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ABSTRACT: In the present study, a nanocomposite adsorbent
based on mesoporous silica nanotubes (MSNTs) loaded with 3-
aminopropyltriethoxysilane (3-APTES@MSNTs) was synthesized.
The nanocomposite was employed as an effective adsorbent for the
adsorption of tetracycline (TC) antibiotics from aqueous media. It
has an 848.80 mg/g maximal TC adsorption capability. The
structure and properties of 3-APTES@MSNT nanoadsorbent were
detected by TEM, XRD, SEM, FTIR, and N2 adsorption−
desorption isotherms. The later analysis suggested that the 3-
APTES@MSNT nanoadsorbent has abundant surface functional
groups, effective pore size distribution, a larger pore volume, and a
relatively higher surface area. Furthermore, the influence of key
adsorption parameters, including ambient temperature, ionic
strength, initial TC concentration, contact time, initial pH,
coexisting ions, and adsorbent dosage, had also been investigated. The 3-APTES@MSNT nanoadsorbent’s ability to adsorb the
TC molecules was found to be more compatible with Langmuir isothermal and pseudo-second-order kinetic models. Moreover,
research on temperature profiles pointed to the process’ endothermic character. In combination with the characterization findings, it
was logically concluded that the 3-APTES@MSNT nanoadsorbent’s primary adsorption processes involved interaction, electrostatic
interaction, hydrogen bonding interaction, and the pore-fling effect. The synthesized 3-APTES@MSNT nanoadsorbent has an
interestingly high recyclability of >84.6 percent up to the fifth cycle. The 3-APTES@MSNT nanoadsorbent, therefore, showed
promise for TC removal and environmental cleanup.

1. INTRODUCTION
Because of their potent bactericidal and antibacterial
capabilities, antibiotics are often used in the medical field.1

Tetracyclines (TCs) are among the antibiotics that are
frequently used because of their effectiveness in treating
bacterial infections. Although TCs are partially digested in
both humans and animals, between 60 and 90 percent of TCs
are excreted in their original form and parent component into
the aquatic environment.2 The widespread use of TCs and
other antibiotics in the aquatic atmosphere might result in the
emergence of drug-resistant bacteria, which have the potential
to mutate into ″superbugs″ and endanger human health. The
human circulatory system, liver, and hematopoietic functions
can all be harmed over time by ingesting wastewater containing
antibiotics, which can also make the body resistant to
medication. Tetracycline removal from the environment is
now a hot topic for study throughout the world in an effort to
lessen the environmental and ecological risks associated with
tetracycline antibiotics.3

To ascertain how antibiotics behave in the environment, it is
critical to research their dynamics in soil. One of the primary

controlling elements to stop the entry of these compounds into
the food chain might be adsorption onto soil components.4

However, this procedure is based on the properties of the
antibiotics and the soil. In terms of soils, exchangeable cations,
clay types, organic matter quality, and content, and pH values
are important variables. In contrast, antibiotics’ interactions
with soils are primarily influenced by their chemical properties
of functional groups, water solubility, and the number and
value of their acid dissociation constants (pKa). Additionally, it
should be considered that many antibiotics might enter the soil
at the same time as pollutants, which could change each
antibiotic’s performance with respect to interactions with soil
components. There is not much research that specifically
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addresses the competitive adsorption of tetracyclines and
sulfonamides in this context.5

Tetracycline has been eliminated from aqueous solutions in
recent years using a variety of techniques, including
adsorption-based, electrochemical, membrane, advanced oxi-
dation, and biodegradation techniques.6 Adsorption-based
techniques offer several benefits over other techniques,
including ease of design and operation, affordability, environ-
mental safety, and great efficacy in removing small amounts of
different contaminants.7−12 To enrich low quantities of
antibiotics for later breakdown, adsorption is a viable
pretreatment. Mineral adsorbents, resin adsorbents, metallic
oxides, and biochar materials have all been used in antibiotic
adsorption. Due to their high adsorption capacity, simplicity of
separation, and ease of regeneration, metallic oxides are a
popular topic in the study.13−19 The creation of defects,
primarily oxygen vacancies, was a successful strategy for
increasing the adsorption capacity of metallic oxide adsorbents.
It has been demonstrated in several investigations that oxygen
vacancies serve as capture sites and promote the adsorption of
inorganic ions and TC anions.20−26

