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ABSTRACT Aminoacyl-tRNA synthetases provide the first step in protein synthesis quality control by discriminating cognate
from noncognate amino acid and tRNA substrates. While substrate specificity is enhanced in many instances by cis- and trans-
editing pathways, it has been revealed that in organisms such as Streptococcus pneumoniae some aminoacyl-tRNA synthetases
display significant tRNA mischarging activity. To investigate the extent of tRNA mischarging in this pathogen, the aminoacyla-
tion profiles of class I isoleucyl-tRNA synthetase (IleRS) and class II lysyl-tRNA synthetase (LysRS) were determined. Pneumo-
coccal IleRS mischarged tRNAIle with both Val, as demonstrated in other bacteria, and Leu in a tRNA sequence-dependent man-
ner. IleRS substrate specificity was achieved in an editing-independent manner, indicating that tRNA mischarging would only be
significant under growth conditions where Ile is depleted. Pneumococcal LysRS was found to misaminoacylate tRNALys with Ala
and to a lesser extent Thr and Ser, with mischarging efficiency modulated by the presence of an unusual U4:G69 wobble pair in
the acceptor stems of both pneumococcal tRNALys isoacceptors. Addition of the trans-editing factor MurM, which also functions
in peptidoglycan synthesis, reduced Ala-tRNALys production by LysRS, providing evidence for cross talk between the protein
synthesis and cell wall biogenesis pathways. Mischarging of tRNALys by AlaRS was also observed, and this would provide addi-
tional potential MurM substrates. More broadly, the extensive mischarging activities now described for a number of Streptococ-
cus pneumoniae aminoacyl-tRNA synthetases suggest that adaptive misaminoacylation may contribute significantly to the via-
bility of this pathogen during amino acid starvation.

IMPORTANCE Streptococcus pneumoniae is a common causative agent of several debilitating and potentially life-threatening in-
fections, such as pneumonia, meningitis, and infectious endocarditis. Such infections are increasingly difficult to treat due to
widespread development of penicillin resistance. High-level penicillin resistance is known to depend in part upon MurM, a pro-
tein involved in both aminoacyl-tRNA-dependent synthesis of indirect amino acid cross-linkages within cell wall peptidoglycan
and in translation quality control. The involvement of MurM in both protein synthesis and antibiotic resistance identify it as a
potential target for the development of new and potent antibiotics for pneumococcal infections. The goals of this work were to
identify and characterize S. pneumoniae pathways that can synthesize mischarged tRNAs and to relate these activities to ex-
pected changes in protein and peptidoglycan biosynthesis during antibiotic and nutritional stress.
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Streptococcus pneumoniae is a Gram-positive diplococcus
that can be carried asymptomatically in the nasopharynx of

healthy individuals. The bacterium is also a significant patho-
gen and is the common causative agent of many community-
and hospital-acquired infections, such as pneumonia and men-
ingitis. In order to successfully colonize the nasopharynx in
direct competition with other bacteria, including Haemophilus
influenzae, S. pneumoniae routinely produces high levels of the
oxidative stressor hydrogen peroxide (1–3). Increased levels of
hydrogen peroxide have been directly correlated with en-
hanced cellular mistranslation rates in other microorganisms
(4, 5). When taken together with the finding that pneumococci
lack the four typical oxidative stress regulons of other bacteria

(RpoS, OxyR, SoxRS, and Mar), it is unclear how this patho-
gen maintains translational fidelity during its normal life cycle
(6, 7).

