
����������
�������

Citation: Massart, J.; Begriche, K.;

Corlu, A.; Fromenty, B.

Xenobiotic-Induced Aggravation of

Metabolic-Associated Fatty Liver

Disease. Int. J. Mol. Sci. 2022, 23, 1062.

https://doi.org/10.3390/ijms23031062

Academic Editor: Cristiano Fava

Received: 14 December 2021

Accepted: 15 January 2022

Published: 19 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Xenobiotic-Induced Aggravation of Metabolic-Associated Fatty
Liver Disease
Julie Massart * , Karima Begriche, Anne Corlu and Bernard Fromenty

Institut NUMECAN (Nutrition Metabolisms and Cancer), UMR_A 1341, UMR_S 1241, INSERM, University
Rennes, INRAE, F-35000 Rennes, France; karima.begriche@univ-rennes1.fr (K.B.); anne.corlu@inserm.fr (A.C.);
bernard.fromenty@inserm.fr (B.F.)
* Correspondence: julie.massart@inserm.fr

Abstract: Metabolic-associated fatty liver disease (MAFLD), which is often linked to obesity, en-
compasses a large spectrum of hepatic lesions, including simple fatty liver, steatohepatitis, cirrhosis
and hepatocellular carcinoma. Besides nutritional and genetic factors, different xenobiotics such
as pharmaceuticals and environmental toxicants are suspected to aggravate MAFLD in obese in-
dividuals. More specifically, pre-existing fatty liver or steatohepatitis may worsen, or fatty liver
may progress faster to steatohepatitis in treated patients, or exposed individuals. The mechanisms
whereby xenobiotics can aggravate MAFLD are still poorly understood and are currently under deep
investigations. Nevertheless, previous studies pointed to the role of different metabolic pathways
and cellular events such as activation of de novo lipogenesis and mitochondrial dysfunction, mostly
associated with reactive oxygen species overproduction. This review presents the available data
gathered with some prototypic compounds with a focus on corticosteroids and rosiglitazone for
pharmaceuticals as well as bisphenol A and perfluorooctanoic acid for endocrine disruptors. Al-
though not typically considered as a xenobiotic, ethanol is also discussed because its abuse has dire
consequences on obese liver.

Keywords: obesity; fatty liver; NASH; drugs; environmental contaminants; endocrine disrup-
tors; ethanol

1. Introduction

Obesity and associated diseases meet epidemic proportions in numerous countries.
In particular, the hepatic tissue can rapidly suffer from the accumulation of lipids, thus
leading to fatty liver and other liver lesions. The whole spectrum of hepatic lesions linked
to obesity is called metabolic (dysfunction)-associated fatty liver disease (MAFLD), which
is now preferred to non-alcoholic fatty liver disease (NAFLD) [1]. Obesity is associated
with insulin resistance and type 2 diabetes mellitus (T2DM), hypertension, dyslipidemia
and osteoarthritic disorders. All these conditions may need the prescription of different
types of pharmaceuticals, such as antidiabetic and antihypertensive drugs, lipid-lowering
agents or non-steroidal anti-inflammatory drugs. Hence, obese individuals are more likely
to have long-term polypharmacy [2,3]. In addition, obese people, as lean ones, can be
exposed, voluntarily or accidentally, to many other xenobiotics, such as recreational drugs,
plant and mushroom toxins, or industrial chemicals.

An increasing number of investigations of obese individuals and rodent models
indicate or strongly suggest that some xenobiotics can further increase hepatic lipid lev-
els (Figure 1), or accelerate the transition from fatty liver to steatohepatitis or cirrhosis
(Figure 2). Unfortunately, the mechanisms of these deleterious effects are not well under-
stood, in particular because many investigations are only observational. Nonetheless, some
experimental studies allow different hypotheses to be proposed in order to explain the
exacerbation of fatty liver, or the faster occurrence of steatohepatitis. In this review, we
first recall the main features of MAFLD regarding its physiopathology. Next, we review
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some xenobiotics which can worsen MAFLD, including pharmaceuticals and industrial
chemicals. Finally, we discuss ethanol, although this molecule is not typically considered as
a xenobiotic. Indeed, there is now ample evidence that ethanol abuse has dire consequences
on the obese liver.
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Figure 1. Mechanisms whereby xenobiotics can aggravate obesity-related fatty liver. Xenobiotics 
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in fatty acid oxidation and impairment of very low-density lipoprotein (VLDL) secretion. Stimula-
tion of DNL results from the activation of different lipogenic nuclear receptors such as PPARγ and 
PXR. Alternatively, increased DNL is secondary to insulin resistance, for instance, at the level of 
skeletal muscle and adipose tissue. Insulin resistance leads to hyperinsulinemia, which activates 
SREBP1c in hepatocytes. Insulin resistance in white adipose tissue also favors triacylglycerol lipol-
ysis, thus leading to the unrestrained release in blood of NEFAs freely entering the liver via 
FAT/CD36 or other fatty acid transporters. If insulin resistance progresses to type 2 diabetes, hyper-
glycemia increases hepatic DNL via the activation of ChREBP. Reduced fatty acid oxidation can be 
attributed to different mechanisms, including reduced PPARα activity, or direct impairment of mi-
tochondrial enzymes. Reduced VLDL secretion can be secondary to endoplasmic reticulum stress. 
Finally, impairment of autophagy favors lipid accumulation by reducing the clearance of excessive 
lipid droplets. Some connection arrows are not mentioned for the sake of clarity. Further infor-
mation is provided in the text. 

Figure 1. Mechanisms whereby xenobiotics can aggravate obesity-related fatty liver. Xenobiotics can
exacerbate pre-existent lipid accumulation in hepatocytes by direct mechanisms such as stimulation
of de novo lipogenesis (DNL), increased non-esterified fatty acid (NEFA) uptake, reduction in fatty
acid oxidation and impairment of very low-density lipoprotein (VLDL) secretion. Stimulation of
DNL results from the activation of different lipogenic nuclear receptors such as PPARγ and PXR.
Alternatively, increased DNL is secondary to insulin resistance, for instance, at the level of skeletal
muscle and adipose tissue. Insulin resistance leads to hyperinsulinemia, which activates SREBP1c
in hepatocytes. Insulin resistance in white adipose tissue also favors triacylglycerol lipolysis, thus
leading to the unrestrained release in blood of NEFAs freely entering the liver via FAT/CD36 or
other fatty acid transporters. If insulin resistance progresses to type 2 diabetes, hyperglycemia
increases hepatic DNL via the activation of ChREBP. Reduced fatty acid oxidation can be attributed
to different mechanisms, including reduced PPARα activity, or direct impairment of mitochondrial
enzymes. Reduced VLDL secretion can be secondary to endoplasmic reticulum stress. Finally,
impairment of autophagy favors lipid accumulation by reducing the clearance of excessive lipid
droplets. Some connection arrows are not mentioned for the sake of clarity. Further information is
provided in the text.Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 25 