In order to create certain mesoporous silicas, several
investigations have concentrated on the interactions between
silica species and surfactants.27−32 The interaction of the
inorganic and organic components results in the spontaneous
assembly of mesostructured surfactant−silica nanocomposites.
The dimensions and morphologies of the resultant materials
depend heavily on the kinetics of sol−gel chemistry, including
the pH of the reaction solution, the amount of water present,
and the reaction temperature.13,33 This is in addition to the
thermodynamics of the surfactant−silica combination.34 The
morphologies, sizes, and mesostructures of the mesoporous
silicas may be tailored by carefully controlling the silica
condensation rate and self-assembly.35

Recent interest in using mesoporous silica nanoparticles
(MSNs), which have homogeneous mesopores, simple
functionalization, and high biocompatibility for biomedical
purposes, has increased. The huge surface area and pore
chambers offer a perfect foundation for creating a multifunc-
tional theranostic agent.36 The different structure gives MSNs
three functionally separate domains: the nanochannels/pores,
the outermost surface of the nanoparticle, and the silica
framework. MSNs have also been shown to have uncompli-
cated surface functionalization, in vivo biocompatibility, and
eager cell uptake in addition to these qualities.37−42

We investigated the adsorption behavior, removal impact,
and mechanism for functionalized mesoporous silica nanotubes
for organic pollutants based on the aforementioned back-
ground. The functionalization of the mesoporous silica
nanotubes was preformed by immobilization of 3-amino-
propyltriethoxysilane. The prepared 3-APTES@MSNT nano-
adsorbent was analyzed and characterized by transmission
electron microscopy (TEM), X-ray powder diffraction (XRD),
Fourier transform infrared spectroscopy (FTIR), nitrogen
adsorption−desorption isotherm, and scanning electron
microscopy (SEM). At the same time, the target pollutant
was decided to be the antibiotic TC, and the effectiveness of
the 3-APTES@MSNT nanoadsorbent for TC adsorption was
investigated. Characterization investigation both before and
after adsorption was coupled with kinetics and isotherm model
fitting to examine the adsorption mechanism.

2. MATERIALS AND METHODS
2.1. Materials and Instruments. The Supplementary

Material included detailed illustrations of all chemicals and
instruments.

2.2. Synthesis of the 3-APTES@MSNT Nanoadsorb-
ent. The MSNTs and its 3-APTES@MSNT nanoadsorbent
have been synthesized previously in our previous work.43 The
synthesis process is illustrated in detail in the Supplementary
Material.

2.3. Removal and Batch Studies of the 3-APTES@
MSNT Nanoadsorbent. Typical batch adsorption was used
to remove the tetracycline. The initial drug concentration used
for the equilibrium and kinetic adsorption was 1.77 × 10−3 mol
L−1. The adsorbent dosage ranges from 0.01 to 0.25 g, and the
temperature ranges from 293 to 323 K. With all other
parameters being constant, the impact of the pH on adsorption
behavior was examined in the pH range of 2−12 using either
HCl or NaOH at a concentration of 0.1 mol L−1. The same
circumstances were used to study thermodynamic adsorption
at 293, 303, and 333 K. Using a spectrophotometer with a
wavelength of 446 nm, the impact of ionic strength, the TC
starting concentration, adsorbent dose, and recycling was also
examined.44

Using the global mass balance of the TC molecules in the
batch eqs 1 and 2, removal percentage (percent R) and the
equilibrium adsorption capacity (qe) were computed.

Figure 1. (A) Low-angle XRD and (B) wide-angle X-ray diffraction patterns of the MSNTs and its 3-APTES@MSNT nanoadsorbent samples
before and after the adsorption of the TC molecules.
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Figure 2. N2 adsorption−desorption isotherms of the MSNTs and 3-APTES@MSNT nanoadsorbent before and after the adsorption of the TC at
77 K (A) and their pore size distribution curves (B).

