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Aims Structural and fibrotic remodelling is a well-known contributor to the atrial fibrillation (AF) substrate. Epicardial adipose 
tissue (EAT) is increasingly recognized as a contributor through electrical remodelling in the atria. We aimed to assess 
the association of LA fibrosis and EAT with LA strain and function using cardiac magnetic resonance (CMR) imaging in pa
tients with AF.

Methods 
and results

LA fibrosis was assessed using late gadolinium enhancement CMR, LA EAT was assessed using the fat-water separation 
Dixon sequence, and feature tracking was applied to assess global longitudinal strain in its three components [reservoir 
(GLRS), conduit (GLCdS), and contractile (GLCtS)]. LA emptying fraction and LA volume were measured using the cine 
sequences. All CMR images were acquired in sinus rhythm. One hundred one AF patients underwent pre-ablation CMR 
(39% female, average age 62 years). LA fibrosis was negatively associated with the three components of global longitudinal 
strain (GLRS: R = −0.35, P < 0.001; GLCdS: R = −0.24, P = 0.015; GLCtS: R = −0.2, P = 0.046). Out of the different sections 
of the LA, fibrosis in the posterior and lateral walls was most negatively correlated with GLRS (R = −0.32, P = 0.001, and 
R = −0.33, P = 0.001, respectively). LA EAT was negatively correlated with GLCdS (R = −0.453, P < 0.001). LA fibrosis 
was negatively correlated with LA emptying fraction but LA EAT was not (R = −0.27, P = 0.007, and R = −0.22, P = 0.1, 
respectively). LA EAT and fibrosis were both positively correlated with LA volume (R = 0.38, P = 0.003, and R = 0.24, 
P = 0.016, respectively).

Conclusion LA fibrosis, a major component of the AF substrate, and EAT, an important contributor, are associated with a worsening LA 
function through strain analysis by CMR.
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Graphical Abstract

Atrial fibrillation substrate

Fibrotic remodeling

·  LA fibrosis was negatively correlated with GLRS, GLCdS and GLCtS
·  Out of the different sections of LA, posterolateral fibrosis was most negatively associated with GLRS
·  LA EAT was negatively correlated with GLCdS and this negative relationship was more pronounced in patients with BMI>25 kg/m2

Late gadolinium
enhacement

Dixon sequence Feature tracking

Epicardial adipose tissue Left atrial strain
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What’s new?

• Cardiac magnetic resonance has been used to detect the location 
and degree of LA fibrosis, epicardial adipose tissue (EAT), and LA 
strain. Previous data have shown that higher degrees of fibrosis 
are associated with lower LA strain rates. In addition to fibrosis, 
EAT is a well-known contributor to electrical and structural remod
elling in the LA.

• The association and interaction of atrial fibrosis and EAT, and 
changes in atrial function measured through strain analysis, have 
not been previously elucidated.

• We used CMR imaging to simultaneously assess these associations 
of LA fibrosis and EAT, with LA volume, function, and compliance. 
We found that:
• LA fibrosis was negatively correlated with GLRS, GLCdS, and 

GLCtS,
• Out of the different sections of LA, posterolateral fibrosis was 

most negatively associated with GLRS, and
• LA EAT was negatively correlated with GLCdS, and this negative re

lationship was more pronounced in patients with BMI > 25 kg/m2.

Introduction
Atrial fibrillation (AF) is associated with structural, electrical, and function
al alterations in the atrial myocardium, constituting a true atrial cardiomy
opathy.1,2 It can be an independent risk factor for adverse cardiovascular 
outcomes.3 Left atrial (LA) fibrosis and enlargement are hallmarks of 
structural remodelling, and contribute to AF pathophysiology.4 LA im
aging is increasingly used in diagnosis and clinical management, offering 
valuable prognostic insights as a biomarker of subclinical atrial disease, par
ticularly in cases like embolic stroke of undetermined source.5–7 Cardiac 
magnetic resonance (CMR) imaging is the gold standard for evaluating LA 
volumes, and feature tracking in CMR is a reproducible technique for as
sessing LA function through strain.8