 

 

 
Figure 2. Mechanisms whereby xenobiotics can favor the progression of obesity-related fatty liver 
to NASH, characterized by necroinflammation, hepatocyte ballooning, apoptosis and fibrosis, in 
addition to steatosis. Mitochondrial dysfunction, in particular at the level of the respiratory chain, 
leads to reactive oxygen species (ROS) overproduction, which, in turn, induces oxidative stress. Mi-
tochondrial dysfunction, ROS overproduction and oxidative stress trigger cell death by necrosis or 
apoptosis. Cell death can also be induced by different cytokines such as TNF-αand Fas ligand. ROS 
overproduction and hepatocyte cell death favor inflammation and fibrosis through the activation of 
Kupffer cells and stellate cells, respectively. Finally, endoplasmic reticulum (ER) stress can also lead 
to cell death and oxidative stress (not shown). Note that there is an interplay between mitochondrial 
dysfunction and ER stress. Some connection arrows are not mentioned for the sake of clarity. Fur-
ther information is provided in the text. 
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to follow the example of other medical specialties such as cardiology, diabetology and 
oncology, which have successfully distanced the disease from underlying obesity, smok-
ing, alcohol overconsumption and drug abuse [1]. The whole spectrum of hepatic lesions 
in MAFLD is the same as NAFLD and includes fatty liver (also referred to as hepatic ste-
atosis), steatohepatitis (NASH), cirrhosis and hepatocellular carcinoma [4]. Most obese 
individuals present simple fatty liver but this lesion can progress, in the long term, to 
NASH in 10–20% of subjects. In obesity-associated fatty liver, lipids accumulate mainly as 
macrovacuolar steatosis, but microvesicular steatosis is also observed and seems to be 
linked to more severe forms of MAFLD [5], possibly due to severe impairment of mito-
chondrial fatty acid oxidation (FAO) [6,7]. NASH is characterized by necroinflammation, 
hepatocyte ballooning and some degree of fibrosis, in addition to steatosis. Apoptotic 
hepatocytes, megamitochondria, Mallory-Denk bodies and iron accumulation can also be 
observed [5,8]. At these stages of the disease, patients are often asymptomatic but some 
of them present non-specific symptoms, such as fatigue, right upper quadrant discomfort 
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sis, which is associated with bridging fibrosis and nodularity as well as canalicular cho-
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Figure 2. Mechanisms whereby xenobiotics can favor the progression of obesity-related fatty liver
to NASH, characterized by necroinflammation, hepatocyte ballooning, apoptosis and fibrosis, in
addition to steatosis. Mitochondrial dysfunction, in particular at the level of the respiratory chain,
leads to reactive oxygen species (ROS) overproduction, which, in turn, induces oxidative stress.
Mitochondrial dysfunction, ROS overproduction and oxidative stress trigger cell death by necrosis or
apoptosis. Cell death can also be induced by different cytokines such as TNF-αand Fas ligand. ROS
overproduction and hepatocyte cell death favor inflammation and fibrosis through the activation of
Kupffer cells and stellate cells, respectively. Finally, endoplasmic reticulum (ER) stress can also lead
to cell death and oxidative stress (not shown). Note that there is an interplay between mitochondrial
dysfunction and ER stress. Some connection arrows are not mentioned for the sake of clarity. Further
information is provided in the text.
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2. Main Features of MAFLD
2.1. Clinical Features, Liver Pathology and Blood Chemistry

While the classical term NAFLD refers to fatty liver disease in absence of excessive
alcohol consumption, which is quite restrictive, MAFLD more appropriately places this
disease in the broader context of metabolic dysfunction [1]. In fact, hepatologists wished
to follow the example of other medical specialties such as cardiology, diabetology and
oncology, which have successfully distanced the disease from underlying obesity, smoking,
alcohol overconsumption and drug abuse [1]. The whole spectrum of hepatic lesions in
MAFLD is the same as NAFLD and includes fatty liver (also referred to as hepatic steatosis),
steatohepatitis (NASH), cirrhosis and hepatocellular carcinoma [4]. Most obese individuals
present simple fatty liver but this lesion can progress, in the long term, to NASH in 10–20%
of subjects. In obesity-associated fatty liver, lipids accumulate mainly as macrovacuolar
steatosis, but microvesicular steatosis is also observed and seems to be linked to more
severe forms of MAFLD [5], possibly due to severe impairment of mitochondrial fatty acid
oxidation (FAO) [6,7]. NASH is characterized by necroinflammation, hepatocyte ballooning
and some degree of fibrosis, in addition to steatosis. Apoptotic hepatocytes, megamito-
chondria, Mallory-Denk bodies and iron accumulation can also be observed [5,8]. At these
stages of the disease, patients are often asymptomatic but some of them present non-specific
symptoms, such as fatigue, right upper quadrant discomfort and hepatomegaly [9]. NASH
can then progress, in some individuals, to advanced cirrhosis, which is associated with
bridging fibrosis and nodularity as well as canalicular cholestasis [5]. When cirrhosis occurs,
ascites can cause abdominal distention, nausea and vomiting, dyspnea and lower-extremity
edema. Late complications of cirrhosis include variceal hemorrhages, hepatic encephalopa-
thy, spontaneous bacterial peritonitis and sepsis. Accordingly, the mortality of patients
with decompensated cirrhosis is high.

Blood chemistry in MAFLD can include mild elevation of alanine aminotransferase
(ALT) and aspartate aminotransferase (AST) activities, thus reflecting the presence of slight
hepatic cytolysis, but a significant number of patients can have normal aminotransferase
levels [10,11]. When the disease progresses to cirrhosis, hyperbilirubinemia, hyperammone-
mia, hypoalbuminemia and abnormal prothrombin time can be observed [9,10].

2.2. Physiopathology of MAFLD

The physiopathology of MAFLD is complex and is still poorly understood. Here, we
briefly review the main features of MAFLD pathogenesis, although several recent reviews
are available for more details on this subject [8,12–17].

