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Migraine is one of the most prevalent and disabling neurovascular disorders worldwide.
However, despite the increase in awareness and research, the understanding of
migraine pathophysiology and treatment options remain limited. For centuries, migraine
was considered to be a vascular disorder. In fact, the throbbing, pulsating quality of the
headache is thought to be caused by mechanical changes in vessels. Moreover, the
most successful migraine treatments act on the vasculature and induction of migraine
can be accomplished with vasoactive agents. However, over the past 20 years, the
emphasis has shifted to the neural imbalances associated with migraine, and vascular
changes have generally been viewed as an epiphenomenon that is neither sufficient nor
necessary to induce migraine. With the clinical success of peripherally-acting antibodies
that target calcitonin gene-related peptide (CGRP) and its receptor for preventing
migraine, this neurocentric view warrants a critical re-evaluation. This review will highlight
the likely importance of the vasculature in migraine.
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INTRODUCTION

Migraine is a highly prevalent and complex, neurovascular disorder that has been recognized
since ancient times. It afflicts approximately 1 in 10 people worldwide and causes a significant
socioeconomic burden on society (Smitherman et al., 2013; Burch et al., 2015; Woldeamanuel
and Cowan, 2017). Most migraines are diagnosed as episodic, however, approximately 5% of
migraineurs experience chronic migraine (>15 headache days monthly; Couch, 2011). As a result,
migraine has become a $13 billion dollar industry in direct healthcare costs (Hawkins et al., 2008).
The presentation of migraine varies between each individual patient, but a common diagnostic
feature is a severe headache with a pulsating quality. The pulsating or throbbing pain underlies
migraine being thought of as a vascular disease. The most common treatments, the triptans, are
effective in only ∼60% of patients and little advancement in effective therapy has occurred since
their development (Loder, 2010). However, the promise of monoclonal antibodies for prevention
of migraine has reignited the theory of a peripheral input, which most likely involves a vascular
contribution. Here, we revisit the vascular basis of migraine.

Theories of migraine pathophysiology have been debated for quite some time. In particular,
whether migraine genesis and/or maintenance involves a primary role for the vasculature remains
controversial (Goadsby, 2009; Messlinger, 2009; Shevel, 2011). The vascular theory was first
articulated by Galen in the second century and later re-proposed by Thomas Willis in the late
17th century (Isler, 1992). However, it wasn’t until the early 1940’s that Harold Wolff first showed
that intensity of migraine was closely linked to the pulsating branches of the external carotid
arteries and decreasing the amplitude of the pulsations decreased the intensity of the headache
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(Tfelt-Hansen and Koehler, 2008). In the same study, ergots
were used to induce vasoconstriction of temporal and middle
meningeal arteries. The vasoconstriction of these vessels reduced
throbbing while coincidently diminishing the intensity of the
headache. These observations were the genesis of what would
later be known as the vascular theory of migraine. However,
Ahn reported a study that opposed the observations of Wolff
(Ahn, 2010). In a cohort of 20 migraine patients he did not find
a temporal relationship between throbbing migraine pain and
arterial pulsation.

It seems possible that both intracranial and extracranial
arteries play a nociceptive role in migraine (Asghar et al.,
2010, 2011; Shevel, 2011). Intracranial vessel dilation has been
implicated in migraine, specifically meningeal arteries. In one
study, during experimental induction of migraine, dilation
of both middle meningeal and middle cerebral arteries was
observed (Asghar et al., 2011). During spontaneous migraine,
intracranial arteries have been reported to be more dilated
during attacks (Amin et al., 2013). For extracranial arteries,
the superficial temporal arteries have been reported to be
wider on the pain side of the head, and compression of
the artery relieved pain in ∼30% of patients (Blau and
Dexter, 1981; Drummond and Lance, 1983). Additionally,
Elkind et al. (1964) concluded that during unilateral headache,
blood flow was increased only on the painful side and
treatment with ergotamine reduced blood flow and headache
in many of the patients. However, it is not clear if ergotamine
affected both extracranial and/or intracranial vessels in this
study. Other studies used ultrasonography to measure blood
flow velocity, a marker for increased artery lumen, during
migraine attacks (Thomsen et al., 1995). More recently,
studies using magnetic resonance angiography to observe the
circumference of extracranial arteries during attacks reached
an opposing conclusion that dilation of extracranial arteries
was not associated with migraine pain, although there was
slight intracranial dilation of the vessels (Amin et al., 2013).
Interestingly, both intracranial and extracranial arteries can
potentially be innervated by collaterals of the same trigeminal
nerve that transverse the skull (Kosaras et al., 2009). Further
investigation of both intracranial and extracranial vessels in
migraine are necessary.

