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We show that rotating particles at the liquid–gas interface can
be efficiently manipulated using the surface-wave analogue of
optical lattices. Two orthogonal standing waves generate surface
flows of counter-rotating half-wavelength unit cells, the liquid
interface metamaterial, whose geometry is controlled by the wave
phase shift. Here we demonstrate that by placing active magnetic
spinners inside such metamaterials, one makes a powerful tool
which allows manipulation and self-assembly of spinners, turning
them into vehicles capable of transporting matter and information
between autonomous metamaterial unit cells. We discuss forces
acting on a spinner carried by a nonuniform flow and show how
the forces confine spinners to orbit inside the same-sign vortex cells
of the wave-driven flow. Reversing the spin, we move the spinner
into an adjacent cell. By changing the spinning frequency or the
wave amplitude, one can precisely control the spinner orbit. Mul-
tiple spinners within a unit cell self-organize into stable patterns,
e.g., triangles or squares, orbiting around the center of the cell.
Spinners having different frequencies can also be confined, such
that the higher-frequency spinner occupies the inner orbit and the
lower-frequency one circles on the outer orbit, while the orbital
motions of both spinners are synchronized.
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Manipulation of microparticles at liquid–gas interfaces is a
desired tool in many applications including self-assembly

into patterns and structures (1–8). Active particles on the liq-
uid surface, such as magnetic spinners, attracted considerable
attention because of their ability to self-assemble when placed
within a potential well (1). That self-assembly in a magnetic
trap revealed a repulsive force between spinners, which appears
due to a hydrodynamic (lift) force, proportional to the rotation
frequency and acting on each particle (1–3).

Recent advances in confinement and manipulation of micro-
particles and ultracold atoms using optical waves (9, 10) inspired
new ideas related to the control of particles at liquid–gas
interfaces using the so-called liquid interface metamaterials or
dynamic periodic patterns on the liquid surface driven by crossed
surface waves (11). Optical lattices and liquid metamaterials have
a number of similarities, although owing to fundamental differ-
ences in the nature of electromagnetic and hydrodynamic surface
waves, the mechanisms of wave–particle interaction are very dif-
ferent. In liquid metamaterials, the wave angular momentum is
transferred to passive fluid particles guiding them along complex
periodic orbits (11). For microparticles and cold atoms, electro-
magnetic waves generate dipole forces due to the polarization of
particles by the waves. The trapping location in an optical wave
(e.g., nodes or antinodes) is determined by the polarizability and,
in ultracold atom physics, by the tuning of the wave frequency
relative to the frequency of the atomic resonance (12). However,
the trapping of micro- and nanoparticles in optical manipulation
experiments is also affected by hydrodynamics forces. For exam-
ple, spinning microparticles in circularly polarized laser beams are
affected by the Magnus force, a phenomenon well known in ball
games (13). The comparison between waves in fluids and electro-
magnetic waves in optics can be productive if the analogies are

carefully mapped across, as for example in the case of the Faraday
waves and phase-conjugate mirrors (14).

Passive or tracer particles on the fluid surface can also be
manipulated by dynamic structures, for example using wave-
based templates capable of assembling microparticles in recon-
figurable and biocompatible ways (15, 16). Surface waves are a
powerful tool which can be used to control particles at the liq-
uid surface. Liquid interface metamaterials (11) resemble vortex
lattices which are found in a variety of contexts in physical and
biological systems, such as bacterial suspensions (17), collectively
moving microtubules (18), sperm cells (19), or electromagnet-
ically driven vortex lattices in electrolytes (20–22). Such flows
are made of periodic patterns of vortices. Each vortex is a set
of nested smooth closed-particle orbits. The liquid metamate-
rials, however, differ substantially from the above examples.
Closed orbits of the fluid particles are not circles, but rather
they are curved trochoids resulting from a drift motion similar
to the Stokes drift (23), as described in the next section. Crossed
standing surface waves generate a matrix of cellular flows whose
geometry depends on the relative phase shift between 2 orthog-
onal waves. Surface waves show features similar to polarized
electromagnetic waves (11, 24): 1) Near nodal points fluid par-
ticles trace straight lines, ellipses, or circles depending on the
phase shift, and 2) orthogonal waves that are phase shifted by
90◦ produce the unit cells of the metamaterial. These unit cells
are well isolated from each other, in contrast to the traditional
vortex lattices, such as the electromagnetically driven vortices
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in layers of electrolytes (22) and the Faraday wave-driven flows,
where the vortices strongly interact, forming 2-dimensional (2D)
turbulence (25, 26). For this reason we refer to our flow as a
liquid-interface metamaterial to distinguish it from the classical
vortex lattices.