Insulin resistance in white adipose tissue (WAT) and skeletal muscle plays a major
role in the pathogenesis of obesity-related fatty liver [12,14,15,17,18]. Insulin resistance in
WAT favors triacylglycerol lipolysis, thus leading to a massive release, into the circulation,
of glycerol and non-esterified fatty acids (NEFAs), which enter the liver in a concentration-
dependent manner via transporters such as the fatty acid translocase (FAT/CD36) and
different fatty acid transport proteins (FATPs). Furthermore, fatty acids are synthesized
actively in the liver because insulin resistance-associated hyperinsulinemia favors de novo
lipogenesis (DNL; i.e., the synthesis of fatty acids from carbohydrates) via the activation
of sterol regulatory element-binding protein 1c (SREBP1c). Insulin resistance in skeletal
muscle impairs glucose uptake and glycogen synthesis, thus favoring glucose utilization
for hepatic DNL. In addition, hepatic DNL can be activated by carbohydrate response
element binding protein (ChREBP) when hyperglycemia occurs [13,19]. Finally, whereas
mitochondrial FAO is not reduced in the early stage of MAFLD, impaired autophagy
can favor lipid droplets accumulation [16,20]. Indeed, a defect in autophagy reduces the
clearance of lipid droplets, further promoting steatosis development [20].

The pathogenesis of fatty liver progression to NASH seems to involve multiple hits
and targets as extensively discussed in previous reviews [8,12,14,15,17,21–23] (Figure 2).
Briefly, evidence points to a major role of mitochondrial dysfunction, overproduction of
reactive oxygen species (ROS), reduced ROS detoxification and endoplasmic reticulum
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(ER) stress. Of note, ER stress seems to also play an important role in hepatic lipid accu-
mulation via different mechanisms, including impairment of very low-density lipoprotein
(VLDL) secretion [21,24]. ROS overproduction during MAFLD might mainly occur within
mitochondria, in particular at the level of different complexes of the mitochondrial respi-
ratory chain (MRC) and some enzymes of the FAO pathway [23,25]. However, another
source of ROS in MAFLD seems to be cytochrome P450 2E1 (CYP2E1), as discussed below.
Other important factors involved in MAFLD progression include increased production
of pro-inflammatory and profibrogenic cytokines by parenchymal and non-parenchymal
liver cells. Lastly, besides the exposure to different xenobiotics as discussed in this review,
genetic polymorphisms in different genes (e.g., PNPLA3 and TM6SF2) could be involved in
fatty liver progression to NASH in a subset of obese subjects.

Metabolic “flexibility” or “adaptation” is an important feature of MAFLD, at least
in the early stages of the disease. For instance, higher hepatic secretion of VLDL is ob-
served in patients with obesity-related fatty liver [13,23,26]. Increased mitochondrial FAO
and tricarboxylic acid cycle activity also occurs in simple fatty liver [15,23,27]. However,
these metabolic adaptions are still not sufficient to avoid hepatic lipid accumulation. Fur-
thermore, mitochondrial flexibility appears to play a major role in oxidative stress and
inflammatory processes [23,27]. Notably, mitochondrial adaptations are apparently lost
during NASH, which might further favor ROS overproduction [23,28]. The occurrence
of mitochondrial “inflexibility” could involve a progressive reduction in MRC activity
and a loss of peroxisome proliferator-activated receptor alpha (PPARα) expression and
activity [23,28,29].

2.3. MAFLD and Changes in Xenobiotic Metabolism

Another metabolic feature of MAFLD and obesity is the altered hepatic expression and
activity of numerous xenobiotic metabolizing enzymes (XMEs), extensively discussed in
several previous reviews [30–34]. XME activity is also altered in the intestine and kidneys of
obese individuals, further impacting drug pharmacokinetics [33]. In addition to metabolism,
the alteration in drug absorption, distribution and elimination is observed in obesity due
to altered gastric emptying and gut permeability, higher cardiac output and increased
volume of distribution and glomerular filtration [33,35,36]. Although the impact of obesity
and associated diseases (e.g., MAFLD and diabetes) on drug pharmacokinetics have been
explored in many studies [32–35,37], much less is known regarding other xenobiotics such
as industrial chemicals. Nevertheless, it is conceivable that several molecules present
altered pharmacokinetics in obese people, which might change their toxicological profile.

MAFLD is associated with changes in the activity of some CYPs. For instance, human
MALFD is frequently associated with reduced CYP3A4 activity and increased CYP2E1
activity [32–35,37,38]. Thus, the metabolism of drugs, such as troglitazone metabolized
by CYP3A4 or acetaminophen by CYP2E1, as well as their hepatotoxicity profile, may
be altered [39,40]. The mechanism of reduced CYP3A4 activity in MAFLD is still poorly
understood, although two hypotheses can be put forward. Inflammation might be involved,
since CYP3A4 expression and activity were found to be markedly reduced by different
pro-inflammatory cytokines, such as IL1β and IL6 [41,42]. Whether decreased CYP3A4
activity plays a role in MAFLD progression remains unclear. Some investigations also
pointed to a role of the fibroblast growth factor 21-pregnane X receptor (PXR) pathway,
but others failed to demonstrate any involvement of PXR [38]. Likewise, the mechanism
of MAFLD-associated CYP2E1 induction is still unclear. Previous investigations pointed
to a role of some fatty acids such as stearic acid [43,44]. In addition, insulin resistance-
associated hyperinsulinemia and increased glycemia might also play a role in some obese
individuals [45]. Lastly, MAFLD is associated with changes in the activity of XMEs other
than CYPs, such as uridine diphosphate glucuronosyltransferases (UGTs), which can
be associated with higher glucuronide formation, at least with some drugs, including
lorazepam, oxazepam and acetaminophen [35,38].
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Increased CYP2E1 activity in MAFLD might explain why some drugs such as ac-
etaminophen and halothane induce more severe hepatic liver injury in obese patients, as
discussed in previous reviews [40,46,47]. Besides its effect on drug-induced liver injury,
higher CYP2E1 activity seems to play a significant role in the progression of fatty liver
to NASH [43,48–50]. Indeed, the induction of CYP2E1 could favor oxidative stress, be-
cause this enzyme produces significant amounts of superoxide anion during its catalytic
cycle [43,48]. Noteworthy, CYP2E1 is located within the ER and the mitochondria, thus pro-
ducing ROS and inducing oxidative stress in both compartments [51,52]. Thus, endogenous
or exogenous compounds able to enhance hepatic CYP2E1 activity are expected to promote
the transition from fatty liver to NASH. Finally, some investigations suggested that CYP2E1
induction exacerbates hepatic lipid accumulation, possibly via an ROS-mediated reduction
in PPARα activity [47,53].

3. Xenobiotics Able to Aggravate MAFLD

In this section, we discuss selected drugs and environmental toxicants which could
worsen MAFLD through different mechanisms (Figure 1). The molecules described in this
section were chosen based on sufficient supporting clinical investigations and experimental
data. However, readers are invited to peruse previous reviews in order to know more about
xenobiotics that are not discussed in detail below. This concerns drugs such as irinotecan,
methotrexate, nucleoside reverse transcriptase inhibitors, phenobarbital and tamoxifen
(Table 1) [40,47]. Although not typically considered as a xenobiotic, we also discuss ethanol
because there are now numerous studies reporting that its abuse has harmful consequences
on the liver of obese alcoholics.