INDUCTION OF MIGRAINE BY
VASOACTIVE COMPOUNDS

Using the vascular hypothesis as inspiration, several studies
have shown that migraine attacks were associated with
release of vasoactive peptides. The vasodilatory peptides
calcitonin gene-related peptide (CGRP) and pituitary adenylate
cyclase-activating polypeptide (PACAP-38), as well as the
neurotransmitter nitric oxide (NO), are all potent vasodilators
implicated in migraine pathophysiology (Brain et al., 1985;
Moncada et al., 1991; Messlinger et al., 2012; Kaiser and Russo,
2013; Russo, 2015, 2017; Jansen-Olesen and Hougaard Pedersen,
2018).

CGRP is a multifunctional neuropeptide found on sensory
nerve fibers (Russell et al., 2014). These fibers innervate vessels

where CGRP receptor activation can cause both smooth muscle-
dependent and endothelium-dependent activation (Wang et al.,
1991; Raddino et al., 1997; Brain and Grant, 2004). Infusion of
CGRP in migraine patients results in a delayed migraine-like
headache, occurring around 1–5 h after treatment. However,
this study also reported a decrease in blood pressure following
infusion of CGRP that returned to levels similar to baseline
within 60 min of administration (Lassen et al., 2002). To
understand the mechanisms of migraine, several studies have
induced migraine-like behavior via administration of CGRP
(Marquez de Prado et al., 2009; Recober et al., 2009, 2010; Kaiser
et al., 2012; Mason et al., 2017; Yao et al., 2017). We have
previously reported that overexpression of CGRP receptors in
the nervous system enhanced photophobia following central,
but not peripheral, administration of CGRP (Mason et al.,
2017). These studies suggest that peripheral CGRP had targets
outside of nervous tissue that may be relevant in migraine,
which is consistent with a possible vascular site of action.
However, not all data fit the hypothesis that vasodilation
can cause migraine pain. Levy et al. (2005) reported that
CGRP-evoked vasodilation failed to induce a nociceptive effect
in meningeal nociceptors. Since data focused on vasodilation-
induced nociception are conflicting, future studies that dissect
whether vasodilation can sensitize dural nociceptors in vivo are
warranted.

Similar to CGRP, PACAP-38 and NO also can induce
migraine. PACAP-38 is present in sensory neurons and on the
vascular smooth muscle cells of vessels (Uddman et al., 1993;
Mulder et al., 1994; Fahrenkrug and Hannibal, 1998; Tajti et al.,
1999; Vaudry et al., 2009). Reports also show that intravenous
administration of PACAP-38 can elicit a migraine-like attack
in patients (Schytz et al., 2009) and cause sustained meningeal
vasodilation and migraine-like photophobia in mice (Markovics
et al., 2012). Additionally, both CGRP and PACAP cause
vasodilation of the middle meningeal artery (Asghar et al., 2010;
Amin et al., 2013; Kaiser and Russo, 2013; Jansen-Olesen and
Hougaard Pedersen, 2018). Nitroglycerin (glycerol trinitrate,
GTN) is another vasoactive compound implicated in migraine.
GTN is enzymatically reduced to NO and/or NO precursors
that cause substantial vasodilation (Hill et al., 1992; Millar et al.,
1998; Chen et al., 2005; Bonini et al., 2008). GTN administration
also causes an immediate headache and a delayed migraine-like
headache in migraineurs and a less severe headache in control
subjects (Iversen et al., 1989; Thomsen et al., 1994). For these
studies, it was reported that during the actual headache phase
vasodilation no longer occurs. This is consistent with studies
in 1981 by Olesen reporting that the pain was manifested only
after vasodilation had subsided (Olesen et al., 1981), although the
prolonged initial vasodilatory phase could be important in the
pain process. Finally, an important consideration is that vascular
agents related to migraine also have neural and/or immune
activity (Coleman, 2001; Delgado et al., 2003; Cury et al., 2011;
Kaiser and Russo, 2013).