Floating particles can be externally energized; for instance,
floating magnetic disks spin around their centers in a rotat-
ing magnetic field (1). Here we demonstrate that such spinning
disks can be efficiently trapped within the unit cells of a liq-
uid metamaterial. Such trapping allows precise control of the
orbits, the selectivity of a confining unit cell, and self-assembly
of multiple spinners within a single unit cell. The presence of
the spinners does not destroy or significantly disturb the lattice.
Stationary orbits can be precisely controlled by adjusting the
spinner frequency, as well as the frequency and the amplitude
of the waves. The disks are trapped only within the cells having
the same rotation direction as the spinning disk. If the rota-
tion directions of the cell and of the disk are opposite, the disks
are repelled into the adjacent unit cell. Multiple spinners (up
to 4 spinners of the same frequency) can share stationary orbits
whose radii depend on the number of orbiting spinners. Spinners
with different angular frequencies occupy stationary orbits with
different radii.

We thus suggest that particles with an externally controlled
spin are peculiarly suitable for interacting with polarized surface
waves of the liquid metamaterial, akin to the interaction between
electromagnetic waves and polarized micro/nanoparticles and
ultracold atoms. That allows methods of manipulation and con-
finement of microscopic particles energized by external fields at
the fluid interfaces, which are needed in studies of ensembles of
active agents.

Surface Flows Due to 2 Orthogonal Standing Waves
Two orthogonal standing surface waves with a frequency ω,
a wavenumber k = 2π/λ, phase shifted by φ on a liquid of
depth d have the velocity potential Φ = (u/k) cosh [k(z + d)]
[sin(ωt) cos(kx ) + sin(ωt +φ) cos(ky)]. When φ=π/2, it gen-
erates a pattern of surface elevation in which an antinode (a
peak/trough location) rotates about a local nodal point (a point
of constant in time surface elevation) (11). Such a rotation leads
to the momentum transfer from the wave to the fluid parti-
cles, forcing them to proceed along closed trochoidal orbits
(made by the loop motion and the drift), such as those seen in
Fig. 1A. Let us give a brief theoretical description of the period-
averaged fluid flow within the λ/2×λ/2 unit cell. We solve
the Lagrangian equation on the coordinate of a fluid particle,
dR/dt =∇Φ(R, t) = v(R) sin(ωt) + u(R) sin(ωt +φ), perturba-
tively in ku/ω. It gives the loop motion in the first order. In
the second order, we obtain the net Lagrangian drift velocity
averaged over the period (27): w = sinφ [(u)v− (v)u]/2ω. It is
the product of the geometrical phase determined by the phase
shift and the commutator of the velocity fields of 2 waves.
One may think that it is zero, since the 2D commutator is
zero, but the whole 3-dimensional (3D) commutator is not:
wx = uz∇zvx = (ku2/ω) sinφ cos(kx ) sin(ky), wy =−vz∇zuy =
(ku2/ω) sinφ sin(kx ) cos(ky). Indeed, the Lagrangian trajecto-
ries are 3D, as shown in ref. 11. The clockwise rotation during
one wave period (at φ=π/2) corresponds to the clockwise drift,
as seen in Fig. 1A, Top Right and Bottom Left unit cells. Such
velocities correspond to the stream function given by