Figure 3. FE-SEM images of (A) the MSNTs and (B) the 3-APTES@MSNT nanoadsorbent and HR-TEM images of (C) the MSNTs and (D) the
3-APTES@MSNT nanoadsorbent.
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3. RESULTS AND DISCUSSION
3.1. Characterization of the 3-APTES@MSNT Nano-

adsorbent. 3.1.1. XRD Patterns. XRD was used to confirm
the 3-APTES@MSNT nanoadsorbent and MSNT structures.
According to Figure 1A, the low-angle XRD patterns of them
showed a peak at 2θ ≈ 1.74°, demonstrating the existence of
organized mesopores in the silica nanotubes’ walls. As seen in
Figure 1B, the wide angle XRD of the MSNT and 3-APTES@
MSNT samples revealed a typical broad peak spanning the
range 17−35°. This is explained by the discovery that the wall
of the nanotubes is formed of amorphous silica. It seems that
the structural morphology of the MSNTs was preserved

following the alteration by 3-APTES. Moreover, the structural
morphology of the 3-APTES@MSNT nanoadsorbent was
investigated after the adoption process of the TC. From Figure
1A,B, results indicate that the structural morphology of the 3-
APTES@MSNT nanoadsorbent did not affect the adsorption
process.45

3.1.2. Brunauer−Emmett−Teller Specific Surface Area.
The nitrogen adsorption−desorption isotherm measurements
of the MSNTs and its 3-APTES@MSNT nanoadsorbent were
performed. Both samples had a type IV isotherm, as seen in
Figure 2A, which exhibits pore condensation and a hysteresis
loop at P/Po = 0.5−1.0 relative pressure. The (BET) surface
area of the 3-APTES@MSNT nanoadsorbent was 658.34 m2/
g, which is lower than the MSNTs surface area (819.26 m2/g).
Subsequently, the MSNTs’ pore volume was 0.658 cm3/g,
while the 3-APTES@MSNT nanoadsorbent pore volume was
0.532 cm3/g. Furthermore, the pore volume and surface area of
the 3-APTES@MSNT nanoadsorbent after adsorption of TC
were decreased to be 0.389 cm3/g and, 492.86 m2/g,

Figure 4. (a) pH of the solution’s effect on the effectiveness of TC elimination. (b) pKa of the TC. (c) pHzpc of the 3-APTES@MSNT
nanoadsorbent. (d) Structural moieties associated with the three acidic dissociation constants are represented in the areas bounded by dashed lines
(pKa).
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respectively. The decline in pore volume and surface area of
the 3-APTES@MSNT nanoadsorbent can be attributed to the
attaching of the TC molecules inside and outside the pores on
the wall of the silica nanotubes. On the other hand, the
decrease in both pore volume and surface area after adsorption
of the TC indicates that the removal processes may be due to
pore filling.46

3.2. SEM and TEM Analysis. Figure 3 displays, using FE-
SEM and HR-TEM, the structural morphologies of MSNTs
and its 3-APTES@MSNT nanoadsorbent. They hypothesized
that the material contains 33 nm-diameter nanotubes. Also, the
structural morphology of the MSNTs was preserved following
the alteration by 3-APTES to form the 3-APTES@MSNT
nanoadsorbent.46

3.2.1. Fourier Transform−Infrared. The MSNTs and 3-
APTES@MSNTs (FTIR) spectra were gathered and are
shown in Figure S1. Both spectra contained the OH bending
vibration at 787−810 cm−1 and the asymmetric stretching
vibration of the Si−O−Si at 1066−1036 cm−1. The spectra of
3-APTES@MSNTs samples revealed a new band at 2942−
2930 cm−1 following 3-APTES was immobilized, denoting C−
H stretching vibration. The NH2 bands that showed up in 3-
APTES@MSNTs at 3165 and 3239 cm−1 were also present.47

3.3. Batch Experiments. 3.3.1. Effect of pH. Since pH has
a meaningful impact on the charge of the nanoadsorbent
surface (positive or negative), which is a key factor in
nanoadsorbent adsorption, it is important to know what pH is
best for improving the TC adsorption.48−50 The influence of
pHs in the range of 2 to 12 on the rate of the adsorption of the
TC molecules by 3-APTES@MSNT nanoadsorbent was
assessed in this experiment. As shown in Figure 4a, the TC’s
optimal absorption efficiency was at pH 4 and was 1.476
mmol/g as the pH rose from 2 to 12. Given that the pH of the
experiment and the fact that the values of pKa for the TC at
various pHs along with Figure 4b are equal to 3.32, 7.68, and
9.67, the charge of the TC molecules is both negative and
positive at pHs between 3.32 and 7.68. 3-APTES@MSNTs’
surface charge turns positive at pHs below pHzpc because
positively charged H+ ions are present, which is shown by the
observed pHzpc of 7.45. Additionally, negatively charged OH−