Epicardial adipose tissue (EAT) is increasingly recognized as another 
contributor through electrical, and possibly structural remodelling in 
the atria.9 Epicardial adipose tissue is in direct contiguity with the under
lying myocardium. This privileged location allows it to exert important 
paracrine and vasocrine effects on neighbouring cardiomyocytes. It 

secretes numerous pro-inflammatory cytokines and adipokines that 
can promote AF by inducing fibrotic remodelling in the LA, in addition 
to a localized inflammatory response.10 Segmentation of EAT can be 
performed by cardiac computed tomography or magnetic resonance, 
and it is reported that EAT volume is associated with the incidence, se
verity, and recurrence of AF following catheter ablation.11,12 Cardiac 
magnetic resonance has been used to detect the location and degree 
of LA fibrosis.13,14 Previous data have shown that higher degrees of fi
brosis are associated with lower LA strain rates.15 In addition to fibro
sis, EAT is a well-known contributor to electrical and structural 
remodelling in the LA.9 The association and interaction of atrial fibrosis 
and EAT, and changes in atrial function measured through strain ana
lysis, have not been previously elucidated. We used CMR imaging to 
simultaneously assess these associations of LA fibrosis and EAT, with 
LA volume, function, and compliance.

Methods
Study design and population
This is an observational study of 101 patients with AF undergoing cardiac MRI 
at the University of Washington Medical Center (Seattle, WA). Access to pa
tient information was approved by the Institutional Review Board (IRB) of the 
University of Washington (HSD#6058), and all participants provided consent 
for use of their anonymized clinical data for research purposes. Study data 
were collected and managed using the REDCap system hosted at the 
University of Washington.16,17 Exclusion criteria for AF patients included 
prior catheter ablation, severe claustrophobia, renal dysfunction, and other 
contraindications to MRI or gadolinium-based contrast. Persistent AF status 
was determined using standard ACC/AHA/HRS AF management guideline 
criteria.18 Comorbidities and medications of the initial visit were determined 
using electronic medical record review. Of the patients included, 91 patients 
underwent catheter ablation and were followed for 1 year for arrhythmia re
currence. Arrhythmia recurrence was defined by at least 30 s of documented 
atrial arrhythmia after observing a 90-day blanking period.

MRI protocol
Images were obtained using a Philips Medical System Ingenia 1.5 T clinical 
scanner. To evaluate LA fibrosis, late gadolinium enhancement MRI 
(LGE-MRI) was acquired following the methods previously described.19
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Scans were performed 15–25 min after contrast injection, using a 3D 
inversion-recovery, respiration-navigated, ECG-gated, gradient echo pulse 
sequence. Acquisition parameters included transverse imaging volume 
with a voxel size of 1.25 × 1.25 × 2.5 mm (reconstructed to 0.625 ×  
0.625 × 1.25 mm). To assess EAT, the 3D Dixon sequence was acquired 
with the following parameters: 1.5 mm slice thickness, repetition time 
(TR) = 5.4 ms, echo time 1/echo time 2 = 1.8/4.0 ms, flip angle (α) = 15°, 
voxel size = 1.5 × 1.5 × 3.0 mm3 (reconstructed to 1.0 × 1.0 × 1.5 mm3), 
parallel imaging factor (SENSE) = 1.5 in both phase encoding directions 
and water fat shift = 0.16 pixel.

Image analysis
Pre-ablation LGE-MRI based fibrosis quantification was carried out by a 
third-party image processing service (Merisight, Marrek Inc., Salt Lake 
City, UT) using previously described methods.19 Briefly, the specific proced
ure for LA segmentation included: first defining the endocardium of the LA, 
next dilating the endocardial segmentation by 2 mm, and then manually 
editing it to create and estimate of the boundary of the epicardial LA sur
face, finally subtracting the endocardial segmentation from the epicardial 
segmentation to create a wall segmentation. The relative extent of fibrosis 
was quantified within the LA wall with a threshold-based algorithm de
scribed in detail in Oakes et al.20 Atrial fibrosis was reported as a percentage 
of the LA wall volume. Epicardial adipose tissue was defined as adipose 