Ψ =
(
u2/ω

)
cos(kx ) cos(ky), [1]

where u =Aω and A is the wave amplitude. Near the nodal
point, the stream function describes a solid-body circular rota-
tion (drift) of fluid; the drift velocity increases linearly with the
distance from the node. The basic features of the Lagrangian tra-
jectories can be seen in Fig. 1A: The relative drift (proportional

A B

C D

Fig. 1. Confinement of tracers, inertial particles, and spinners on the sur-
face of the wave-driven vortex lattice. The wave frequency is 9.4 Hz and
the wave’s amplitude is 0.7 mm. (A) Horizontal projection of the trajecto-
ries of the tracers in 2 orthogonal standing surface waves, phase shifted by
π/2. An area λ×λ (where λ is the wavelength) accommodates 4 unit cells
confining surface tracers. The center of each cell is a nodal (zero) point of
surface elevation. The Stokes-like drift of the fluid particles proceeds along
closed orbits in opposite directions in the adjacent cells, as indicated by blue
arrows. (B) Radial profiles of the azimuthal velocity of the tracers inside the
unit cell (open blue squares) and of the 1-mm diameter spinners occupying
stationary orbits (solid red squares). (C) A trajectory of an inertial (1-mm
diameter) passive particle shows the existence of the radially outward force
pushing the particle from the cell center into the separatrix region along
the clockwise spiral trajectory. (D) The same particle as in C is now ener-
gized using an external rotating magnetic field. When it acquires the spin
angular momentum, a radially inward force pushes it along the anticlock-
wise spiral trajectory onto a finite-size inner orbit. White arrows indicate
the spiral direction; blue arrows indicate the direction of the cell fluid drift.
(Scale bar in C, 4.5 mm.)

to the shift of a tracer during one wave period) increases with the
distance from the node. Fig. 1B shows a measured radial profile
of the velocity of azimuthal drift (tangential to the drift orbit) of
the tracer particles. Indeed, the fluid in the inner part of the unit
cell moves as a solid body, while closer to the cell boundary the
drift velocity saturates.

Trapping a Single Spinner in the Fluid Vortex Lattice
The tracer particles are confined within the unit cells of the liq-
uid metamaterials as they execute closed trochoidal trajectories
seen in Fig. 1A. They are guided by the rotating wave phase as
described above. However, for the finite-size particles of slightly
higher density, inertial effects become important and a 1-mm
diameter floating disk spirals out from the center of the cell into
the separatrix region, Fig. 1C (Materials and Methods). The out-
ward force acting on the inertial particles inside the unit cells is a
centrifugal force resulting from the curvilinear drift of the disk.
In the inner core of the cell, the spiral shows a constant angu-
lar frequency and constant radially outward force. This force
decreases at the unit cell boundary. Nonspinning disks tend to
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stay within the separatrix region without being confined to any
particular cell. The centrifugal acceleration ac ∝V 2

θ /rc depends
on the radius of curvature of the orbit rc . This radius of curvature
changes as a function of the distance from the center of the cell,
as seen in Fig. 1A: Inner orbits are circular, while the outer orbits
and the separatrix are squares, where rc→∞. At the square cell
boundary the centrifugal force vanishes, except for the corners.

When the magnetic disk is energized and forced to spin at a
frequency fs , it spirals from the separatrix toward the center of
the unit cell of the metamaterial. The disk acquires a velocity rel-
ative to the surrounding fluid (Fig. 1 B and D), which results from
its interaction with the ambient flow (28) as discussed below. The
disk traces a closed orbit whose radius depends on the spinner
frequency fs as illustrated in Fig. 2 A and B. The inward force
pushing the spinner to the cell center balances the centrifugal
outward force, resulting in the spinner occupying a stationary
orbit, such as those shown in Fig. 2A. The higher the spinner
frequency is, the smaller the spinner orbit radius 〈rs〉. This is