Table 1. Drugs and environmental toxicants shown or suspected to worsen obesity-related fatty
liver disease 1.

Drugs Environmental Contaminants

Corticosteroids (Corticosterone,
Dexamethasone) Bisphenol A (BPA)

Irinotecan 2 Diesel exhaust particles
Methotrexate 2 Hexabromocyclododecane (HBCD)

Nucleoside reverse transcriptase inhibitors
(didanosine, stavudine) 2 Nonylphenol

Pentoxifylline 2 Perchloroethylene
Phenobarbital 2 Perfluorooctanoic acid (PFOA)

Tamoxifen 2 Tetrabromodiphenyl ether (BDE-47)
Tetracycline 2 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)

Thiazolidinediones (rosiglitazone,
troglitazone, pioglitazone)

1 See text for details. 2 Refer to previous reviews [40,47] for more information. Compounds in bold letters are
discussed in detail in the manuscript, in particular regarding the involved mechanism(s). Ethanol is not mentioned
in this table because this molecule is not typically considered as a xenobiotic.

3.1. Drugs
3.1.1. Corticosteroids

Corticosteroids (also referred to as glucocorticoids) are potent anti-inflammatory
molecules used to treat lupus, rheumatoid arthritis, asthma, Crohn disease and different
types of allergies. Inflammatory liver diseases such as alcoholic hepatitis are routinely
treated with corticosteroids [54], while their use is not recommended for MAFLD [55].
Corticosteroids include natural hormones, such as cortisol and corticosterone, and syn-
thetic agents, including dexamethasone, prednisone and triamcinolone. Corticosteroids
can induce, in some patients, different types of liver lesions, such as hepatic cytolysis,
steatosis, steatohepatitis and benign liver tumors [40,56]. Moreover, these drugs can fa-
vor abdominal obesity, hyperlipidemia, insulin resistance and T2DM, even after topical
administration [47,57,58].
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Despite numerous studies on corticosteroid-induced effects on lipid metabolism [59,60],
the mechanisms whereby these molecules can induce hepatic steatosis only in a subset
of patients are poorly understood and sometimes controversial [61]. For instance, some
studies reported that corticosteroids directly induce triglyceride accumulation in cultured
hepatocytes, in particular through increased uptake and synthesis of fatty acids [62,63]. In
contrast, other investigations failed to report dexamethasone-induced triglyceride accu-
mulation in cultured hepatocytes, thus leading to the proposal that corticosteroid-induced
steatosis in vivo requires some systemic factors such as NEFAs or periostin [61,64]. Hence,
corticosteroids may favor lipid accumulation in the liver through different mechanisms
depending on substrate availability, systemic factors or binding partners [55,62,63]. Indeed,
the glucocorticoid receptor (GR) interacts with numerous hepatocyte-expressed transcrip-
tion factors playing a major role in lipid metabolism, such as PPARα, Forkhead box protein
O1 (FOXO1), Hepatocyte Nuclear Factor 4α (HNF4α) and Liver X Receptor (LXR) [60]. Ob-
viously, further investigations are required to decipher the molecular mechanisms involved
in corticosteroid-induced steatosis.

Given the extensive effects on lipid homeostasis, corticosteroids may worsen pre-
existing metabolic disturbances and MAFLD (Table 1) [40,47]. Although not reported in
obese individuals yet, long-term treatment with dexamethasone worsened hepatic triglyc-
eride accumulation in diet-induced obese mice [65,66]. Importantly, liver triglycerides were
not increased in mice fed a standard diet, thus indicating a synergistic effect of high-fat diet
(HFD) and dexamethasone on steatosis [65,66]. However, in rats, an additive effect between
corticosterone and HFD on hepatic lipid deposition was found, as corticosteroid-treated
animals fed a standard diet developed hepatic steatosis [67,68]. In one of these studies,
plasma bilirubin and ALT levels, and liver collagen content were significantly increased in
HFD rats treated with corticosterone compared to untreated HFD rats [67]. Accordingly,
these results suggest that corticosteroids might not only exacerbate liver lipid accumulation
but might also favor the transition from simple fatty liver to NASH.

The mechanisms whereby corticosteroids worsen obesity-related fatty liver in rodents
remain largely unknown. A first suspected mechanism is insulin resistance, associated
with increased [67,68] or decreased [66] body fat mass. In the latter study, the reduction
in adiposity was correlated with an upregulation of the lipolytic enzyme adipose triglyc-
eride lipase (ATGL), although increased energy expenditure might also be involved [66].
However, these investigations did not unveil how corticosteroids and obesity could syner-
gistically activate ATGL expression [66]. In addition to insulin resistance and increased flux
of NEFAs to the liver, indirect evidence also suggests that corticosteroids and obesity might
favor hepatic steatosis via enhanced circulating levels of periostin, an extracellular matrix
protein expressed in most tissues, including WAT [61] and liver [69]. Dexamethasone-
induced steatosis in mice was almost fully prevented by the administration of a periostin-
neutralizing antibody or in periostin-knockout mice [61]. In this study, the prevention
of dexamethasone-induced steatosis was associated with a restoration of hepatic PPARα
expression [61]. Besides, obese patients with MAFLD present high circulating levels of pe-
riostin [69–71]. Moreover, increased hepatic expression of periostin associated with MAFLD
negatively regulates PPARα expression via a mechanism dependent on c-Jun N-terminal
kinase (JNK) [69]. Nevertheless, it remains to be determined whether corticosteroids and
obesity exert synergistic effects on periostin-induced PPARα downregulation and alteration
in lipid metabolism in the liver.

3.1.2. Thiazolidinediones

Thiazolidinediones are synthetic antidiabetic agents whose beneficial effect on insulin
sensitivity is mediated via PPARγ activation. This drug class includes different molecules,
such as rosiglitazone, troglitazone and pioglitazone.

Rosiglitazone is an analogue of troglitazone, the first derivative of the thiazolidine-
dione family withdrawn from the market in 2000. Indeed, troglitazone induced several
cases of fatal acute liver injury with massive hepatic cytolysis, cholestasis and microvesic-
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ular steatosis [40,72,73]. Rosiglitazone is much safer than troglitazone, although several
cases of hepatic cytolysis and cholestasis, sometimes severe, were reported in treated indi-
viduals [74]. In contrast, to our knowledge, rosiglitazone has not been reported to induce
microvesicular steatosis in patients. Noteworthy, rosiglitazone therapy is associated with
body weight gain, peripheral edema and heart failure, so that this antidiabetic is prescribed
as a second-line agent for T2DM. Rosiglitazone-induced cardiovascular side effects led
different countries to withdraw this drug from the market. The second thiazolidinedione
derivative currently approved by the Food and Drug Administration (FDA) is pioglitazone.