tissue located between the visceral layer of the pericardium and the outer 
surface of the myocardium. LA EAT was characterized by high signal inten
sity areas around the LA in a series of slices starting from the bifurcation of 
the pulmonary artery to the mitral annulus craniocaudally. The pericardium 
was identified in axial images and used as the external border for EAT. Areas 
of fat were segmented manually in the axial view using CVI42 software 
(Circle Cardiovascular Imaging Inc., version 5.6, Calgary, AB) contouring 
tools. Two investigators were involved in the analysis of the obtained 
images, both are medical doctors who received special training on EAT seg
mentation. Longitudinal LA strain analysis was performed using the feature 
tracking module in CVI42 software (Circle Cardiovascular Imaging, Inc.). 
Endocardial and epicardial contours of the LA were traced in the end- 
diastolic phase of the long-axis two-chamber and four-chamber cine images. 
The automatic contour tracking algorithm was used, and manual adjust
ments were applied, if necessary. This algorithm places a set of control 
points on the middle curve of the myocardial wall in the reference phase 
based on the drawn endocardial and epicardial contours. Subsequently, 
the position of the control points is detected based on the feature tracked 
boundaries in all the other phases to calculate longitudinal displacement. 
Longitudinal strain measurements were subdivided into global longitudinal 
reservoir, conduit, and contractile strain (GLRS, GLCdS, and GLCtS, re
spectively) (Figure 1). Similar methods for EAT segmentation and strain ana
lysis have been described in the literature.11,21 LA emptying fraction, LA 
volume index, and LA sphericity index were measured using the Cine 
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Figure 1 Left atrial global longitudinal strain curve during atrial reservoir phase, conduit phase, and contractile phase with corresponding two- 
chamber views of the left atrium. GLRS, GLCdS, and GLCtS, global longitudinal reservoir, conduit, and contractile strain, respectively. LA, left atrium; 
LV, left ventricle.
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sequences. The LA sphericity index was calculated as the ratio of LA max
imum volume to spherical volume. All CMR images were acquired in sinus 
rhythm. None of the patients included in the study had a cardioversion in 
the 3 weeks preceding their MRI. Supplementary material online, Video 
S1: panel A depicts a 3D model of the LA showing LGE fibrosis with super
imposed 3D renderings of EAT, and panel B shows a two-chamber long-axis 
view of the heart with global longitudinal atrial strain rendering.

Statistical analysis
Categorical variables are expressed as percentages. Continuous variables 
were assessed for normality of distribution using the Shapiro–Wilk test 
and were reported as mean ± standard deviation if normally distributed, 
or median and interquartile range if not. Independent samples t-test was 
used to compare the mean LA EAT index, LA volume index, LA fibrosis, 
GLRS, GLCdS, and GLCtS based on patient comorbidities, and based on 
whether patients had AF recurrence post-ablation or not. A multivariable 
regression model was created with LA EAT volume as the dependent vari
able and GLCdS and LA fibrosis as the independent variables. All tests were 
two-sided, and a P < 0.05 was considered statistically significant. Statistical 
analysis was performed using SPSS Statistics (version 26.0, International 
Business Machines Inc.) and R Statistical Software version 4.1.1 (R 
Foundation for Statistical Computing) (Figure 2).

Results
Baseline characteristics
One hundred one patients were included in the study (61% male, mean 
age 62.7 years). The mean body mass index of our study population was 
29.6 ± 6.96 kg/m2, and the majority had paroxysmal AF (81.2%). 
Median LA volume index was 45.16 mL/m2 [36.64, 56.5], LA fibrosis 
percentage was 15.5% [9.6, 19], and LA sphericity index was 54.09% 
[46.44, 64.58]. LA EAT volume was 28.48 mL [19.14, 34.39]. GLRS 
was 17.4% [14.95, 20.1], GLCdS was 9.2% [6.75, 12], and GLCtS was 
8.1% [6.5, 9.8]. Other baseline characteristics are summarized in 
Table 1. The intraclass correlation coefficients for inter-observer and 
intra-observer reliability for EAT measurements were 0.927 (95% CI, 
0.734–0.981) and 0.968 (95% CI, 0.877–0.992), respectively. The 
Bland–Altman analysis for inter-observer reliability revealed a good 

agreement between the results of EAT measurements performed by 
two different readers. The mean difference between the observers 
was −0.59 mL with 95% limits of agreement of (−25.11; 23.93) mL 
for EAT volume. The Bland–Altman analysis for intra-observer reliabil
ity revealed a good agreement between the results of repeated EAT 
measurements performed by the same reader. The mean difference be
tween the repeated measurements was −0.29 mL with 95% limits of 
agreement of (−16.75; 16.17) mL for EAT volume.