A B

C D

E F

Fig. 2. Single spinner within a unit cell. (A–D) The wave frequency is 9.4 Hz
and the wave’s amplitude is 0.7 mm. (A) The orbit radius within the cell
at a given wave frequency fw can be controlled by changing the spinner
frequency fs (red, cyan, and yellow orbits correspond to fs = 1, 13, 23 Hz,
respectively) (Movie S1). (B) The increase in fs (at constant wave amplitude
and frequency fw= 9.4 Hz) leads to a gradual reduction in the spinner orbit
radius (blue squares). (C) The spin direction is switched by changing the
rotation direction of the external magnetic field. (D) A spinner (fs = 15 Hz)
occupies a stationary orbit in the left unit cell (light blue trajectory). After
switching the spin direction at t = tc (from corotation with the cell flow to
counter rotation) the spinner moves out into the adjacent cell whose flow
direction coincides with its new spin (red trajectory). (E) The angular velocity
of the orbital motion linearly increases with the wave amplitude Aw at con-
stant fs. (F) The radius of the stationary orbit at constant fs increases with
the wave amplitude. (Scale bars in A and D, 4.5 mm.)

illustrated in Fig. 2B, suggesting that the inward force increases
with the increase in fs . Since the orbits within a unit cell are gen-
erally not circular, the average “radius” of the spinner orbit is
defined as

〈rs〉=
〈√

(x (t)− x0)2 + (y(t)− y0)2
〉
t
, [2]

where (x (t), y(t)) is the spinner’s position and (x0, y0) is the
position of the center of the unit cell; the angular brackets denote
the time averaging. On the stationary orbit, the spinner propa-
gates with the velocity which is slightly higher than the fluid drift
velocity, as seen in Fig. 1B, suggesting that the spinner moves
relative to the fluid.

The inward force changes sign when the spinning direction
changes, as shown in Fig. 2 C and D. If the direction of the spin
does not coincide with the direction of the fluid (wave-driven)
drift, the spinner is pushed out of the unit cell into one of the
adjacent cells whose polarization coincides with that of the spin-
ner, as shown in Fig. 2D. Thus, for a single spinner within a
unit cell, by changing the spinner direction one can select the
trapping cell and can also change the exact size of the orbit
by changing the spinner frequency for a given amplitude of the
standing waves.

The amplitude of the crossed standing waves affects the wave-
driven drift velocity of fluid (11) and its angular frequency Ω.
The higher the wave amplitude is, the larger the Ω, as shown
in Fig. 2E. The increase in the wave amplitude Aw leads to the
increase in the outward centrifugal force. For a given spinner
frequency, the radius of the stationary orbit 〈rs〉, determined by
the balance between this force and the spin-related inward force,
increases, as illustrated in Fig. 2F. This result means that the out-
ward centrifugal force increases faster with the increase in the
wave amplitude than the inward force (discussed below).

Trapping Multiple Spinners
Now we consider trapping of several spinners (of 1-mm diam-
eter) within the liquid metamaterials. Fig. 3 shows trapping of
2, 3, and 4 spinners within a single unit cell. Two spinners orbit
around the cell center, staying on the orbit diameter (Fig. 3A);
3 spinners form a rotating triangle (Fig. 3B); while up to 4 spin-
ners form a rotating square (Fig. 3C). The orbiting velocity has
the same direction as the underlying fluid drift, but the spinners
move faster than the fluid.

The orbital radii increase with the number of spinners, as
shown in Fig. 3D. A single spinner of the same frequency is
trapped near the center of the unit cell. Remarkably, as the
spinners’ frequency is increased, the orbit radii only marginally
change. This suggests that the trapping (inward) force scales
similarly.