ions cause the surface charge of 3-APTES@MSNTs to become
negative at higher pHs of pHzpc. Because there is no attraction
or repulsion between the 3-APTES@MSNT nanoadsorbent
and the TC molecules at pH 7.45, the adsorbent has a zero
electric charge and only the physical forces that propel are
responsible for the tetracycline’s absorption (Figure 4c). In
acidic pHs, the 3-APTES@MSNT nanoadsorbent charge is
positive and the TC molecule charge is positive and negative.
So, because pH affects the surface charge of the nanoadsorbent
3-APTES@MSNTs and the pKa of the TC molecules, there is
an electrostatic fascination that helps the TC molecules better
adsorb on the surface. When the nanoadsorbent charge is
negative and shares the same charge of the TC, a repulsive
contact between the TC molecule and 3-APTES@MSNT
nanoadsorbent surface is created at alkaline pHs. The rate of
adsorption on the nanoadsorbent surface decreases as a
result.51

Attenuating ionized forms of the adsorbent and adsorbate
molecules can be used to explain this outcome. The pH
increase affects the stacking π−π bonds and the hydrogen
interactions that occur during tetracycline adsorption. As a
consequence, the removal dramatically decreased at higher pH.
The π−π and hydrogen bonds interactions between the 3-

APTES@MSNT nanoadsorbent and the TC adsorbate are less
advantageous under fundamental circumstances. Additionally,
a drop in the removal % is justified by the anionic TCH1− and
TC2− and OH ions’ ability to impede mass transfer from the
liquid phase to the surface of 3-APTES@MSNT nano-
adsorbent in an alkaline media.
Tetracycline is an amphoteric chemical that mostly exists as

zwitterions (Figure 4d) in the usual ambient pH range and has
numerous ionizable functional groups (Figure 4c). Depending
on the pH of the solution in which tetracycline is dissolved, it
can go through protonation−deprotonation processes and
display several ionic species. Tetracycline has reportedly had a
direct impact on how it is transported, transformed, and
absorbed by organisms. Thus, it is quite concerning how
tetracycline gets transported throughout the environment. The
adsorption of tetracycline often featured two different sorts of
processes depending on the pH state, and it might display
Langmuir-type or Freundlich-type isotherms.52,53 It was also
significantly impacted by pH and ionic strength. The first
includes, in an acidic environment, cation exchange inter-
actions between the surfaces of 3-APTES@MSNTs and the
protonated amine group on tetracycline. The second is more
beneficial to acidic and neutral circumstances and also
demonstrated that it was a hydrophobic process. It includes
the surface complexation of zwitterions onto the adsorbent
surfaces along with proton uptake. Divalent cations increased
the sorption, and under neutral or alkaline circumstances, a
surface-bridging process may be in operation.54

3.3.2. Effect of Dose. 3-APTES@MSNT nanoadsorbent was
chosen to further investigate the effect of adsorbent dose since
it has demonstrated good TC adsorption ability. The increase
of the dose was favorably connected with the removal
efficiency of TC, although the slope gradually declined after
0.1 g. The dosage had a substantial influence on adsorption
(Figure 5). More adsorption sites were produced by the

greater dose, which increased the effectiveness of TC
elimination. The extreme addition of adsorbent, however,
cannot enhance the adsorption effect once adsorption has
achieved saturation and instead results in the waste of
adsorbents. The maximum adsorption capacity of the 3-
APTES@MSNT nanoadsorbent was 1.4 mmol/g at a
concentration of 0.02 g. The dose of 0.02 g was chosen for
further investigation due to the adsorption effect and economic
applicability.55,56

Figure 5. Sorbent dose in relation to the 3-APTES@MSNT
nanoadsorbent’s loading capability.
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3.3.3. Effect of TC Concentration. TC solutions ranging in
concentration from 2.76 × 10−4 to 2.2 × 10−3 mol L−1 at 25 °C
were used to examine the effects of the TC concentration on
the adsorption capacity at a constant temperature. Figure 6

depicts the impact of the preliminary TC concentration. It
implied that as the starting concentration of the adsorbate rose,
so did the adsorption capability. This rise is most likely the
result of vacant sites being quickly filled. Additionally, it is
simple to overcome the liquid phase’s mass transfer impedance
to the adsorbent’s surface. As the TC concentration rises, the
clearance % decreases in the inverse proportion. As the lower
energy sites quickly fill up during the adsorption process, the
adsorbate molecules start to take up residence at the higher-
energy sites, while the capacity to adsorb is directly correlated
with the starting concentration. The deactivation of the
adsorbent surface and the degradation of certain of the
adsorption sites on the 3-APTES@MSNT nanoadsorbent
surface are additional factors that contribute to a reduction in
adsorption effectiveness.57