Table 2 shows a comparison of mean LA EAT index, LA volume in
dex, LA fibrosis, GLRS, GLCdS, and GLCtS based on patient comorbid
ities. Patients with hypertension had higher LA EAT index (16.21 ± 6.32 
vs. 12.30 ± 4.59 mL/m2, P = 0.021). Patients with a history of coronary 
artery disease had lower GLRS than those who did not (15.55 ± 4.29 vs. 
17.75 ± 3.85, P = 0.038). Patients with a history of obstructive sleep ap
noea had higher LA fibrosis (17.99 ± 6.33 vs. 14.20 ± 6.24%, P = 0.009), 
lower GLRS (15.55 ± 3.83 vs. 17.93 ± 3.94, P = 0.008), and lower 
GLCdS (8.29 ± 2.98 vs. 9.90 ± 3.55, P = 0.025). Patients with a history 
of stroke had lower GLCdS (7.46 ± 2.17 vs. 9.62 ± 3.51, P = 0.028). 
Patients with diabetes had a lower GLRS (14.95 ± 3.53 vs. 17.55 ± 4.02, 
P = 0.04). Patients with hyperlipidaemia had higher LA fibrosis 
(17.01 ± 6.48 vs. 14.04 ± 6.23%, P = 0.024). There was no difference 
in LA EAT index, LA volume index, LA fibrosis, GLRS, GLCdS, and 
GLCtS between patients who had paroxysmal or persistent AF.

Association between LA volume and 
fibrosis, and LA strain and function
Feature tracking was applied to the LA to assess the three components 
of the global longitudinal strain: reservoir, conduit, and contractile. LA 
fibrosis was negatively associated with all three components (GLRS: 
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Figure 2 Scatter plot showing the association between LA fibrosis 
percentage and GLRS. LA fibrosis was negatively associated with 
GLRS (R = −0.35, P < 0.001).

Table 1 Baseline characteristics of our study population

Age, years 62 ± 11

Male sex, n (%) 62 (61.4%)

BMI, kg/m2 29.6 ± 7
Hypertension, n (%) 45 (44.6%)

Coronary artery disease, n (%) 22 (21.8%)

Heart failure with reduced ejection fraction, n (%) 12 (11.9%)

Heart failure with preserved ejection fraction, n (%) 5 (5%)

Stroke, n (%) 8 (7.9%)

Obstructive sleep apnoea, n (%) 28 (27.7%)

Hyperlipidaemia, n (%) 41 (40.6%)

Diabetes mellitus, n (%) 11 (10.9%)

Paroxysmal AF, n (%) 82 (81.2%)

Imaging parameters

LA volume index, mL/m2 45.16 [36.64, 56.5]

LA fibrosis percentage, % 15.5 [9.6, 19]

LA sphericity index, % 54.09 [46.44, 64.58]

LA emptying fraction, % 56.3 [48.84, 63.53]

LA EAT volume, mL 28.48 [19.14, 34.39]

Global longitudinal reservoir strain, % 17.4 [14.95, 20.1]

Global longitudinal conduit strain, % 9.2 [6.75, 12]

Global longitudinal contractile strain, % 8.1 [6.5, 9.8]

AF, atrial fibrillation; BMI, body mass index; EAT, epicardial adipose tissue; LA, left 
atrium.
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R = −0.35, P < 0.001 (Figure 2); GLCdS: R = −0.24, P = 0.015; GLCtS: R  
= −0.2, P = 0.046). The LA was divided into seven anatomical regions: 
left PVs, right PVs, left atrial appendage, septal wall, anterior wall, lateral 
wall, and posterior wall (Figure 3A). Figure 3B shows the Pearson correl
ation coefficient for the relationship between fibrosis in each of the LA 
sections and each of the three components of the global longitudinal 
strain. Out of the different anatomical sections of the LA, fibrosis in 
the posterior and lateral walls was most negatively correlated with 
GLRS (R = −0.32, P = 0.001, and R = −0.33, P = 0.001, respectively). LA 
fibrosis was positively correlated with LA volume (R = 0.24, P = 0.016).

LA volume index was negatively correlated with GLRS (R = −0.37, 
P < 0.001). Figure 4 shows a scatter plot of the association between 
LA volume index and (A) GLRS, and (B) LA emptying fraction.