Both rosiglitazone and pioglitazone have been tested in the treatment of NASH [40].
Although pioglitazone therapy showed consistent beneficial effects on NASH progression,
rosiglitazone use was overall less effective than pioglitazone or found to be without signifi-
cant benefit in some investigations [75,76]. In addition, rosiglitazone-induced worsening of
steatosis, necroinflammation and perisinusoidal fibrosis were observed in some patients
(Table 1) [47,77]. In keeping with these observations, patients treated for 12 months with
rosiglitazone showed increased hepatic mRNA expression of Toll-like receptor 4 (TLR4),
interleukin-8 (IL8) and C-C motif chemokine ligand 2 (CCL2, also known as MCP-1), thus
suggesting a pro-inflammatory state [78].

Several investigations performed on different murine models of obesity and T2DM
reported that rosiglitazone worsened liver triglyceride accumulation and hepatic steato-
sis [79–86]. However, only a few studies compared rosiglitazone effects between lean and
obese mice. In such investigations, rosiglitazone did not induce steatosis in lean animals,
whereas it exacerbated hepatic fat accumulation in obese mice, demonstrating a synergistic
effect of rosiglitazone and obesity on fatty liver [82,86]. In two aforementioned studies,
rosiglitazone-induced aggravation of fatty liver was associated with increased circulating
ALT activity, thus suggesting that necroinflammation could be also exacerbated [80,83]. In
contrast to these studies, others showed that rosiglitazone alleviates hepatic steatosis in
obese rodents [87–89]. The exact reasons of these discrepancies are still unknown but might
be explained by several experimental parameters, such as differences in rodent models of
obesity and protocols of rosiglitazone treatment, including duration and dose.

Rosiglitazone-induced worsening of hepatic triglyceride accumulation in obese mice
was associated, in most investigations, with an improvement of insulin resistance, in
keeping with its pharmacological action [80–82,84,85]. Yet, effects on body weight were not
consistent, being either increased [80–82], unchanged [84] or reduced [85]. Unfortunately,
these studies did not determine whether body fat mass was affected. Hence, further
investigations are warranted to determine the relationship between the worsening of
hepatic steatosis and adiposity.

Several studies attempted to decipher the mechanisms underlying the synergistic effect
of obesity and rosiglitazone on fatty liver. Some investigations suggested an exacerbation
of hepatic DNL [80], which might have been favored by the high basal expression of
PPARγ in obese liver [83,86]. This hypothesis was reinforced by in vitro investigations
of mouse hepatocytes overexpressing PPARγ2 [90]. Indeed, although troglitazone was
used as PPARγ agonist in this study, intracellular lipid accumulation induced by PPARγ2
overexpression was further enhanced by this thiazolidinedione derivative [90]. In addition
to exacerbated DNL, rosiglitazone could also favor uptake of NEFAs by the fatty liver,
presumably via an increased expression of FAT/CD36 [81].

Greater hepatotoxicity of rosiglitazone in some obese patients might also be secondary
to an alteration in its pharmacokinetics, which might favor higher plasma concentrations
and PPARγ overactivation in the liver. In keeping with this hypothesis, the plasma half-
life of rosiglitazone was nearly tripled in a mouse model of diet-induced obesity [91].
Rosiglitazone mainly undergoes CYP2C8-mediated p-hydroxylation and N-demethylation,
followed by sulfate and glucuronide conjugation [92], metabolic pathways that might
be affected in obesity. A previous study suggested reduced CYP2C8 activity in obese
individuals [93], but this was not confirmed by other investigators [94]. Hence, further
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investigations are required for a better understanding of rosiglitazone pharmacokinetics
in obesity.

The mechanisms involved in rosiglitazone-induced hepatic necroinflammation in
some subjects with MAFLD remain unknown. Rosiglitazone might exacerbate MAFLD-
associated mitochondrial dysfunction, which, in turn, might cause overproduction of ROS
and proinflammatory cytokines [23,27,83]. In keeping with this assumption, relatively
low concentrations (25 and 50 µM) of rosiglitazone were shown to inhibit the activity
of MRC complexes I–IV in differentiated HepaRG cells, which was associated with ROS
overproduction [95]. More recent investigations of MDA-MB-231 cells confirmed that
rosiglitazone could induce mitochondrial dysfunction, but ROS were not assessed in this
study [96].

In contrast to rosiglitazone, pioglitazone showed consistent beneficial effects on NASH
progression in patients [75,76], as previously mentioned. Nevertheless, investigations of
obese mice showed that pioglitazone worsened fatty liver [97,98]. In one of these studies,
pioglitazone increased the mRNA expression of several genes involved in lipid synthesis,
such as fatty acid synthase (Fasn), stearoyl-CoA desaturase (Scd1) and enzymes involves
in fatty acid elongation (Elovl3, -5 and -7) [98]. However, pioglitazone concomitantly
decreased the expression of different genes involved in the inflammatory response [98].
Interestingly, pioglitazone but not rosiglitazone might elicit anti-inflammatory effects via
PPARα activation [99]. Hence, the anti-inflammatory property of pioglitazone might
explain why this thiazolidinedione derivative presents more favorable effects on NASH
progression than rosiglitazone. In addition, it is noteworthy that pioglitazone is a weaker
human PPARγ activator than rosiglitazone [100,101], which could explain the differential
steatogenic effect on patients.

3.1.3. Other Drugs

MAFLD may be worsened, in obese patients, by other pharmaceuticals, such as
irinotecan, methotrexate and tamoxifen (Table 1), which have been extensively discussed in
previous reviews [40,47,102,103]. However, despite being observed clinically, the mecha-
nisms leading to aggravation of MAFLD are poorly characterized. Pentoxifylline, a drug
tested in NASH for its anti-TNF-γ activity, is suspected to aggravate fatty liver, inflamma-
tion and fibrosis in few patients (Table 1), although this methylxanthine derivative showed
some beneficial effects in most patients [104,105]. A 3-week treatment with pentoxifylline
aggravated fatty liver in obese diabetic ob/ob mice and this was associated with hepatic
ChREBP overactivation, possibly as a consequence of enhanced intestinal glucose absorp-
tion and increased postprandial glycemia [105]. Notably, pentoxifylline did not induce
steatosis in wild-type (i.e., lean) mice [105]. Hence, it is possible that long-term treatment
with pentoxifylline could exacerbate fatty liver only in a subset of patients with severe
pre-existing hyperglycemia. Other drugs, such as phenobarbital [106] and tetracycline [107]
(Table 1), exacerbated fatty liver in obese rodents, yet clinical investigations with these
drugs are lacking. Stavudine and didanosine are suspected to aggravate fatty liver in
some patients, potentially through mitochondrial dysfunction [40]. However, experimental
studies are required to determine the exact mechanisms.