3.3.4. Effect of Time. Figure 7 shows the impact of contact
time on the adsorption process. The clearance rate of TC was

higher in the first stages of the adsorption process because
there were several adsorption sites for the TC molecule
attachment on the surface of the 3-APTES@MSNT nano-
adsorbent. Additionally, the adsorption rate steadily decreased
as the contact time grew, and the process reached equilibrium
after around 100 min. This is due to the fact that as the TC
molecules adsorb to the surface of the 3-APTES@MSNT

nanoadsorbent during the adsorption process, the adsorption
sites were gradually occupied.
3.3.5. Effect of Temperature. Different temperatures have a

substantial impact on the adsorption process, as demonstrated
in Figure 8. The outcomes of the experiment revealed that the

adsorption capacity changed with temperature (qe,292 K >
qe,300 K > qe,308 K > qe,315 K > qe,323 K). The improved adsorption
impact caused by the increased temperature suggests that the
3-APTES@MSNTs’ adsorption process on the TC was
endothermic.
3.3.6. Adsorption Isotherm. In this regard, the loading

capabilities of the 3-APTES@MSNT nanoadsorbent also rose
along with the initial TC concentrations. This might be the
result of an increase in loading capacity brought on by the
exhaustion of the adsorptive sites on the 3-APTES@MSNT
nanoadsorbent surface caused by an increase in the initial TC
concentrations. The enforcement of the TC molecules from
the aqueous media to 3-APTES@MSNT nanoadsorbent
surface will be strongly influenced by this. The removal
effectiveness decreased as the TC concentrations increased,
which is the exact opposite. Four well-known isotherm
models�Langmuir58 (eq S1), Freundlich59 (eq S2), D-R60

(eq S3), and Temkin61 (eq S4)�were used to investigate the
phenomena occurring at the adsorbent surface throughout the
adsorption process in order to conduct a more thorough
assessment of the adsorption isotherm of the TC molecule
using the 3-APTES@MSNT nanoadsorbent. Figure 9 depicts
the linear representation of the aforementioned models, and
Table S1 lists the related computed results. The examined data
showed that Langmuir was more consistent with the
experimental results than other isotherm models. The higher
R2 backed this up. Additionally, there should be an agreement
between the theoretical and experimental loading capacities.
All the aforementioned research supported the homogeneity
and monolayer adsorption form of the 3-APTES@MSNT
adsorbent surface. The amount of contact between the
adsorbate and the surface is indicated by the Langmuir
constant (KL). The Langmuir constant, which in our instance
was 68192.82 L/mol, reflects the strength of the interaction
between the TC and 3-APTES@MSNT nanoadsorbent if the
value of KL is comparatively bigger. The Temkin model, which
considers adsorbent saturation, believes that adsorption energy
declines linearly rather than exponentially, as stated by the
Freundlich pattern (Temkin constants of A and B). In
concurrence, the high A and B values of 14.09 kJ/mol and
9068.06 L/mol for the TC explained the strong interaction

Figure 6. Effect of TC adsorption’s starting concentration.

Figure 7. Effect of contact time on the TC’s adsorption utilizing the
nanoadsorbent 3-APTES@MSNTs.

Figure 8. Effect of temperature on adsorption of the TC using the 3-
APTES@MSNT nanoadsorbent.
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Figure 9. Adsorption isotherm models for the TC on the 3-APTES@MSNT nanoadsorbent.

Figure 10. Adsorption kinetic models for the TC on the 3-APTES@MSNT nanoadsorbent.
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between the TC molecules and the 3-APTES@MSNT
nanoadsorbent surface. On the other hand, the binding energy
that resulted from the Dubinin−Radushkevich model was
15.38 kJ/mol; this indicated that the reaction was a
chemisorption process (Table S2).
3.3.7. Adsorption Kinetics. The rate of the TC adsorption

on the 3-APTES@MSNT nanoadsorbent under ideal con-
ditions was assessed using the intra-particle diffusion, Elovich,
pseudo-second order, and pseudo-first-order models. There are
several models used for kinetic adsorption research, but the
most frequent and popular ones are pseudo-first order62 and
pseudo-second-order63 kinetics. The pace at which adsorption
processes are employed to ascertain, simulate, and carry out
processes in the reaction medium has been examined through
adsorption kinetics research. Equations S5 and S6 were used to
compute the pseudo-second-order kinetics and pseudo-first-
order kinetics. A linear relationship between the number of
molecules adsorbed and the square root of the contact time
shows that intra-particle diffusion is the adsorption process’
level-limiting stage. Weber and Morris64 (eq S7) created one of
the most used intra-particle diffusion formulae for adsorption
processes.
The level-limiting phase is more significantly impacted by

surface adsorption than the steeper intercept. Since the curve
could not pass through the origin when the intra-particle
diffusion model was used, it was determined that intra-particle
diffusion was not the main level-limiting mechanism in the
kinetic research.65