The aminoacyl-tRNA synthetases (aaRSs) establish and main-
tain the genetic code by specifically activating their cognate amino
acid with ATP to form an aminoacyl-adenylate, which can then be
transferred to the cognate tRNA acceptor molecule (8, 9). There
are 20 aaRS enzymes in total and they correspond to the 20 stan-
dard amino acids present in the cell. Each aaRS is categorized as
class I or class II, based on the overall structure and function,
except for lysyl-tRNA synthetase (LysRS), which has representa-
tives in both classes (10–14). Common features of class I aaRSs
include a HIGH/KMSKS-motif-defined Rossmann nucleotide-
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binding fold at the active site, binding of the tRNA acceptor stem
at the minor groove (with the exception of tyrosyl-tRNA synthe-
tase), and aminoacylation of tRNA at the 2’-hydroxyl group of the
terminal adenine (A76) (12, 15–17). In contrast, class II aaRSs are
characterized by a triple-motif antiparallel �-sheet fold at the ac-
tive site, binding of the tRNA acceptor stem at the major groove,
and aminoacylation of tRNA at the 3= hydroxyl group of A76 (with
the exception of phenylalanyl-tRNA synthetase) (8).

aaRSs provide the first step in quality control of translation.
The degeneracy of the genetic code means that, in most cases,
there are multiple tRNA isoacceptors specific for the same amino
acid present within the cell. Accurate selection of cognate tRNA by
the synthetase is typically achieved by a combination of specific
identity elements in the tRNA molecule and also the large surface
area available for binding and kinetic proofreading (9, 18–20). A
more pressing challenge arises from the fact that some amino acids
share close similarities in their chemical structures, which can
make discrimination from noncognate amino acids particularly
problematic. In the event that noncognate amino acids are recog-
nized and activated, an intrinsic aaRS quality control mechanism
exists that ensures such errors do not result in mistranslation of
the genetic code. These quality control mechanisms clear noncog-
nate amino acids both immediately following ATP-dependent ac-
tivation (pretransfer editing) and/or following attachment to
tRNA (posttransfer editing). For example, accurate discrimina-
tion against the isosteric amino acid Val by the class I IleRS in-
volves posttransfer hydrolytic editing of Val-tRNAIle, a reaction in
which the D-loop of tRNAIle is particularly important (21–24).
The Escherichia coli LysRS, a class II aaRS, has also been shown to
have significant tRNA mischarging activity (25). In addition to
generating Lys-tRNALys, E. coli LysRS was found to aminoacylate
its cognate tRNA with Arg, Thr, Met, Leu, Ala, Ser, and Cys. Fur-
thermore, the weak substrate specificity of the enzyme was exac-
erbated by a combination of inefficient pretransfer editing mech-
anisms for some amino acids and an entirely absent posttransfer
editing mechanism.

Here we show that pneumococcal IleRS is able to robustly mis-
charge its cognate tRNAIle with Val and, surprisingly, Leu. How-
ever, the overall amino acid specificity of the enzyme is tRNA
dependent and may be achieved without the need for editing un-
der conditions when the cellular amino acid pool is balanced.
Pneumococcal LysRS preferentially mischarges both isoacceptors
of tRNALys robustly with Ala, not Thr, and this likely provides an
additional substrate for the Ala/Ser-aminoacyl-tRNA-dependent
peptidoglycan biosynthesis enzyme MurM, which we have dem-
onstrated to be a trans-editing factor in previous studies (26, 27).
These findings support the hypothesis that broad-specificity
tRNA mischarging spans both structural classes of the aminoacyl-
tRNA synthetases in S. pneumoniae and provide insight into the
mechanisms by which translational quality control has become
adapted in this pathogen.

RESULTS
Pneumococcal LysRS mischarges both tRNALys isoacceptors
with multiple amino acids. E. coli LysRS was previously found to
catalyze the misaminoacylation of its cognate tRNA with several
amino acids, including Ala (25, 28). In our earlier studies focusing
on AlaRS, we demonstrated that mischarged Ala- and Ser-tRNA
species can potentially enter the peptidoglycan biosynthesis path-
way in S. pneumoniae via MurM (27, 29). We now investigated the

capacity of pneumococcal LysRS to form mischarged Thr, Ala,
and Ser tRNAs, the last two of which are also potential MurM
substrates. Of the 3 amino acids tested in this study, mischarging
by pneumococcal LysRS was greatest for Ala, regardless of the
tRNALys isoacceptor used (Fig. 1A and C). This preference of
S. pneumoniae protein for Ala over Thr and Ser differs from E. coli
LysRS, which uses Thr most efficiently (25). One possible reason
for pneumococcal LysRS having a preference for Ala over Thr may
be related to differences in the pneumococcal tRNALys acceptor
stem, most notably the presence of a U4:G69 wobble pair in place
of the U4:A69 Watson-Crick base pair in E. coli tRNALys (Fig. 2;
see also Fig. S1 in the supplemental material). Introduction of a
Watson-Crick base pair (G69A) into each pneumococcal tRNALys