The orbital velocity of the clusters exceeds the wave-driven
fluid velocity, similar to the single-spinner case (Fig. 1B). Fig. 4B
shows the orbital velocity of a pair of spinners relative to the fluid
Urel as a function of the spinner frequency. The order of mag-
nitude of the relative velocities of a single spinner and of the
multispinner cluster is comparable. However, the single-spinner
velocity is roughly independent of fs (Fig. 4A), while for multi-
ple spinners the relative orbital velocity Urel increases with the
increase in the spinner frequency (Fig. 4B). The repulsion force
between the spinners and the confining force scale very simi-
larly with the spinner frequency. The orbit radius only slightly
increases with fs . The orbit radius of the 4 spinners (∼6 mm) is
close in our configuration to the size of the unit cell (∼6.5 mm).
Any increase in the number of spinners above 4 makes the con-
figuration unstable since it becomes larger than the cell size. An
increase in the fs above 20 Hz in the 4-spinner configuration
pushes the collective orbit outside the unit cell and destroys the
confinement.
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One can create a configuration when 2 spinners of the same
frequency, but with opposite spin directions, occupy 2 adja-
cent unit cells (Materials and Methods), as shown in Fig. 3E.
In this case, they are stably confined. In this example spin-
ners with relatively high spin frequencies of fs = 20 Hz are
trapped, each within its own unit cell; however, the separatrix
between the unit cells is not perturbed. This result highlights
the robustness of the wave-driven vortex lattice: Even fast-
rotating spinners do not cause the merger of the neighboring
“vortices.”

Finally, we illustrate the confinement within a single unit cell
of 2 spinners having 2 different spin frequencies (Materials and
Methods explains how different frequencies can be generated
using a rotating magnetic field). Fig. 3F shows that in this con-
figuration a higher-frequency spinner (fs = 37 Hz) occupies an
inner orbit, while the low-frequency one (fs = 2.5 Hz) orbits close
to the cell edge. The orbital motion of the 2 spinners in this case
is perfectly synchronized: They maintain their relative orbital
phases.

A

C

E F

B

D

Fig. 3. Trapping of multiple spinners. (A–C) Confinement of multiple spin-
ners within a unit cell. The wave frequency is 9.4 Hz and the wave’s
amplitude is 0.4 mm (Movies S2–S4). (D) Radii of the spinner orbits as a
function of the spinners’ frequency. (E) Trajectories of 2 oppositely rotat-
ing spinners of the same frequency (fs > 10 Hz) trapped within 2 adjacent
unit cells (average over 60 orbit periods). Gray lines show trajectories of
the tracer particles. The separatrix between the unit cells is not perturbed
by the presence of the spinners. (F) Two corotating spinners with the spin
frequencies of fs = 2.5 Hz (red trajectory) and fs = 37 Hz (light blue trajec-
tory) occupy different orbits. Azimuthal orbiting of the spinners is perfectly
synchronized in time. (All scale bars, 4.5 mm.)

A B

Fig. 4. Azimuthal velocity relative to the fluid drift velocity of (A) a single
spinner (black squares) and (B) 2 spinners orbiting around the cell center
(red squares).

Discussion
The existence of stable orbits for a single spinner within a wave-
sustained unit cell is possible if the centrifugal force acting on a
passive inertial particle is balanced by the inward force acting on
the spinner. The most likely candidate for such a force is the lift
or the Magnus force acting on a spinning particle (27, 29), which
we estimate as ~FM ' ρr20 h0

[
~fs × ~Vrel

]
, where ρ is the fluid den-

sity, r0 and h0 are the radius and the height of the spinning disk,
and Vrel is the velocity of the spinner relative to the fluid. If this
velocity is in the direction of the background flow Vθ , then for a
corotating spinner the Magnus force should be radially inward. A
change in the direction of the spinner rotation causes the rever-
sal of the Magnus force and the spinner is pushed out into an
adjacent cell. The existence of the relative spinner–fluid velocity
agrees with Fig. 1B. This velocity seems to be independent of the
spinner frequency (Fig. 4A). This means that the Magnus force
acting on a single spinner is proportional to ~fs . Thus, either the
inward-directed Magnus force balances the centrifugal force due
to the motion of the inertial particle (spinner) along the curvilin-
ear trajectory or the Magnus force dominates when the spinner
is trapped near the cell center.