Chemical adsorption is often applied using the Elovich
equation.66 The equation has been shown to be useful in a
number of chemical adsorption processes and to cover a wide
range of slow adsorption rates. Equation S8 is commonly
successful in systems with diverse adsorbing surfaces.
The connection between qt and ln t was linear, with a slope

and intercept of (1/β) and ln (β). The 1/β value reproduces
the number of adsorption sites that are accessible, but the value
of (1/β) ln (β) represents the amount of adsorption when ln t
is equal to zero (Figure 10).
The pseudo-second-order kinetic more closely resembles the

adsorption process because the values of R2 in Table S3 are
larger than those of the pseudo-first-order kinetics. As a
consequence, the pseudo-second-order kinetic model had an
R2 value of 0.998 and was the most accurate for the TC
adsorption process at a concentration of 1.77 × 10−3 mol/L.
They came to the conclusion that a pseudo-second-order
kinetic model describes how tetracyclines adsorb (Table S3).
3.3.8. Adsorption Thermodynamics. Thermodynamic tests

were performed to control the effects of temperatures of 293,
298, 303, 308, and 313 K on the TC molecule adsorption
process on the 3-APTES@MSNT nanoadsorbent under
optimal conditions. The three main components of entropy
changes (ΔSo), enthalpy changes (ΔHo), and Gibbs free
energy (ΔGo) were examined in thermodynamic research.
Figure 11 illustrates the thermodynamic curve for the TC
adsorption.
Equations S9 and S10 were applied to compute the Gibbs

free energy changes (ΔGo), standard entropy changes (ΔSo),
and standard enthalpy changes (ΔHo). The values of ΔSo and
ΔHo were calculated using the slope and origin intercept of a
graph of lnKeq versus 1/T after calculating the thermodynamic
equilibrium constant for the Gibbs free energy at various
temperatures. Table S4’s positive entropy change (ΔSo = 75.84
J/mol K) and positive enthalpy change (ΔHo = 19.92 kJ/mol)

values demonstrate that the absorption process is disrupted by
the increased motility of the TC molecules in solution because
the adsorption process is endothermic and the irregularity rises
with temperature.67,68

According to the findings, it can be concluded that the 3-
APTES@MSNTs nanoadsorbent’s TC adsorption process is
spontaneous since the quantity of Gibb’s free energy negative
rises with increasing temperature. It is a type of chemical
adsorption because the efficiency of the adsorption process
increases with temperature. Since chemical adsorption requires
energy, which rises with temperature and performance, the
process would operate in the opposite direction. Although
both physical and chemical adsorption have always existed,
chemical adsorption increases popularity as temperatures and
efficiency increase, as shown in table Table S4.
3.3.9. Mechanism of Interaction. Understanding the nature

of the adsorption process crucially depends on speculation
about several probable processes influencing it. Generally
speaking, it is controlled by the structural characteristics of
both adsorbate and adsorbent. Various reactive groups,
including −OH and −NH2, are present on the mineral edges
of the 3-APTES@MSNT nanoadsorbent, which dominate the
effective binding of TC with the surface. The following factors
can each be used to hypothesize a different mechanism for how
they obtained adsorption onto the 3-APTES@MSNT nano-
adsorbent. (i) The electrostatic attraction is frequently
described as an interaction between surfaces with differing
charges. It is strongly influenced by the solution’s acidity and
basicity as well as the carrying charge of the investigated
contaminant. According to 3-APTES@MSNTs’ pHpzc (7.45),
protonation of exposed reactive groups under an acidic
environment causes the 3-APTES@MSNTs nanoadsorbent
to acquire a positive charge. Based on that, TC and positively
charged particles that are present on the surface of the 3-
APTES@MSNTs may interact electrostatically. (ii) Dipole−
dipole interactions, or H-bonds, are produced most frequently
between two hydrogen-acceptor and hydrogen-donor atoms. It
often maintains the method by which different organics adsorb
on MOFs. In our example, it is believed that 3-APTES@
MSNTs will provide the hydrogen acceptors (from the OH
groups of the silica nanotubes); however, the TC molecules
will provide the hydrogen donors (i.e., oxygen-nitrogen). The
quantity of hydrogen atoms in the 3-APTES@MSNT
nanoadsorbent and the nitrogen/oxygen components of the
investigated TC are closely correlated with the intensity of the
H-bonding. These results did not support the presumption
stated above, indicating that the H-bonding does not fully