Association between LA epicardial adipose 
tissue and LA strain and function
LA EAT volume was negatively correlated with GLCdS (R = −0.453, 
P < 0.001). However, LA EAT volume did not correlate with GLRS 
or GLCtS (R = −0.251, P = 0.06 and R = 0.209, P = 0.118 respectively. 
Figure 5 shows a scatter plot of the association between LA EAT vol
ume and GLCdS. When we divide the patients into two groups, those 
with a BMI ≤ 25 kg/m2 and those with a BMI > 25 kg/m2, the correl
ation between LA EAT and GLCdS became more negative in the obese 
patients [R = −0.501, P = 0.002 (BMI > 25 kg/m2), vs. R = −0.346, 
P = 0.115 (BMI ≤ 25 kg/m2)].

Multivariable regression shows that the correlation between LA EAT 
volume and GLCdS was independent of LA fibrosis (b coefficient for LA 
EAT volume −0.12; 95% CI, −0.19 to −0.05, P < 0.001). LA EAT was 
positively correlated with LA volume (R = 0.38, P = 0.003).

Association between LA emptying fraction 
and LA strain, volume, epicardial adipose 
tissue, and fibrosis
There was a positive correlation between LA emptying fraction and the 
three components of longitudinal strain GLRS (R = 0.658, P < 0.001), 
GLCdS (R = 0.570, P < 0.001), and GLCtS (R = 0.330, P < 0.001). 
There was a negative correlation between LA emptying fraction and 
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Figure 3 (A) The LA can be divided into seven different anatomical regions: left PVs, right PVs, left atrial appendage, septal wall, anterior wall, lateral wall, 
and posterior wall. (B) Barplot showing the Pearson correlation coefficient for the relationship between fibrosis in each of the LA sections and each of the 
three components of the global longitudinal strain, it shows that fibrosis in the posterior and lateral walls was most negatively correlated with GLRS 
(R = −0.32, P = 0.001, and R = −0.33, P = 0.001, respectively). GLRS, GLCdS, and GLCtS, global longitudinal reservoir, conduit, and contractile strain, 
respectively. LAA, left atrial appendage; LPVs, left pulmonary veins; PV, pulmonary vein; RPVs, right pulmonary veins.
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LA volume index (R = −0.54, P < 0.001), LAA surface area (R = −0.319, 
P = 0.001), and LA fibrosis (R = −0.265, P = 0.007). LA emptying frac
tion was not correlated with LA EAT (R = −0.219, P = 0.1).

AF recurrence post-ablation
Twenty-five out of 91 patients (24.8%) had AF recurrence after cath
eter ablation. Patients who had AF recurrence post-ablation had signifi
cantly larger LA volume index (52.55 ± 13.71 vs. 45.6 ± 12.04 mL/m2, 
P = 0.032), and significantly larger LA EAT index (17.73 ± 6.64 vs. 
12.79 ± 5.02 mL/m2, P = 0.048) compared to those who did not have 
AF recurrence. Regarding strain analysis, patients with AF recurrence 
had significantly lower GLRS (15.87 ± 3.3 vs. 17.92 ± 4.12, P = 0.017) 
and GLCdS (8.23 ± 2.74 vs. 9.99 ± 3.58, P = 0.023) but not GLCtS 
(8.19 ± 1.74 vs. 8.4 ± 2.74, P = 0.663).

Discussion
The major findings of the present study are as follows: (i) LA fibrosis 
was negatively correlated with GLRS, GLCdS and GLCtS, (ii) out of 
the different sections of LA, posterolateral fibrosis was most negatively 
associated with GLRS, and (iii) LA EAT was negatively correlated with 
GLCdS, and this negative relationship was more pronounced in patients 
with BMI > 25 kg/m2.