The nature of the single-spinner propulsion is not quite clear.
We performed experiments on the surface of a still fluid and
found no such propulsion if a single spinner is placed away from
the walls of the container. The possible reason for the relative
motion of the spinner is the presence of the radial gradient
of the azimuthal velocity of the wave-driven drift (∂Vθ/∂r). It
is well known that a solid particle in a viscous fluid (at zero
Reynolds number) will experience a force due to a nonuni-
form ambient flow. For example, a sphere of radius r0 will
acquire both translational and rotational corrections, known
as the Faxen law corrections, which are proportional to the
Laplacian of the ambient flow velocity (28, 30). The transla-
tional velocity is given by ~Vt =

[
(1 + (r20 /6)∇2)~V

]
measured

at the center of a spinner (28, 30), where ~V is the velocity
of the ambient flow without a spinner. The dominant ambi-
ent flow for the spinners within liquid metamaterials is the
azimuthal drift of fluid in a unit cell (Fig. 1B). An azimuthal
projection of a 2D Laplacian in the polar coordinates of such
a flow is given by (∇2V )θ = (∂2Vθ/∂r

2) + (1/r2)(∂2Vθ/∂θ
2) +

(1/r)(∂Vθ/∂r)−Vθ/r
2. Since in the inner two-thirds of a unit

cell radius fluid rotates as a solid body, the translational veloc-
ity of a disk in the θ direction will be dominated by the radial
gradient of the azimuthal fluid velocity: V θ

t ∝ (1/r)(∂Vθ/∂r).
Indeed, our results show that the Magnus force is proportionate
to (∂Vθ/∂r). We also observe higher self-propulsion velocities
of the spinners within a metamaterial cell for larger disks (1- and
2-mm diameter disks have been compared).

Then if Vrel∝ (∂Vθ/∂r), the Magnus force should be depen-
dent on the wave amplitude Aw . It was shown that in the liquid
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metamaterial, azimuthal drift velocity Vθ ∝A1.5
w (figure 9 in ref.

24). Then the Magnus force FM ∝Vrel∝ (∂Vθ/∂r)∝A1.5
w , while

the centrifugal force scales as Fc ∝V 2
θ ∝A3

w . This explains why
the spinner is pushed out by the centrifugal force as the wave
amplitude is increased (Fig. 2F): The centrifugal force scales as
A3

w , while the Magnus force scales as A1.5
w .

To test the role of the shear of the azimuthal velocity
(∂Vθ/∂r) in the generation of the spinner propulsion and the
associated Magnus force, we perform additional experiments
using a flow in which spinners are drawn toward the center of a
potential well. In this case an outward-directed Magnus force can
be used to control the spinner orbit. We perform experiments in
a flow produced in a cylindrical container whose bottom rotates
relative to the walls (Fig. 5A). The momentum is transferred into
the fluid from the rotating bottom while the walls ensure zero
azimuthal velocity at the edge. Such a flow develops a radial pro-
file of the azimuthal velocity at the fluid surface (Fig. 5B) which
is similar to that within a unit cell of the wave-driven metama-
terials (Fig. 1B). The rotating flow resembles a 3D von Kármán
flow (31): Fluid on the surface is drawn toward the center of the
cylinder such that the return flow forms in the bulk of the liq-
uid. The central core (inner 5- to 6-mm radius) is essentially a
sink, while the outer region is suitable for testing interactions
between the flow gradient and a spinning disk. In contrast to the
wave-driven vortex, where a surface inertial particle is pushed
out from the vortex center by the centrifugal force, in the von
Kármán flows floating particles are pushed inward (while exe-
cuting azimuthal orbiting). This results in the passive particle
following the inward spiral trajectory shown in Fig. 5C. After
being accelerated inward from the edge, the particle slows down
radially and then slowly drifts toward the vortex center. To gener-
ate stable particle orbits, the Magnus force needs to be directed
outward. Indeed, when we make the spinner rotation opposite

A B

C D

Fig. 5. Model experiment in rotating flow. (A) Schematic of the experi-
ment. (B) Radial profile of the azimuthal velocity of the tracer particles. (C)
Trajectories of a passive disk (green squares) and of the spinner at fs = 8 Hz
rotating in the direction opposite to the fluid rotation (light blue). The red
disk at the center of the container represents the final stage (trapped disk)
of the green trajectory. (D) Radii of the stationary orbits of the counter-
rotating spinner (light blue squares) versus the spinner frequency fs. The
radius of the stationary cylindrical wall is 20 mm.