3.2. Environmental Toxicants
3.2.1. Bisphenol A

Bisphenol A (BPA) was identified as an estrogenic derivative in the mid-1930s, but this
synthetic chemical was never developed as a drug [108]. Instead, BPA has been extensively
used as a plasticizer incorporated in numerous consumer goods, such as food storage
containers, bottles and CDs. Human exposure to BPA is suspected to favor obesity and
related metabolic disorders, such as insulin resistance, T2DM and MAFLD [109–111]. Many
experimental data in rodents confirmed that metabolic disturbances occur after exposure
to BPA in adulthood or during the perinatal period [112,113]. Hence, BPA is now deemed
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to be a prototypical endocrine disruptor whose use in food containers and thermal paper
has been banned in different countries [110].

The mechanisms of BPA-induced metabolic disturbances are complex and have been
extensively discussed in recent reviews [110,111,113,114]. Briefly, many of the metabolic
and endocrine alterations induced by BPA could be mediated via the activation of several
nuclear receptors, such as estrogen receptor alpha (ERα), ERβ estrogen related receptor γ
(ERRγ) and PXR. BPA could also activate PPARγ and CCAAT/enhancer binding proteins
(C/EBPs), although it is still debated whether these transcription factors play a role in BPA’s
mode of action [113,114]. Lastly, rodent studies suggested a role for SREBP activation in
the liver [115,116], but whether such activation is direct or mediated by hyperinsulinemia
remains to be determined.

The mechanisms whereby BPA can induce steatosis are still poorly understood.
BPA-induced hepatic lipid accumulation is likely secondary to obesity and insulin re-
sistance [111,117], while a recent study suggested a role for gut microbiota dysbiosis [118].
BPA could also have direct effects on hepatocytes. Indeed, several in vitro studies showed
that BPA induced lipid accretion in the human hepatic cell lines HepG2, HepaRG and
HHL-5 [119–126]. This effect was observed for BPA concentrations in the nanomolar
range in four independent studies [119,120,123,125], with a non-monotonic profile ob-
served in three of them [119,123,125]. Interestingly, in HepG2 cells, BPA increases SREBP1
expression through the downregulation of miR-192, thus leading to triglyceride accumu-
lation [124]. Alternatively, BPA indirectly activates the endocannabinoid receptor CB1
to induce SREBP1 [122]. Of note, BPA-induced intracellular cholesterol accumulation
involves SREBP2 activation [125]. A previous study suggested a role for mitochondrial
dysfunction in BPA-induced neutral lipid accumulation, but mitochondrial FAO has not
been assessed [120]. It has also been proposed that PXR may play a role [121], but this
hypothesis could not be confirmed [123]. The latter study also provided evidence that
ERRγ is not involved in BPA-induced steatosis [123].

Only a few studies compared the metabolic and hepatic effects of BPA between lean
and obese mice. One study found a synergistic effect of BPA and diet-induced obesity re-
garding hepatic triglyceride content and collagen deposition [127]. Although this study did
not provide mechanistic explanations for these effects, other studies showed a synergistic
effect of BPA and HFD on glucose intolerance and, possibly, insulin resistance [128,129].
Maternal exposure to BPA led to increased hepatic lipid accumulation in rat male offspring,
which was further exacerbated by HFD after weaning with a higher ratio of microvesicu-
lar/macrovacuolar steatosis [130]. Further investigations in this study suggested impaired
mitochondrial FAO, especially at the level of carnitine palmitoyltransferase 1 (CPT1), a
major enzyme involved in the mitochondrial entry of long-chain fatty acids [130].

The synergistic effects of BPA and HFD on fatty liver, glucose intolerance and pos-
sibly insulin resistance might be, at least in part, secondary to an impairment of BPA
biotransformation resulting in higher BPA bioavailability. A previous study in humans
and mice disclosed a strong reduction in BPA sulfonation in MAFLD [131]. However,
reduced BPA sulfonation in MAFLD might have little consequence on BPA bioavailability,
because BPA-sulfate is a minor metabolite of BPA in humans and rodents, in contrast to
BPA-glucuronide [131,132]. Hence, future investigations are required to determine whether
MAFLD is also associated with the impairment of BPA glucuronidation.

3.2.2. Perfluorooctanoic Acid

Perfluorooctanoic acid (PFOA) is one of the most common poly- and perfluoroalkyl
substances (PFAS) used for industrial and commercial applications. PFOA is a surfactant
with water-repellent properties which can be found in many consumer goods, such as
non-stick pans, weatherproof garments, floor waxes, food containers and cosmetics. Most
uses of this chemical are banned or are progressively being suppressed in many countries
because of suspected toxicity in animals and humans [133]. Indeed, the exposure to high
levels of PFOA among residents living near the DuPont Teflon-manufacturing plant in
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Parkersburg, West Virginia, is linked to several types of cancers, especially testicular and
kidney malignancies [134,135]. In addition, workers of this chemical plant presented a
higher risk of mortality for several diseases, such as chronic renal diseases and diabetes
mellitus [136]. Interestingly, longitudinal cohort studies suggested that environmental
PFOA exposure in the general population might be associated with increased risk of
T2DM [137,138]. Environmental PFOA exposure might also be associated with excess
adiposity, in particular in the setting of early-life exposure [139,140], although other studies
did not confirm these findings [141,142]. In contrast, the environmental PFOA exposure of
the general population is consistently associated with hypercholesterolemia [135,141,143].
However, very high PFOA exposure seems to reduce total blood cholesterol levels, possibly
via PPARα activation [144].

Regarding the liver, PFOA exposure might be associated with elevated ALT activ-
ity [135,142,145]. In some epidemiological studies, higher circulating ALT activity is more
pronounced in obese subjects compared to nonobese ones, suggesting a synergistic effect of
PFOA exposure and obesity on hepatic cytolysis [146,147]. In contrast, other investigations
did not find an association between PFOA and elevated ALT activity [144]. Actually, except
for hepatic cytolysis, the current available epidemiological data do not support a link
between PFOA exposure and liver diseases, including MAFLD [133,135,145]. Hence, fur-
ther epidemiological studies specifically designed for elevated liver enzymes and MAFLD
are needed in order to better evaluate the effects of PFOA exposure on human liver, as
underlined by different authors [135,145]. Of note, some PFAS, such as perfluorooctane
sulfonate (PFOS) and perfluorohexane sulfonate (PFHxS), are more likely to cause fatty
liver in exposed individuals [148].