Cardiovascular magnetic resonance-derived parameters of LA func
tion and dimensions have been previously studied in association with 
markers of electrical and structural remodelling.22 LA strain was shown 
to detect subclinical changes related to physiologic conditions, with 
worsening LA strain measures with aging,23,24 in men compared to wo
men and with differences between races.25 It has also gained consider
able attention as a cardiovascular imaging biomarker due to its 
prognostic importance, with functional abnormalities often preceding 
adverse LA structural remodelling and overt clinical disease. In the 
Multi-Ethnic Study of Atherosclerosis (MESA), lower LA longitudinal 
reservoir strain assessed by CMR feature tracking reflecting LA dys
function was an independent marker of incident heart failure in the 

asymptomatic multi-ethnic population.26 Cardiac magnetic resonance 
feature tracking has higher spatial resolution and better ability to define 
the endocardial border, overcoming the challenges related to speckle 
tracking echocardiography, particularly the anatomic location of LA 
and thinness of the atrial wall.8

In our study, using cardiac CMR we simultaneously assessed LA fi
brosis and EAT and their relationship with changes in atrial strain. 
We showed that LA fibrosis was negatively correlated with all three 
components of global longitudinal strain and that out of the different 
sections of LA, posterolateral fibrosis was most negatively associated 
with GLRS. Assaf et al.27 showed that atrial fibrosis does not uniformly 
affect the LA, and that regional fibrosis can be a significant predictor of 
AF recurrence. Ferro et al.28 showed that increased LA sphericity, glo
bal LA fibrosis, and fibrosis in the lateral wall are independently asso
ciated with arrhythmia recurrence. Habibi et al.15 showed that lower 
LA strain rates were associated with higher degrees of fibrosis. 
Histological analysis showed that increased LA remodelling was signifi
cantly related to altered LA strain. Huber et al.29 showed that de
creased peak LA strain was correlated to the histologic degree of LA 
fibrofatty myocardial replacement, a substrate of AF cardiomyopathy, 
however, LA volume did not correlate with the degree of fibrofatty 
infiltration.

In addition to the role of fibrosis in the pathophysiology of AF, there 
is growing interest in EAT as a metabolically active visceral adipose tis
sue in direct contiguity with the myocardium. The secretome of EAT 
contains a host of inflammatory adipokines, growth factors, and cyto
kines that can induce fibrosis.30 Epicardial adipose tissue volume is as
sociated with fibrotic remodelling by MRI imaging.31 In addition, 
fibrotic remodelling of EAT is associated with myocardial fibrosis32

and can be detected by per cent change in fat attenuation using CT 
scan.33,34

Commonly, only GLRS (peak LA strain during systole) is reported in 
clinical studies. While other strain measurements seem to follow the 
same trajectory, they may hold other information. In our study, we 
show that EAT is negatively correlated with conduit strain. Similarly, re
cent studies promoted the evaluation of the contractile strain, 
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worsening LA function was associated with incident AF.35 In addition, 
obesity was associated with impaired LA reservoir and conduit function 
assessed using echocardiography in middle-aged adults and improved 
pump function that may be compensatory.36

Obese patients were shown to have higher volumes of EAT and EAT 
was positively associated with LA enlargement,31 however using LA 
enlargement as a measure of atrial remodelling may not differentiate 
compensatory LA remodelling in obesity from pathologic remodelling. 
We showed that EAT is negatively correlated with conduit strain, 
and that this negative relationship is more pronounced in patients 
with BMI > 25 kg/m2, suggesting that increased EAT volume is linked 
to atrial dysfunction. Therefore, EAT and LA dysfunction may be better 
at identifying adverse remodelling than LA volume in obesity.

We also showed that patients who had AF recurrence post-ablation 
had larger LA volume and LA EAT volume and had lower reservoir 
strain and conduit strain. This suggests that both structural and func
tional remodelling in AF are associated with worse outcomes and falls 
in line with results from previous studies.12,37

Limitations
Our study has some limitations. It is a single centre observational study 
with a relatively small sample size. The process of EAT quantification 
and LA wall segmentation for strain analysis are performed manually 
and can benefit from artificial intelligence and automation. Similar meth
ods for EAT segmentation and strain analysis have been described in the 
literature.11,21 There is currently no consensus regarding fibrosis quan
tification, multiple methods have been described in the literature, and 
different optimal scar thresholds can be used,38–40 however the meth
od we implemented in fibrosis quantification in this study has been used 
in previous large clinical studies and trials.19,41

Conclusion
LA fibrosis and EAT, two important contributors to the AF substrate, 
are associated with a worsening LA function through strain analysis by 
CMR. AF patients with extensive fibrosis have impaired reservoir, con
duit, and contractile strain, whereas AF patients with increased EAT 
volume have impaired conduit strain. LA strain may act as a non-invasive 
surrogate of LA fibrofatty remodelling and may ultimately be useful for 
clinical decisions in patients with AF.
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