to the rotation of the vortex, the particle is pushed out of the
region of positive (∂Vθ/∂r). By adjusting the spinner frequency,
one can precisely control the orbit radius, as seen in Fig. 5D. In
the von Kármán flow experiment, the increase in fs pushes the
spinner orbit toward the wall. It is interesting to note that even
when fs is high, the spinner never hits the wall of the container.
This is because the velocity gradient (∂Vθ/∂r) changes sign
near the wall, and the direction of the Magnus force reverses.
In the liquid metamaterials, such a reversal of (∂Vθ/∂r)
and of the Magnus force occurs at the separatrix between 2
adjacent cells.

Let us now discuss the confinement of multiple spinners. The
repulsive force between 2 spinners in the fluid at rest was studied
theoretically and experimentally in refs. 1, 3, and 32. The force
is quadratic in frequency: Frep∝ f 2s . Even in the absence of the
background flow, clusters of corotating spinners move along a
circular path in a horizontal plane, as discussed in ref. 32. The
precession of the cluster attests to its ability to move relative to
the fluid due to the spinner–spinner interaction. Two, 3, and 4
spinners orbiting in synchrony enhance their velocity relative to
the fluid, which is proportional to fsVθ . This is consistent with
the observation in Fig. 3D which shows that in contrast to the
single spinner (whose propulsion is independent of fs ; Fig. 4A),
the rotation of a pair of spinners is increased with the increase
in fs (Fig. 4B). Then the Magnus force should be proportional
to f 2s Vθ which represents the collective effect. We thus have the
repelling force between 2 corotating spinners proportional to f 2s ,
while the confining Magnus force has 2 parts: one proportional to
Vθfs (acting on a single spinner) and another one proportional
to f 2s Vθ due to the spinners’ interaction. This would make the
orbit radius weakly dependent on fs as indeed is seen in Fig. 3D.

Full understanding of the forces acting on rotating particles
in flows is a challenging problem, mainly because most effects
correspond to the particle Reynolds number of order unity or
higher. The problem deserves future studies going well beyond
this work. In particular, it is important to better understand
the mechanism of the spinner propulsion relative to the fluid
in the presence of sheared flows. It should be noted that active
microswimmers, such as those equipped with flagella, have actu-
ation mechanisms different from those of the externally powered
spinners studied here (28). This affects the dynamics of the swim-
mers in vortical lows: Self-propelled particles can move away
from the center of rotation (33, 34) while in the reported experi-
ments the radial Magnus force pushes spinners toward the center
of the unit cell.

Summarizing, the wave-driven vortex lattice shows an efficient
and robust way of controlling trapping of the spinning particles.
The Magnus force can be manipulated to balance other radial
forces in the flow to precisely control the radius of the orbit
and the selection of the trapping unit cell. Liquid metamaterials
are capable of trapping multiple self-assembled spinners either
within a single unit cell or in the separate unit cells. Note that
the main difference between the experiment performed in ref. 1
and our experiment is related to the nature of the confinement
potential. In ref. 1, magnetic rotors are confined using a magnetic
well. Here the hydrodynamic coupling between the spinners and
the flow in the liquid metamaterials is responsible for the particle
confinement.

The results offer a powerful tool which can be used in different
scientific and engineering contexts. In particular, adjacent unit
cells of liquid metamaterials can confine different chemical or
living cell populations, while spinners can be “mules,” carrying
biological and chemical agents back and forth inside the cell and
between the cells.

Materials and Methods
Waves. To generate stable reproducible standing waves, printed pad-
dles (PLA Ultimaker) are mounted on 4 separate electrodynamic shakers
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(TiraVibTV 5009). The 4 paddles form a square cavity 50× 50 mm2. The
opposite paddles move synchronously, in phase. Two orthogonal pairs of
wavemakers are time phase shifted by π/2 using a waveform generator
(Keysight 33500B Series). In all of the experiments, the paddle oscilla-
tion frequency is fixed at 9.4 Hz to fit integer number of wavelengths
within the square cavity. The container depth is h = 15 mm, ensuring the
deep water wave approximation. The wave dispersion relation is given by
ω2 = gk + γ/ρk3, where g is the acceleration of gravity and γ is the liquid
surface tension.