Perhaps the most convincing argument that vasodilation
may be an epiphenomenon and not a causative factor in
migraine came from a study showing that vasoactive intestinal
peptide (VIP) induces vasodilation, but only produced a mild
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headache, not a migraine (Rahmann et al., 2008). However, the
conclusion that vasodilation is an epiphenomenon based on
the inability of VIP to induce migraine, may be a premature
conclusion. CGRP, PACAP-38 and GTN all cause sustained
vasodilation following infusion (Brain et al., 1985; Iversen et al.,
1989; Bhatt et al., 2014). In contrast, VIP-induced vasodilation
is transitory compared to PACAP-38 (Amin et al., 2014;
Edvinsson et al., 2018). Additionally, It was recently reported
that PACAP, but not VIP, can dilate the middle meningeal
artery (Jansen-Olesen and Hougaard Pedersen, 2018). Hence,
there are differences in kinetics and possibly vascular targets
of VIP compared to PACAP. Moreover, CGRP, PACAP and
GTN cause pro-inflammatory molecule release(Reuter et al.,
2001; Raddant and Russo, 2011; Jansen-Olesen et al., 2014;
Jansen-Olesen and Hougaard Pedersen, 2018), while VIP is well
known for its immuno-protective role and its anti-inflammatory
effect (Delgado et al., 2002). Along this line, VIP may also
inhibit mast cell degranulation whereas PACAP induces dural
mast cell degranulation (Tunçel et al., 2000; Baun et al.,
2012). Therefore, it is possible that: (1) increasing VIP infusion
time could unveil an ability of VIP to induce migraine-like
headaches or (2) the anti-inflammatory properties of VIP
play a role in its inability to induce migraine. Future studies
with prolonged VIP infusion in migraineurs and examination
of cephalic mast cells after infusion of VIP in rodents are
warranted.

Although most studies focus on vasodilatory agents
implicated in migraine, the role of vasoconstrictors must
not be ruled out. There have been observations that plasma
levels of endothelin-1 (ET-1), a potent vasoconstrictor, were
increased during early stages of a migraine attack, but rapidly
decreased at the onset of the headache (Kallela et al., 1998).
ET-1 is an important regulator of cerebral blood flow and
its receptors are found in endothelium and vascular smooth
muscle cells of the arterial system and throughout the CNS
(Arai et al., 1990; Sakurai et al., 1990). Kallela et al. (1998)
observed that even though ET-1 was elevated during early
phases of the migraine attack, the cubital vein blood pressure
measurements were unchanged. ET-1 levels rapidly decline
approximately 3–4 h after the initiation of the attack, which
coincides with reports of headache onset (Kallela et al.,
1998). However, the authors did not report the actual blood
pressure values and the observation time points are unclear.
It is important to note that ET-1 has the ability to either
induce vasoconstriction or an initial vasodilation followed
by vasoconstriction depending on whether it is activating
endothelin type A receptor (ETA) or endothelin type B
(ETB). ETA activation causes sustained vasoconstriction via
smooth muscle and can inhibit NO synthesis (Arai et al.,
1990; Ikeda et al., 1997) however, ETB activation initially
increases release of NO and prostacyclin, which are known
vasodilators, followed by sustained vasoconstriction via
endothelial cells (de Nucci et al., 1988; Hoffman et al., 1989;
Winquist et al., 1989; Sakurai et al., 1990). Furthermore, the
non-specific endothelin receptor (A/B) antagonist bosentan
inhibits neurogenic inflammation but not vasoconstriction
and is not effective for the treatment of migraine (May et al.,

1996). However, the ability of bosentan to act on the initial
vasodilation that occurs with ETB activation was not assessed.
This, along with other studies showing inhibition of neurogenic
inflammation is not enough to abort migraine, supports a
possible vascular role in migraine. Future studies dissecting
the temporal relationship among the release of vasoactive
agents such as CGRP, NO and ET-1 in migraine patients are
necessary.