isoacceptor resulted in an approximately 3-fold increase in lysyla-
tion activity by LysRS compared to wild-type tRNAs (Fig. 3). The
overall mischarging profile of pneumococcal LysRS remained the
same with both the wild-type and the G69A tRNALys transcripts;
however, the yield of Ala-tRNALys produced was increased by ap-
proximately 2-fold for the TTT G69A transcript and 3-fold for the
CTT G69A transcript in comparison to the equivalent wild-type
species (Fig. 1B and D; Ser-tRNALys levels were too low to allow
accurate determination of the effect of the G69A mutation [data
not shown]). This suggests that, in the absence of efficient pre-
and/or posttransfer editing mechanisms, the distorted region in
the acceptor stem of tRNALys is able to reduce the overall mis-
charging capacity of pneumococcal LysRS, with an accompanying
loss in cognate charging.

Generation of Ala-tRNALys by pneumococcal LysRS may
provide an additional substrate for peptidoglycan cross-linking
by MurM. The relative instability of wild-type Ala-tRNALys in so-
lution (see Fig. S2 in the supplemental material) compared to
previously studied mischarged pneumococcal tRNAs (27) re-
sulted in an inability to isolate sufficient quantities of this product
for use in direct deacylation assays. Therefore, the effect of MurM
addition on the ability of pneumococcal LysRS to produce mis-
charged Ala-tRNALys was investigated. MurM reduced the mis-
charging capacity of pneumococcal LysRS in the presence of Ala
regardless of the isoacceptor of tRNALys present in the reaction
mixture (Fig. 4). Our earlier studies with Ser-tRNAAla showed that
reduction in the yield of this product by AlaRS upon addition of
MurM was correlated with the trans-editing activity of the latter
protein (27). In addition, the use of mischarged Ser-tRNAAla by
MurM in peptidoglycan biosynthesis has already been demon-
strated (29); therefore, it is likely that production of Ala-tRNALys

by LysRS provides another substrate that can be diverted from
protein synthesis into this pathway.

The presence of the U4:G69 wobble pair in the acceptor stems
of both tRNALys isoacceptors raised the question of whether these
species could be substrates for the pneumococcal AlaRS enzyme,
as previously demonstrated for tRNAPhe (27). Full-length pneu-
mococcal AlaRS preferentially mischarged both wild-type
tRNALys transcripts with Ser over cognate Ala (Fig. 5A and C). The
mutated G69A transcripts were also aminoacylated by full-length
AlaRS, although slightly less efficiently in the case of the anticodon
CTT transcript (Fig. 5B and D).

Pneumococcal IleRS robustly mischarges its cognate tRNA
with Leu and Val. Taken together with results of previous studies,
the above findings now show extensive mischarging by S. pneu-
moniae class II-type aaRSs. To investigate if similar activities are
found for class I-type aaRSs, the substrate specificity of IleRS dur-
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ing amino acid activation and aminoacylation was investigated. In
the case of E. coli IleRS, the primary potential noncognate sub-
strate is Val, which is effectively dealt with by a combination of
pretransfer editing of Val-AMP and posttransfer editing of Val-
tRNAlle (21, 23, 30). Consequently, E. coli IleRS does not accumu-
late Val-tRNAlle to levels expected to affect the overall error rate of
translation. The abilities of pneumococcal and E. coli IleRS to
mischarge cognate tRNA with both L-Leu and L-Val were com-
pared. Pneumococcal IleRS was able to mischarge tRNAIle with
Leu to approximately 5-fold-higher levels than the E. coli enzyme
in vitro (Fig. 6A). Val-tRNAIle was also synthesized to higher levels
by pneumococcal IleRS than by E. coli IleRS, although the differ-
ence was less significant than that observed with Leu (Fig. 6B).