Figure 11. The inverse of temperature (1/T) against lnKeq.
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explain the adsorption process between the TC molecules and
3-APTES@MSNTs nanoadsorbent. (iii) As shown in Figure
12, many influential forms of contact can control the feasible
adsorption process of the TC onto at 3-APTES@MSNTs
nanoadsorbent.48

3.3.10. Effect of Salinity. Salts that have dissolved in the
aqueous media are another factor that might affect the
adsorption process. The ionic strength of certain contaminants
can enhance the adsorbate affinity for the adsorbent and,
hence, the competition for binding sites, so this parameter is
crucial. In this study, several molarities of sodium chloride
(0.1−1.0 mol/L) were used to explore the effect of ionic
strength on TC adsorption. Figure 13 depicts the adsorption
capacity of the TC molecule as a function of the presence of
the ions Na+ and Cl−. While the adsorption capacity of the TC
was 1.82 mmol/g before the addition of NaCl, it dramatically
dropped (1.75 mmol/g) in the presence of a 0.01 mol/L NaCl
solution. The decrease in adsorption capacity is due to the
electrostatic effect of NaCl, which modifies the interaction

between the TC and 3-APTES@MSNTs nanoadsorbent.
Furthermore, the zwitterionic form of tetracycline is likely to
interact with the ions (Na+ and Cl−). It is challenging for the
TC molecules to bind to the functional groups of the 3-
APTES@MSNT nanoadsorbent or occupy active sites due to
the deprotonated group O and the protonated group NH3

+

present in the TC molecule (competition between ions and the
TC for the adsorption site). A decrease in adsorption capacity
may also be explained by sodium chloride’s effects on the
adsorbent’s specific surface area and the adsorbate’s
solubility.51

3.3.11. Effect on Real Water Samples. In this study, the TC
was removed from a genuine sample using the 3-APTES@
MSNT nanoadsorbent, and the effectiveness of the TC
removal was compared to the effectiveness of removing the
TC molecules from a synthetic water sample. The physical and
chemical characteristics of the wastewater from the actual
sample, which was taken from the industrial zone water
treatment lab at Suez, Egypt’s wastewater treatment plant, are
shown in Table 1. The sample was spiked with 8 mg/L TC,
and the sample parameters were set to the ideal values on a

Figure 12. Mechanism of interaction between the TC and the 3-APTES@MSNT nanoadsorbent.

Figure 13. Effect of salinity on adsorption of the TC at the 3-
APTES@MSNT nanoadsorbent.

Table 1. Specifications of the Real Water Samples

parameter amount

BODs 10 mg/L
TDS 1198 mg/L
TSS 86 mg/L
COD 28.6 mg/L
TC 8 mg/L
pH 8.2
sulfate 142.5 mg/L
nitrate 1.8 mg/L
phosphate 40.2 mg/L
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synthetic sample in order to evaluate the procedure of a
genuine sample. The sample was centrifuged following the
procedure to remove turbidity from the actual wastewater and
figure out the concentration of TC in the sample. The removal
effectiveness of the TC molecules from the real sample was
almost similar to 72% under ideal circumstances (temperature,
25 °C; adsorbent dose, 0.02 g/L; contact time, 30 min; TC
concentration, 8 mg/L; and pH, 4), indicating good removal
efficiency of TC from the real sample by this nanoadsorbent,
while the clearance efficiency of the TC was greater than 95%
in the synthetic sample. The results showed that the real
wastewater sample had a lower TC removal efficiency than the
synthetic sample. Due to the presence of ionic and soluble
organic matter in the actual wastewater sample, simultaneous
adsorption of competing pollutants on the 3-APTES@MSNT
nanoadsorbent surface, the complexity of the wastewater
matrix, and competition for the adsorption of compounds like
sulfate anions, organic suspended material, and other chemical
compounds, this efficiency loss can be achieved. Smaller
molecules preferred to bind to the adsorbent surface groups
more, occupying the active sites on the 3-APTES@MSNT
nanoadsorbent surface and reducing the surface’s ability to
adsorb the TC molecules.63