NON-VASODILATORY ROLE OF THE
VASCULATURE

The vascular aspects of migraine have largely focused on
changes in vascular tone, however a non-vasodilatory role
of the vasculature has recently been suggested (Jacobs and
Dussor, 2016). Vascular inflammation is a mechanism that may
contribute to migraine pathogenesis. Dural vessels are thought to
contribute to neurogenic inflammation, an event that activates
sensory neurons and is characterized by vasodilation, plasma
extravasation, and release of pro-inflammatory molecules from
mast cells (Raddant and Russo, 2011). These non-vasomotor
roles may involve all three layers of vessels: the inner
endothelium layer, the middle smooth muscle layer and the
outermost adventitia layer of fibroblasts and connective tissue.

The endothelium can both send and respond to signals via
release of vasoactive substances to maintain vessel homeostasis
(Tomiyama and Yamashina, 2010; Jacobs and Dussor, 2016).
For example, when perturbed, cells of the vasculature can
release ATP, consequently activate purinergic receptors,
stimulate release of NO and pro-inflammatory mediators
from endothelial cells (Burnstock, 2016; Jacobs and Dussor,
2016). Endothelium-induced NO release is then capable of
sensitizing nearby afferents and possibly contributing to
pain experienced during migraine. Two studies reported
migraineurs have a decreased count of circulating endothelial
progenitor cells (Hill et al., 2003; Rodríguez-Osorio et al.,
2012). These cells are a marker of endothelium integrity and
function, and a reduction suggest endothelial cell dysfunction
(Hill et al., 2003). Additionally, there is mounting evidence
of circulating endothelial microparticles in female migraine
patients, particularly those diagnosed with migraine with
aura (Liman et al., 2015). Tietjen et al. (2009) concluded that
decreased concentrations of urinary NO stable metabolites in
migraineurs in between migraine attacks compared to control
subjects was indicative of endothelial cell dysfunction. Reports
from the Levine lab suggest that vascular endothelial cells play
a role in enhanced peripheral hyperalgesia via endothelin-1
and both β-adrenergic antagonist ICI-118551 and sumatriptan,
both which have receptors on endothelial cells, attenuated
endothelin-induced enhancement of hyperalgesia (Joseph et al.,
2013). These findings suggest that anti-migraine drugs can
produce anti-nociceptive effects by actions on endothelial cells.
Conversely, Napoli et al. (2009) concluded that endothelial
cells were properly functioning in migraineurs, however,
smooth muscle cells failed to function properly following
a diminished response to NO. Thus, there is evidence of
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endothelial dysfunction in migraine, although it is not without
controversy.

Smooth muscle cells are of particular interest in migraine
although studies that focus on their non-vasomotor
contributions are limited. However, one promising area is
the ability of NO to activate soluble guanylyl cyclase (sGC) in
vascular smooth muscle cells. Recently sGC has been implicated
in migraine pathogenesis (Ben Aissa et al., 2017). sGC is a
major NO receptor and has been reported as a mediator of
nitroglycerin-induced migraine pain (Ben Aissa et al., 2017).
While NO induction of sGC causes vasodilation, it can influence
dural nociceptors via the NO-cGMP pathway (Levy and
Strassman, 2004). More recently Zhang et al. (2013) showed that
this NTG infusion has been shown to cause delayed meningeal
inflammation via vascular phosphorylated ERK expression.
These data, though few, warrant more comprehensive studies
to determine the role of smooth muscle activation in migraine
models.