To investigate if differences in mischarging between pneumo-
coccal and E. coli IleRS result from variations in tRNA sequence

(see Fig. S3 in the supplemental material), noncognate aminoacy-
lation experiments were performed. Replacement of E. coli
tRNAIle with the S. pneumoniae tRNAIle did not significantly in-
crease yields of Leu- or Val-tRNAIle produced by the E. coli IleRS
enzyme (Fig. 7A and B, respectively). Further examination of the
possible role of tRNAIle in amino acid specificity was investigated
by using a G16C mutation in pneumococcal tRNAIle, as this resi-
due has been implicated in the editing of Val-tRNAIle by IleRS (24,
31). The aminoacylation capacity of pneumococcal IleRS was re-
duced by almost 50% for tRNAIle G16C compared to wild-type
tRNA with both Ile (Fig. 8A) and Leu (Fig. 8B). However, no
difference was seen for Val mischarging between the wild-type and
the G16C transcript (Fig. 8C).

IleRS has weak posttransfer editing activity against Leu-
tRNAIle. The robust level of mischarging seen with pneumococcal
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FIG 1 S. pneumoniae LysRS catalyzed mischarging of wild-type or G69A tRNALys anticodon TTT (A and B, respectively) or CTT (C and D, respectively) with
alanine, serine and threonine. Aminoacylation time courses were carried out in the presence of 250 �M [3H]-L-Ala, [3H]-L-Ser or [14C]-L-Thr. Each reaction
mixture contained 4 �M active pneumococcal LysRS. Wild-type or G69A S. pneumoniae tRNALys (anticodon CTT or TTT) was used at a concentration of 7 �M.
The presented data set is the average of three independent experiments. Error bars show standard errors.
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IleRS and Leu allowed aminoacylation kinetic parameters to be
determined for tRNAIle (Table 1). The comparatively low kcat val-
ues derived in this study are likely due to the absence of the N-6-
threonylcarbamoyl modification of adenine-37 in the anticodon
loop of in vitro-transcribed tRNAIle, as previously described in
other systems (22, 31, 32). Pneumococcal IleRS has a KM for Leu

that is ~8,000-fold higher and a kcat almost 3-fold higher than that
for cognate Ile. Consequently, the catalytic efficiency of pneumo-
coccal IleRS is approximately 2,850 times greater for Ile than Leu,
giving a specificity constant comparable to overall error rates in
protein synthesis which are generally estimated to be in the range
of 1 in 3,000 to 10,000 (33). Specificity constants of less than 1 in
3,000 are typically associated with the lack of a requirement for
editing among aminoacyl-tRNA synthetases under conditions
that favor maintenance of a balanced intracellular amino acid pool
(34). Therefore, the editing capacity of pneumococcal IleRS
against Leu-tRNAIle was tested (Fig. 9). Both pneumococcal and
E. coli IleRS were demonstrated to have relatively weak posttrans-
fer editing activities, consistent with the specificity constant ob-
tained from our kinetic studies.

DISCUSSION
Pneumococcal IleRS retains fidelity without editing under con-
ditions where the amino acid pool is balanced. Pneumococcal
IleRS was found to mischarge tRNAIle with Leu significantly more
efficiently than the E. coli enzyme misaminoacylated tRNAIle with
Val. Despite this significant mischarging activity, pneumococcal
IleRS maintains a substrate specificity for Ile over Leu that is con-
sistent with reported error rates of translation. This is achieved in
the absence of efficient editing by virtue of a 2,850-fold difference
in catalytic efficiencies that ultimately favors turnover of cognate
Ile over noncognate Leu (Table 1). Nevertheless, conditions caus-
ing an imbalance of the cellular amino acid pool might be ex-
pected to result in increased mistranslation rates at Ile codons
within this bacterium. In S. pneumoniae it is possible that both
oxidative stress, caused by high-level hydrogen peroxide produc-
tion, and the infection process itself may cause amino acid pool
imbalances. Production of hydrogen peroxide by pneumococcus