3.3.12. Reusability. The study of synthetic adsorbent
regeneration is crucial from an economic standpoint. A batch
adsorption technique was used to assess the TC adsorption.
When used under the following conditions (temperature: 25
°C, starting concentration: 5 mg/L, adsorbent dose: 0.02 g/25
mL, and pH: 4), 3-APTES@MSNT nanoadsorbent was
removed by centrifuging and then regenerating with EtOH/
H2O in a 1:1 ratio. The pH of the solution was then brought
up to 7 by the addition of diluted HCl or NaOH, and it was
then washed many times with deionized water before being
dried in an oven at 100 °C. After drying, 3-APTES@MSNT
nanoadsorbent was utilized for the subsequent cycle. To assess
the adsorbent’s reusability, the adsorption−desorption proce-
dure was carried out up to five times under optimal
circumstances. Figure 14 demonstrates that after five cycles,

the removal efficacy decreased from 96.07 percent to 84.6
percent, although it was virtually maintained. After five cycles
of reduction and reuse, the efficacy of TC removal may have
decreased due to the irreversible occupancy of the active 3-
APTES@MSNTs nanoadsorbent sites. The chemical stability
of the adsorbent was assessed after the five cycles using XRD
analysis.63

The following equation was used to get the regeneration
efficiency:

regeneration efficiency (%)
amount of desorbed TC into the elution solution

amount of adsorbed TC (mmol)

100

=

× (3)

3.3.13. Comparison with Other Adsorbents. As shown in
Table S5, our adsorbent is more affordable and useful than
other adsorbents and has a high removal efficiency. The results
show that 3-APTES@MSNTs have a significant capacity for
TC adsorption, which make it a promising adsorbent for
adsorption of TC from both synthetic and natural wastewater.

4. CONCLUSIONS
In the present study, the synthesis and characterization of 3-
APTES@MSNTs via SEM, BET, XRD, TEM, and FTIR
proved that the adsorbent has a high pore volume and surface
area of 0.532 cm3/g and 658.34 m2/g, respectively. The
mentioned adsorbents were employed for the removal of the
TC molecules from aqueous solutions. The influence of six key
variables on the TC adsorption by the 3-APTES@MSNT
nanoadsorbent�temperature, salinity, adsorbent dose, starting
TC concentration, time, and pH�was also investigated.
According to the data, at the optimum conditions (temper-
ature: 25 °C, adsorbent dose: 0.02 g, pH: 4, and TC initial
concentration: 1.77 × 10−3 mol/L), the maximum adsorption
of TC was 848.80 mg/g. After five cycles of application and
recovery, the 3-APTES@MSNTs nanoadsorbent still displays a
removal effectiveness of around 84.6 percent. The TC
adsorption process is controlled by the pseudo-second-order
kinetics and Langmuir isotherm. Because this reaction is
endothermic, the effectiveness of removing the TC molecules
grows as the temperature rises. The 3-APTES@MSNT
nanoadsorbent has rich surface functional groups, effective
pore size distribution, relatively high surface area, and large
pore volume. The π−π interaction, H-bonding interaction, and
pore-fling effect were the predominant adsorption mechanisms
for the TC adsorbed on the 3-APTES@MSNT nanoadsorbent.
In thermodynamic studies, the standard free energy (ΔGo) was
negative at different temperatures, suggesting the applicability
and spontaneity of the process. In addition, the standard
enthalpy values (ΔHo) and standard entropy values (ΔSo)
were 19.92 kJ/mol and 7.84 J/mol, respectively, suggesting an
endothermic adsorption process and a decrease in irregularity
in the liquid phase. The impact of disrupting ions on the
adsorption process was examined at various NaCl concen-
trations, and it was found using 3-APTES@MSNT nano-
adsorbent that the varying concentrations of NaCl had no
appreciable impact on the TC adsorption process. Because of
these circumstances, antibiotic pollutants in water sources can
be eliminated using the 3-APTES@MSNT nanoadsorbent.
The results show that 3-APTES@MSNTs have a significant
capacity for TC adsorption from both synthetic and natural
wastewater.
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Figure 14. Reusability of the 3-APTES@MSNT nanoadsorbent
during TC removal.
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