Finally, an unexpected contribution of the fibroblasts has
recently been suggested by the Dussor lab (Wei et al., 2014).
Cultured fibroblasts from the dura are capable of releasing
mediators that sensitize dural afferents and induce-migraine-
like behavior in rodents (Wei et al., 2014). These cells release
IL-6 which is elevated during migraine attacks (Fidan et al.,
2006; Sarchielli et al., 2006). It is important to note the
fibroblasts used in this study were not cultured from dural
vessels and cytokine release was induced by lipopolysaccharide.
Future studies that dissect whether adventitial fibroblasts
from dural vessels play a role in migraine and a whether
a spontaneous mechanism can induce cytokine release are
warranted.

MAST CELL, NEURONS AND VESSEL
CROSS TALK

The mechanisms that underlie aberrant nociceptor activation
are still poorly understood, but are believed to involve changes
in the meningeal environment, especially in the dura mater
(Zhang et al., 2007, 2010; Zhang and Levy, 2008; Levy, 2009,
2010). The dura mater is a highly vascularized membrane
that is heavily innervated by pain fibers and has a dense
population of immune cells (Fricke et al., 2001; Jacobs and
Dussor, 2016). One theory is that neurogenic inflammation
caused by activated mast cells can sensitize nociceptors and
thus trigger headache (Theoharides et al., 2005; Waeber and
Moskowitz, 2005; Levy, 2009). While direct evidence is lacking,
clinical studies have reported increased circulating intracranial
inflammatory mediators during an attack (Sarchielli et al.,
2006; Goadsby and Edvinsson, 1993). Moreover, activated
mast cells release histamine, prostaglandins and a host of
pro-inflammatory peptides (Roberts et al., 1979; Heatley et al.,
1982; Lewis et al., 1982; Tetlow et al., 1998; Theoharides
et al., 2005; Aich et al., 2015). Specifically, tryptase and
histamine release have been reported to release neuropeptides
from proximal nerve endings and contribute to hyperalgesia
(Kleij and Bienenstock, 2005; Aich et al., 2015). This along
with the ability of mast cells to increase pERK, cfos, and

excitation of meningeal nociceptors provide insight into a
mechanism of how mast cells might contribute to peripheral
sensitization.

Histamine has been reported to be increased in plasma
levels during a migraine attack (Heatley et al., 1982; Moskowitz,
1993; Theoharides et al., 2005). Also, infusion of histamine
in migraineurs causes a severe pulsating headache compared
to controls (Krabbe and Olesen, 1980). Although with some
debate, anti-histamines have been effective in treating migraine
in some clinical studies and their potential role in migraine is
nicely summarized by Silberstein (Yuan and Silberstein, 2018).
Histamine causes dilation of cranial arteries via activation of
endothelial histamine receptor H1 and inducing formation of NO
(Toda, 1990; Ottosson et al., 1991). Moreover, histamine disrupts
endothelial barrier formation by altering vascular endothelial
cadherin and inducing dilation of vessels (Ashina et al., 2015).

There is an overwhelming abundance of evidence that
suggest inflammatory pain states can alter blood brain barrier
(BBB) permeability. The BBB is a selective barrier that limits
paracellular diffusion via tight junctions between endothelial
cells (DosSantos et al., 2014). Given that migraine has increased
release of pro-inflammatory peptides, it could involve BBB
disruption, although this is still controversial. In a mouse
model of cortical spreading depression, the detection of brain
edema, plasma extravasation, and altered metalloprotease and
matrix proteins were indicative of BBB dysfunction (Gursoy-
Ozdemir et al., 2004). In addition to barrier dysfunction,
alterations in gap junctions may play a role in migraine. Gap
junctions are specialized regions of the plasma membrane
that connect cytoplasms of adjacent cells. Tonabersat, a gap
junction inhibitor that binds to connexin 43, has been shown
to be effective in a subset of migraine patients with aura
(Sarrouilhe et al., 2014). Of particular interest, connexin 43 is
found on neuronal cells and is one of the connexin proteins
associated with cells of the cardiovascular system (Figueroa
and Duling, 2009). Given these data, the efficacy of tonabersat
suggest a possible role for dysfunction of gap junctions in
migraine.