FIG 2 Predicted cloverleaf structures of S. pneumoniae (A) and E. coli (B) tRNALys anticodon TTT. Sequence variations from the S. pneumoniae tRNALys

sequence are highlighted in red. All tRNA cloverleaf structures are shown without the CCA end.
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results in an alpha-hemolytic appearance on blood agar due to
partial lysis of erythrocytes, and the pneumolysin toxin produced
during host infection can cause full lysis of blood cells and other
cells (35, 36). Therefore, serum is an expected source of amino
acids for the bacterium during human infection. Plasma levels of
Ile, Val, and Leu in humans are known to decrease during infec-
tion, with Leu remaining the most abundant postinoculation with
S. pneumoniae in some instances (37–39). It has also been demon-
strated for the intraerythrocytic protozoan malaria parasite Plas-
modium falciparum that Ile becomes the limiting amino acid in the
human host during infection. This is because Ile is absent from
adult hemoglobin, which is the main source of nutrients for the
parasite (40, 41). The relative abundance of Leu and the absence of
an efficient editing mechanism may have allowed pneumococcal
IleRS to evolve so that it remains functional, regardless of the
severity and duration of host infection, even under conditions of
limited availability of the cognate amino acid Ile.

Pneumococcal tRNALys has evolved to function in both pro-
tein and peptidoglycan biosynthesis. Our findings demonstrate
that like E. coli, pneumococcal LysRS has relaxed amino acid sub-
strate specificity, although in this case Ala rather than Thr is the
preferred substrate for tRNALys mischarging. This difference in
noncognate amino acid specificity is accompanied by significant
changes in the structure of both tRNALys isoacceptors, namely, the
presence of an unusual wobble pair (U4:G69) reminiscent of the
G3:U70 pair critical for recognition of tRNAAla by AlaRS (18, 42–
45). The presence of this wobble region in the acceptor stem of
pneumococcal tRNALys controls the efficiency of tRNA aminoacy-
lation by LysRS and to a lesser extent that by AlaRS. Replacement
of the wobble region with a correct Watson-Crick base pair (mu-
tant tRNALys G69A) resulted in improved aminoacylation by
LysRS, suggesting that the wobble pair has been specifically se-
lected for and retained during evolution, although the underlying
selection pressure remains unclear. A similar improvement in
isoacceptor aminoacylation capacity was demonstrated for phe-
nylalanylation of tRNAPhe U4G by pneumococcal PheRS in com-
parison to that by the wild-type species (27). In addition, our
studies have demonstrated that the presence of the aminoacyl-

tRNA-dependent peptidoglycan cross-linking enzyme, MurM,
lowers the yield of Ala-tRNALys produced by pneumococcal
LysRS. This supports our earlier finding that MurM can also act as
a trans-editing factor by effectively directing both mischarged Ala
and Ser species away from protein synthesis and into peptidogly-
can biosynthesis (27).

The identification of an unusual wobble region in the acceptor
stems of both tRNAPhe and tRNALys suggests that pneumococcus
may have evolved to have a specific subset of its tRNA species
accessible to both pathways. This is in contrast to the mechanism
by which Staphylococcus aureus is known to ensure adequate pro-
vision of Gly-tRNAGly for cell wall cross-linking and protein syn-
thesis. In S. aureus, peptidoglycan is indirectly cross-linked by
virtue of a pentaglycine bridge that is formed by the activity of the
glycyl-tRNA-dependent FemXAB proteins (46). It has been estab-
lished that there are four fully annotated tRNAGly isoacceptors
encoded in the genome of this bacterium plus a fifth pseudogene
that encodes an unusual Gly isoacceptor. All five isoacceptors are
efficiently aminoacylated by glycyl-tRNA synthetase; however,
three of them contain sequence-specific identity elements that are
consistent with weak EF-Tu binding and are, therefore, likely to be
specifically shuttled into the peptidoglycan biosynthesis pathway
(47). In pneumococcus, peptidoglycan is indirectly cross-linked
by the addition of Ala-Ala or Ser-Ala dipeptide bridges. The
MurM and MurN proteins specifically catalyze dipeptide bridge
formation by using Ala and/or Ser tRNA species originally
thought to be provided selectively by alanyl- and seryl-tRNA syn-
thetase, respectively (48–50). However, no unique tRNAAla or
tRNASer isoacceptors have been identified in this bacterium. As a
result, the mechanism by which pneumococcus ensures adequate
provision of substrates for both protein and peptidoglycan bio-
synthesis has remained elusive. Our studies demonstrate that the
mechanism used by pneumococcus may reside in the unique evo-
lutionary modification of a specific subset of tRNAs within the cell
which subsequently alters the substrate specificity of the
aminoacyl-tRNA synthetases.