Magnetic Field. Two sets of Helmholtz coil pairs powered by 2 waveform
amplifiers (Accel Instruments TS250-0) create a rotating magnetic field at
the surface of the liquid. Sinusoidal magnetic fields generated by each pair
of coils are phase shifted by π/2, creating the field rotating at the frequency
fs. The rotation direction is reversed by changing the phase between the
magnetic coil pairs from π/2 to −π/2.

Flow Measurements. The horizontal fluid flow is visualized using buoyant
tracer particles (polyethylene, specific density 1.006 g/cm3, 53 to 63 µm,
microspheric). The Stokes number is given by St = (2/9)(ρp/ρf )(d0/Lf )2Re,
where ρp and ρf are respectively the densities of the particles and of the
fluid. Lf is the characteristic scale of the flow, for example the radius of
the fluid particle gyro-orbit (about 0.5 mm here). For the tracer particles
at typical Reynolds numbers of Re = 10, the Stokes number is St = 2.10−2

suggesting that their finite size should not lead to the deviation of their
trajectories from those of the fluid particles. A high-resolution video cam-
era (Andor Zyla X5.5; 2,560 × 2,160 pixels, 100 fps) is used to record the
motion of the tracer particles.

Spinners. Ferromagnetic spinners (1-mm diameter) are made using a flexi-
ble 3D printed (PLAflex) template patterned with cylindrical holes. The holes
are loaded with a mixture of polymers (Elite Double 8) and nickel pow-
der (<150 µm; Sigma Aldrich), where the nickel powder constitutes 90%
of the mixture mass. To ensure that the spinner magnetization is diametri-
cal, the 3D printed template containing the spinners is exposed for 3 d to
a strong horizontal and uniform magnetic field of 2 T. When placed on the
water surface, the spinners are energized using a rotating magnetic field.
The spinner rotation frequency fs is checked using a high-speed camera.
The Stokes number for the nonrotating spinners is St = 10. Their density

is higher than the water density (specific gravity 1.06). The finite size of
the spinners and their higher density are responsible for the inertial forces
discussed above.

The spinners are magnetized particles that attract each other. At the dis-
tances between the spinner centers of about 1 to 2 mm (corresponding to
(2 to 4)r0), the hydrodynamic repulsion balances the magnetic attrac-
tion and the spinners form stably rotating pairs, as illustrated in Movie
S5. The magnetic attraction force between 2 magnetic dipoles scales
with the distance r between them as 1/r4 or even faster for rotating
dipoles. The hydrodynamic repulsion force, on the other hand, scales as
1/r3 (1, 32). When 2 spinners are separated by a long distance (typically
>4 to 5 times their size), the hydrodynamic repulsion dominates over
the magnetic attraction. The stable rotating pair of spinners is observed
at the distance between them at which magnetic attraction balances
hydrodynamic repulsion. In this paper, at the separation distances larger
than 3 to 4 mm hydrodynamic forces dominate and magnetic attraction
can be neglected.

One can also create a configuration where rotating disks acquire dif-
ferent spin frequencies. When the spinner frequency exceeds some critical
value (typically above 35 Hz), it may eventually stop spinning in the rotating
magnetic field. We use this to create spinner configurations with different
rotation frequencies. Since 2 spinners are not ideally the same, we adjust the
spinner frequency near the critical value at which 1 of the 2 spinners stops
rotating. The repulsion hydrodynamic force between them ceases, and mag-
netic interaction will attract the 2 disks forming a bigger structure, as seen
in Fig. 3F. The double spinner rotates with much smaller frequency of 2.5 Hz
in the example in Fig. 3F.

Data Availability
All data are available in the main text, SI Appendix, or on Figshare
(data used for Fig. 2B: https://figshare.com/s/6d92ceab338607923f1e; custom
Matlab code: https://figshare.com/s/641b204f501f0b8c5c16).
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