In mice, several investigations consistently reported PFOA-induced elevated hepatic
triglyceride levels and steatosis [149–153], although this was not confirmed in another
study [154]. These discrepancies might be explained by different factors, such as the dose
of PFOA and duration of treatment, the mouse strain and the diet. Interestingly, in BALB/c
mice, 28 days of PFOA treatment decreased liver triglycerides with the administration
of the 0.08 and 20 mg/kg/day doses but increased them with the administration of the
1.25 mg/kg/day dose [150]. PFOA was also shown to induce the accumulation of lipid
droplets in hepatocyte nuclei [155]. Because the accumulation of lipid droplets in the
nucleus could have significant effects on lipid signaling and nuclear receptor function [156],
further investigations are required to determine the exact consequences of this observation.
In addition to these in vivo studies, PFOA increased intracellular levels of neutral lipids
and triglycerides in different human hepatic cell lines [153,157,158]. However, it should be
underlined that these effects were observed for high PFOA concentrations (i.e., 50 µM or
more) [153,157,158].

From these experimental investigations, several hypotheses can be put forward in
order to explain how PFOA induces steatosis (Figure 3), such as the following:

(1) Direct binding to PPARγ [111,159], whose activation increases the expression of
FAT/CD36 and different genes involved in DNL, such as SREBP1, acetyl-coenzyme A
carboxylase (ACC) and FASN [90,152]. Of note, SREBP1 can activate PPARγ via the
production of fatty acid derivatives acting as endogenous ligand(s) [160]. Hence, it
would be interesting to determine whether PFOA can directly activate SREBP1 in a
PPARγ-independent manner, which might reinforce DNL stimulation secondary to
PFOA-induced activation of PPARγ.

(2) PXR activation. On one hand, previous studies showed that PFOA can activate PXR,
in particular the human ortholog [111,161], although this has not been confirmed
in other investigations [162,163]. On the other hand, many investigations showed
that PXR can trigger a steatogenic response in liver [159,164,165]. Hence, it would
be interesting to assess the metabolic effects of PFOA in PXR-knockout mice and in
human hepatocytes with PXR silencing.

(3) Reduction in HNF4α protein levels and activity [152,166], an effect which is expected
to impair FAO and VLDL secretion [167].
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(4) ER stress [157,158], which might also strongly impair VLDL secretion [21,24]. How-
ever, ER stress was observed in human hepatic cells with high concentrations of PFOA
(i.e., 100 or 200 µM) [157,158].

(5) Impairment of autophagy [153], which might reduce the degradation of excessive
lipid droplets [16,20].

(6) Mobilization of lipids from the adipose tissue due to a loss of fat mass [168]. Indeed,
some investigations of mice reported that PFOA exposure significantly reduced body
weight and adiposity, even when the animals were fed a HFD [154,155,157,168].
PFOA-induced reduction in fat mass in mice might be mainly due to a lower food
intake [168,169], possibly via an uncoupling protein 1-dependent mechanism [169].
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It is noteworthy that PFOA is a potent activator of PPARα [162,163,170,171]. Although
PFOA-induced PPARα activation in rodents can induce hepatic hyperplasia and hepatocar-
cinogenicity, the use of drugs activating PPARα (e.g., fibrates) in humans have beneficial
effects on lipid metabolism, in particular by reducing blood triglycerides and alleviating
MAFLD [170,172]. Hence, it is tempting to speculate that PFOA-induced PPARα activation
might alleviate its deleterious effects on lipid homeostasis, which might be linked to the
activation of other nuclear receptors, such as PPARγ and PXR, as previously mentioned.
In keeping with this hypothesis, the PFOA-induced hepatic accumulation of large lipid
droplets was observed in male PPARα-null mice but not in male mice expressing hu-
man PPARα [171]. In addition to steatosis, PPARα activation might also protect against
other liver lesions induced by PFOA, such as bile duct hyperplasia and hematopoietic cell
proliferation [173].

Five studies assessed the hepatic effects of PFOA in mice fed with different types of
HFDs [154,155,168,171,174]. Unfortunately, two of these studies did not include groups of
mice fed a standard diet [171,174]; thus, this does not allow one to determine the additive
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or synergistic effects between PFOA and high-fat feeding. Nonetheless, in one of the
latter studies, PFOA induced significant steatosis in male PPARα-null mice fed a HFD,
whereas steatosis was less marked in the non-exposed counterparts [171]. Whether this
exacerbation of liver lipid content was associated with hepatic cytolysis remains unknown,
as serum ALT and AST activity was not reported [171]. The other study, focused on
cholesterol metabolism, reported that PFOA reduced liver cholesterol levels in male and
female BALB/c mice fed a HFD but not C57BL/6 mice fed the same diet [174].

The other three investigations of mice reported incomplete or opposing results regard-
ing hepatic lipids and cytolysis between standard diet and HFD [154,155,168]. In one study,
PFOA-induced liver triglyceride accumulation was similar between standard-diet- and
HFD-fed mice and a synergistic effect between PFOA treatment and HFD was observed
for plasma ALT activity [168]. In another study, focused on nuclear lipid droplets, the
accumulation of these droplets was similar between standard diet and HFD mice [155]. Un-
fortunately, this study did not provide information on total liver lipid content and plasma
transaminase activity. Lastly, PFOA exposure protected against HFD-induced steatosis,
hepatic cytolysis and fibrosis [154]. However, a synergistic effect between early PFOA
treatment and HFD was observed regarding PPARα activation and hepatocyte prolifera-
tion [154]. In line with this study, recent investigations showed that PFOS protected against
HFD-induced hepatic steatosis but serum transaminase activity was not reported [175].
Nonetheless, in this study, PFOS induced steatosis in mice fed a normal diet [175].

In summary, there is no conclusive evidence in mice of any additive or synergistic
effect between PFOA exposure and HFD regarding fatty liver, whereas only one study
reported a synergistic effect for hepatic cytolysis [168]. Although this study might be in
line with some data collected from obese individuals [146,147], further investigations are
needed in order to determine the hepatic effects of PFOA in rodent models of obesity.
In particular, it would be important to systematically assess both steatosis and hepatic
cytolysis, since PFOA might have different effects on these liver lesions [168]. Because
PFOA-induced PPARα activation could be a confounding factor in rodent investigations, it
would also be of interest to use human cellular models of MAFLD, as recently described
for other xenobiotics [39,44,176].

3.2.3. Other Environmental Toxicants

Despite not being described clinically, other environmental toxicants aggravated
MAFLD in different rodent models of obesity. For instance, this was reported for diesel ex-
haust particles [177], hexabromocyclododecane (HBCD) [178], perchloroethylene (PCE) [179],
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) [180], nonylphenol [181] and tetrabromodiphenyl
ether (BDE-47) [182]. Aggravation of fatty liver by TCDD and BDE-47 might be linked
with aryl hydrocarbon receptor (AhR) activation and the subsequent increased expression
of FAT/CD36 [180,182], whereas HBCD and nonylphenol might act via PPARγ activa-
tion [178,181]. Regarding perchloroethylene, which aggravated both fatty liver and hepatic
cytolysis (as assessed by serum ALT activity) in HFD-fed mice, the precise mechanism
of MAFLD worsening was unfortunately not delineated [179]. Nevertheless, this study
showed that MAFLD was associated with the hepatic accumulation of perchloroethylene
and its major oxidative metabolite, trichloroacetate [179]. Hence, the worsening of MAFLD
induced by perchloroethylene might be, at least in part, secondary to an increase in its
bioavailability. However, the underlying mechanisms whereby these molecules aggravate
MAFLD are poorly characterized and warrant further investigations.