Broad-specificity tRNA mischarging occurs across both
classes of tRNA synthetase in S. pneumoniae. The translation
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quality control systems of S. pneumoniae are somewhat unique in
terms of both the mischarging and editing profiles of the corre-
sponding aaRSs and the absence of trans-editing factors such as
AlaXp and Ybak, commonly found in other bacteria (27). For the
class I enzyme IleRS, elevated mischarging activity offers a poten-
tial mechanism for adaptive translation during cognate amino
acid limitation (51). For the class II enzymes AlaRS, LysRS, and
PheRS, the ability to generate and/or protect a broad range of Ala
and Ser mischarged tRNA offers a versatile mechanism to provide
substrates for peptidoglycan biosynthesis. Further studies are now
warranted to explore in vivo the apparently widespread role of
aaRS-catalyzed misaminoacylation in S. pneumoniae. In addition
to aaRS-specific adaptations, pneumococcus is also known to have
a unique EF-Tu protein that differs in sequence from that of other
bacteria at four positions: P129K, M140L, T230S, and E234D (52).
All of these adaptations may have, in part, been driven by evolu-
tionary pressure for the bacterium to adapt to its unusual lifestyle.
It is well documented that pneumococcus routinely produces and,
therefore, exposes itself to high levels of hydrogen peroxide during

its natural life cycle as a means of competing with other bacterial
species for colonization of the nasopharynx (3). Further charac-
terization of aaRS-specific and other types of adaptations that
pneumococcus has made to maintain quality control of transla-
tion while ensuring adequate provision of aminoacylated tRNA
substrates for both peptidoglycan and protein synthesis may en-
able identification of new drugs targets in the future.

MATERIALS AND METHODS
Strains, plasmids, and general protein expression and purification.
S. pneumoniae strain D39 chromosomal DNAs for use as a template in the
cloning of genes encoding IleRS, LysRS, EF-Tu, AlaRS, and MurM were a
gift from B. Lazazzera (University of California, Los Angeles). E. coli ileS
was cloned by amplification of the gene from strain BL21(DE3) by colony
PCR. The gene encoding S. pneumoniae ileS was cloned into pQE-31 (Qia-
gen) by virtue of the BamHI and HindIII restriction sites. The subsequent
expression construct allowed for the production of a recombinant protein
extended at the N terminus by a six-histidine tag. The genes encoding
E. coli IleRS, S. pneumoniae AlaRS, and S. pneumoniae MurM were cloned
into pET21b (Novagen) by virtue of the NdeI and XhoI restriction sites,
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FIG 5 Comparative S. pneumoniae full-length AlaRS-catalyzed mischarging of wild-type or G69A tRNALys anticodon TTT (A and B, respectively) or CTT (C
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allowing for the production of recombinant protein extended at the C
terminus by a six-histidine tag. All cloned expression constructs were
checked for accuracy against the appropriate protein sequences found in
the comprehensive microbial resource database (J. Craig Venter Institute)
by Sanger DNA sequencing (Plant Microbial Genomics Facility, The Ohio
State University) with the appropriate primers. Both IleRS proteins were
overexpressed in E. coli strain B834(DE3) by the addition of a final con-
centration of 1 mM isopropyl-�-D-1-thigalactopyranoside at an optical
density at 600 nm (OD600) of 0.4 followed by a reduction in growth tem-
perature from 37°C to 25°C for 3 to 5 h. EF-Tu and MurM were overex-
pressed in the same way; however, the expression strain was changed to
E. coli BL21(DE3). Proteins were purified on BD Talon cobalt resin using
equilibration/wash buffer (50 mM sodium phosphate [pH 7.2], 500 mM
sodium chloride, and 20% glycerol) containing 250 mM imidazole.
MurM was solubilized prior to purification as described elsewhere (29).

