

distribution and spatial relationship with environmental factors are extremely important for

future planning and disaster management. For this purpose, we improved the landslide inven-

tory and acquired 1766 landslides based on the comprehensive interpretation of multiple satel-

lite images and DEM data. Three types of landslides were identified based on their geometric

and spectral features, including 698 rockslides, 343 rock falls, and 725 flow-like landslides. The

effects of environmental factors on landslides in the study area are investigated using geo-

graphical detector and certainty factor methods.

Geographical detector analysis reveals the explanatory power of individual environmental

factors and interactions. For different types of landslides, AMP is the dominant factor for rock-

slides, elevation is the dominant factor for rock falls and lithology is the dominant factor for

flow-like landslides. The results of the interaction detector showed that the interactions among

environmental factors would significantly enhance the impacts on landslides. The top 3 domi-

nant interactions for all types of landslides were revealed. The risk detectors of the GeoDetec-

tor and CF models were used to identify the high-risk areas of landslides by rating the

subregions of the environmental factors. Similar results reflected the credibility of the high-

risk areas in identifying results.

Our method offers a quantitative and objective analytical method that can be used to reveal

the spatial association between landslides and environmental factors for the prevention and

mitigation of geological disasters. Although our research has yielded certain results, there are

also some shortcomings. Due to the limitations of resolution and timeliness of remote sensing

images, only landslides over a certain scale might be identified, which may result in an insuffi-

cient number of regional samples. When continuous data are converted to categorical data,

the singleness of the adopted methods may affect the analysis results. Therefore, the influences

of insufficient samples and diverse discrete methods should be considered in future studies.
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