3.3. Ethanol

Even though ethanol can be found in the blood of non-alcoholic individuals [183],
this molecule is mentioned in this review because its overconsumption is a major issue for
public health. Regarding the liver, sustained high alcohol consumption (>20 and 30 g/day
of alcohol for women and men, respectively) leads almost always to hepatic diseases such as
acute hepatitis, fatty liver, steatohepatitis, cirrhosis and hepatocellular carcinoma [184,185].
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Indeed, alcohol intoxication induces several deleterious effects in hepatocytes and other
liver cells, such as mitochondrial dysfunction, increased lipogenesis, CYP2E1 induction
with subsequent ROS overproduction and oxidative stress, impairment of autophagy, ER
stress and increased production of proinflammatory and profibrotic cytokines. Readers
are invited to peruse recent reviews for further information regarding the mechanisms of
ethanol-induced hepatic toxicity [184–191].

There is now strong evidence that alcohol abuse and obesity (or metabolic syndrome)
synergistically increase the risk and severity of different hepatic diseases, including fatty
liver, steatohepatitis, cirrhosis and hepatocellular carcinoma [192–195]. Experimental in-
vestigations attempted to determine how ethanol and obesity synergistically increase
hepatic toxicity in particular regarding steatosis, hepatocyte cell death and inflammation.
Unsurprisingly, different mechanisms have been proposed, including impaired mitochon-
drial function and biogenesis [196,197], reduced expression of PPARα [196,198] or AMP-
activated protein kinase (AMPK) [199], induction of CYP2E1 and oxidative stress [200,201],
unfolded protein response and ER stress [196,202], increased expression of tumor necrosis
factor alpha (TNF-α) [203] or Fas ligand [204,205] and activation of different proinflam-
matory pathways [206–209]. Interestingly, ethanol exerts different deleterious effects on
WAT such as lipoatrophy, increased lipolysis and enhanced secretion of proinflammatory
adipokines [210–212], which might also explain why alcohol intoxication is particularly
hepatotoxic in obese individuals [195].

Finally, recent investigations of different experimental models of MAFLD suggested
that benzo[a]pyrene exposure might even further aggravate the progression of steatosis
to steatohepatitis induced by ethanol [176,213–215]. Potential mechanisms involved in
such progression include overproduction of ROS and nitric oxide [176,214], mitochondrial
dysfunction [176], increased expression of proinflammatory cytokines [213] and plasma
membrane remodeling [215].

4. Key Mechanisms Involved in Xenobiotic-Induced Aggravation of MAFLD

Collectively, the aforementioned studies clearly indicate that xenobiotics can worsen
MAFLD via different mechanisms, as illustrated in Figures 1 and 2. The exacerbation of
pre-existing fatty liver seems to frequently involve increased DNL, either directly via the
activation of different lipogenic transcription factors such as PPARγ and PXR, or indirectly
through hyperinsulinemia or hyperglycemia, which can, in turn, activate SREBP1c and
ChREBP, respectively (Figure 1). Furthermore, xenobiotics might worsen steatosis by
impairing VLDL secretion, in particular as a consequence of ER stress. The impairment of
mitochondrial FAO might also be involved with some chemicals, in particular with drugs
and ethanol, whose intrahepatic concentrations can be relatively high. Notably, xenobiotic-
induced impairment of VLDL secretion and mitochondrial FAO is expected to curb two
major metabolic adaptions occurring during MAFLD, as mentioned previously. Xenobiotic-
induced worsening of pre-existing necroinflammation and fibrosis could involve chronic
ROS overproduction and subsequent oxidative stress, which can favor the production of
pro-inflammatory cytokines (e.g., TNF-α and interleukin-1β) and transforming growth
factor-β (TGF-β), a key pro-fibrotic cytokine (Figure 2). In the setting of MAFLD and
xenobiotic exposure, ROS overproduction seems to be mainly secondary to mitochondrial
dysfunction, whereas the induction of CYP2E1 can play a role with some compounds such
as ethanol.

5. Conclusions

MAFLD may be worsened by different drugs and environmental toxicants but also
by ethanol, which is consumed by millions of people worldwide. However, except for a
handful of xenobiotics (Table 1), there is currently a blatant lack of information regarding
the whole spectrum of molecules able to aggravate MAFLD. Accordingly, there is an urgent
need to determine which compounds could pose a specific risk for overweight or obese in-
dividuals. To this end, experimental investigations using cellular models of MAFLD might
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allow a great number of xenobiotics to be screened [47,176,216]. Although there is increas-
ing evidence that many xenobiotics might alter the insulin signaling pathway [217–220], it
should be pointed out that these in vitro models cannot detect MAFLD worsening due to
extra-hepatic effects such as insulin resistance (Figure 1).

It would also be important to determine if the mechanisms of xenobiotic-induced
MAFLD worsening in obese patients are the same as those triggering steatosis and steato-
hepatitis in lean individuals. To this end, experimental investigations of animal and cellular
models could greatly help to answer this question. Indeed, the worsening of fatty liver in
obese animals (or steatosis in cellular models of MAFLD) associated with the lack of hepatic
lipid accumulation in lean animals (or in non-steatotic hepatic cells) would decipher specific
mechanism(s) in the context of obesity and MAFLD. These investigations might also unveil
the existence of additive or synergistic effects between the investigated compounds and
MAFLD regarding the aggravation of liver disease.

Finally, investigators should seek out the possible toxicological interactions between
pharmaceuticals, environmental pollutants and even alcohol. This is a major issue because
obese people are often polymedicated and are expected to be exposed to some environ-
mental contaminants and to consume different types of alcoholic beverages. In these
individuals, different factors might trigger fatty liver or favor its progression to steatohep-
atitis and cirrhosis. Thus, we propose to coin the term “mixed-origin fatty liver disease”
(MOFLD), which could better reflect the multiple causes leading to fatty liver disease, such
as overnutrition, drugs, environmental toxicants and excessive alcohol consumption. It
should finally be underlined that, in obesity, tissues other than the liver can be particu-
larly injured by xenobiotics, such as heart [221–223] and kidneys [224–226]. Accordingly,
xenobiotic-induced toxicity in obese individuals should concern hepatologists but also
physicians from other medical specialties.
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