S. pneumoniae tRNAIle, E. coli tRNAIle, and S. pneumoniae tRNALys

(anticodons CTT and TTT) were produced by in vitro T7 RNA polymerase
runoff transcription as described previously (53, 54).

Determination of protein concentration by active site titration or
Bradford assay. To determine active protein concentrations for IleRS,
AlaRS, and LysRS, 5 �l of undiluted protein or protein diluted 1:10 or 1:20
was incubated in three separate reaction mixtures for 10 min at 37°C in the
presence of 0.1 M Na-HEPES (pH 7.2), 30 mM KCl, 10 mM MgCl2, 2 mM
ATP, 2 �mol min�1 ml�1 inorganic pyrophosphatase (Roche), and
40 �M cognate amino acid ([14C]Lys, [3H]Ala, or [14C]Ile from PerkinEl-
mer or Moravek Biochemicals). A control reaction was also carried out
where the reaction volume of protein was replaced by protein storage
buffer. Samples were processed by vacuum filtration onto Whatman Pro-
tran BA85 filter paper circles. After sample spotting, each filter paper was
washed three times with buffer comprised of 50 mM Na-HEPES (pH 7.2),
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FIG 6 Comparative S. pneumoniae and E. coli IleRS-catalyzed mischarging of cognate tRNAIle with leucine (A) or valine (B). Aminoacylation time courses were
evaluated in the presence of 200 �M L-[14C]Leu (A) or 200 �M L-[14C]Val (B) for 1 �M active pneumococcal or E. coli IleRS. Wild-type pneumococcal or E. coli
tRNAIle (anticodon GAT) was used at a concentration of 10 �M. The presented data set is the average of three independent experiments. Error bars show standard
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15 mM KCl, 5 mM MgCl2 prior to drying and quantification by liquid
scintillation counting (55). For determination of protein concentration
by the Bradford assay, Bradford reagent was obtained from Bio-Rad and
used as per the manufacturer’s instructions. A standard curve with known
concentrations of bovine serum albumin (resuspended in IleRS storage
buffer) was obtained to improve accuracy of estimations.

Aminoacylation. Aminoacylation time courses were carried out
over a time period of 1 h at 37°C in the presence of 0.1 M Na-HEPES
(pH 7.2), 30 mM KCl, 10 mM MgCl2, 2 mM ATP, 2 �mol min�1 ml�1

inorganic pyrophosphatase (Roche), 10 �M tRNAIle or tRNALys tran-
script, 20 to 40 �M cognate amino acid ([14C]Lys or [14C]Ile from
PerkinElmer or Moravek Biochemicals, respectively) or 200 �M non-
cognate amino acid ([3H]Ser, [14C]Thr, [3H]Ala, [14C]Leu, or
[14C]Val) at 150 to 500 cpm/pmol and 0.5 to 4.0 �M active IleRS,
AlaRS, or LysRS (as determined by active site titration). Where appro-
priate, reactions were repeated in the presence of 500 nM S. pneu-
moniae MurM. Ten-microliter samples were taken for each time point
and spotted onto 3-mm Whatman filter paper discs, which were im-
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FIG 8 Comparative S. pneumoniae IleRS-catalyzed mischarging of wild-type and G16C tRNAIle with isoleucine (A), leucine (B), or valine (C). For the cognate
amino acid, aminoacylation time courses were carried out in the presence of 22 �M L-[14C]Ile and 500 nM active pneumococcal IleRS (A). For the noncognate
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TABLE 1 Kinetic parameters for aminoacylation of tRNAIle with Ile and Leu by pneumococcal IleRSa

Amino acid Km (�M) Vmax (�M/min/mg) kcat (min�1) kcat/Km Specificity constant

Ile 0.4 � 0.1 0.0005 � 0.0002 0.06 � 0.02 0.14 1:2,850
Leu 3,200 � 290 0.0015 � 0.0002 0.16 � 0.02 0.000049
a Means and standard errors are shown. Vmax and kcat values were determined using protein concentration estimations obtained via the Bradford assay.
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by incubation of 50 pM [14C]Leu-tRNAIle with 0.5 �M pneumococcal (A) or E. coli (B) IleRS. For the control reaction mixture, an equal volume of protein storage
buffer was added. Error bars indicate standard errors.
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mediately dropped into 5% trichloroacetic acid (TCA). Discs were
subjected to two further washes with 5% TCA and ethanol prior to
drying and scintillation counting.

Kinetics of isoleucylation and leucylation of tRNAIle by pneumococ-
cal IleRS. To determine the steady-state kinetic parameters for pneumo-
coccal IleRS with either L-Ile or L-Leu, aminoacylation time courses were
carried out at 37°C for both the lowest (1.5 �M Ile and 30 �M Leu) and the
highest (50 �M Ile and 1 mM Leu) amino acid concentrations in the
presence of 0.1 M Na-HEPES (pH 7.2), 30 mM KCl, 10 mM MgCl2, 2 mM
ATP, 2 �mol min�1 ml�1 inorganic pyrophosphatase (Roche), 10 �M
pneumococcal tRNAIle transcript, and 500 nM or 1 �M active IleRS for Ile
and Leu, respectively (as determined by active site titration). For Ile, the
linear region was determined to be within the first 5 min; therefore, 10-�l
samples were spotted onto 3-mm Whatman filter paper and dropped into
5% TCA at four time points (1, 2, 3, and 5 min) at each of the amino acid
concentrations (1.5, 3, 5, 8, 10, 15, 20, 30, 40, and 50 �M) for determina-
tion of gradients and key kinetic parameters from triplicate data sets,
using the Hanes-Woolf method. For Leu, the linear region was deter-
mined to be within the first 30 min; therefore, 10-�l samples were spotted
onto 3-mm Whatman filter paper and dropped into 5% TCA at four time
points (10, 15, 20, and 30 min) at each of the amino acid concentrations
(30, 50, 100, 200, 250, 300, 400, 500, 600, and 1,000 �M) for determina-
tion of gradients and key kinetic parameters from triplicate data sets,
using the Michaelis-Menten analysis method in Prism software (Graph-
Pad).

Deacylation assays. Aminoacylation reactions were set up in four
200-�l reaction mixtures, each consisting of 30 mM HEPES (pH 7.6),
15 mM MgCl2, 10 mM diethiothreitol, 2 mM ATP, 2 �mol min�1 ml�1

inorganic pyrophosphatase (Roche), 250 �M [14C]Leu (with a specific
activity of ~300 cpm/pmol), 10 �M S. pneumoniae tRNAIle transcript
(prior to use, stock was resuspended in 2 mM MgCl2 and heated at 80°C
for 10 min, followed by slow cooling to room temperature to allow refold-
ing), 2 �M mol min-1 ml�1 inorganic pyrophosphatase, and 1 �M IleRS.
The reaction mixtures were incubated at 37°C for 1 h, quenched with
20 �M of 3 M sodium acetate (pH 4.5), and processed as described else-
where (27). Deacylation assays were carried out by incubation of 50 pM
[14C]Leu-tRNAIle in buffer composed of 0.1 M Na-HEPES (pH 7.2),
30 mM KCl, and 10 mM MgCl2. In addition, 0.5 �M E. coli or S. pneu-
moniae IleRS, 0.5 �M MurM, or an equal volume of protein storage buffer
was added to the reaction mixtures, which were monitored by TCA pre-
cipitation and scintillation counting. Attempts to utilize pneumococcal
Val-tRNAIle for deacylation assays were not successful due to rapid spon-
taneous deacylation during isolation.
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