Based on these observations, we propose a possible
mechanism for how an altered trigeminovascular
microenvironment may initiate vascular-neural cross talk
(Figure 1). The meninges are densely vascularized and the
layers are innervated by sensory fibers that relay information
from the periphery to higher order neurons in the brain.
Distention of intracranial blood vessels, possibly from the dura,
mechanically activates trigeminal perivascular afferents (Davis
and Dostrovsky, 1986; Buzzi et al., 1995). Those activated
neurons can release molecules that cause mast cell activation and
vasodilation of the nearby vessels in a feed-back loop (Figure 1).
In this model, mast cell activation increases vascular permeability
and/or causes neuronal activation and neuropeptide release,
which causes subsequent release of inflammatory mediators
from the vessels that modulate sensory input. Most studies
focus on the effect of mast cells on neurons in migraine. Future
studies that examine the effect of mast cells on vasculature in
translational models of migraine could reveal a role for mast cells
in vascular-neural coupling.
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FIGURE 1 | Model of vascular-neural coupling. Mast cell activation and degranulation alter the trigeminovascular microenvironment via release of inflammatory
molecules. Inflammatory molecules can mediate vasodilation of nearby vessels and cause nociceptor activation. Vessels can activate trigeminal neurons
mechanically or by release of inflammatory mediators due to increased vascular permeability causing a positive feedback loop.

MIGRAINE TREATMENTS AND THEIR
ACTIONS ON VESSELS

Based on the theory that cranial vasodilation was the sole
cause of migraine and intravenous infusion of serotonin could
successfully treat migraine, a new evidence-based target for
migraine therapy was born, the triptans (Humphrey et al., 1989).
The triptans have now become the gold-standard in migraine
treatment (Ferrari et al., 2001).

Despite the wide use and tolerability of the triptans, the
mechanism of action has never been entirely defined. It is known
that triptans are 5-HT1B/D/F serotonin receptor agonists that can
inhibit the release of neuropeptides involved in migraine and
act as vasoconstrictors (Jansen et al., 1992; Nozaki et al., 1992;
Williamson et al., 1997; Knight et al., 2001; Wackenfors et al.,
2005). Moreover, sumatriptan treatment reduced plasma levels
of CGRP in humans (Goadsby and Edvinsson, 1993; Juhasz et al.,
2003) and animal models (Buzzi and Moskowitz, 1990; Buzzi
et al., 1991; Nozaki et al., 1992). Vascular studies of triptans
in people have given insight into its mechanism of action and
the roles vessels might play in migraine. In fact, a study using
single-photon emission computed tomography combined with
Doppler sonography showed that if sumatriptan is infused in
people, only the abnormally dilated vessels were reversed back
to normal (Asghar et al., 2010, 2011). This observation suggests
that triptans only cause significant vasoconstriction on dilated

vessels during a migraine. Furthermore, it is interesting to note
that triptans work best if used within the first 2 h of the
attack (Linde et al., 2006). This coincides with the vasodilatory
period following CGRP administration (Lassen et al., 2002). In
addition, sumatriptan does not appear to be effective for relieving
pain in other disorders (Ahn and Basbaum, 2005), which may
be due to the vascular events in migraine. These observations
suggest that the vasoconstrictor activity of triptans should not be
ignored.

CGRP receptors are found throughout the cranial vasculature.
Olcegepant is a non-peptide CGRP antagonist that has high
specificity for human CGRP receptors and reported to be
efficacious in migraine (Edvinsson, 2008, 2015). Olcegepant
blocks dilation of the middle meningeal and extracranial
temporal arteries. Similarly, the CGRP receptor antagonist
telcagepant has also been shown to inhibit vasodilation of
cultured human cerebral and meningeal arteries (Edvinsson
et al., 2010). These observations leave open the possibility that
some of the CGRP receptor antagonist efficacy might involve the
vasculature.

ASSOCIATION OF MIGRAINE WITH
CARDIOVASCULAR DISEASE

Several studies have linked migraine with increased risk of
cardiovascular disease. It is reported that migraineurs with aura
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have a two-fold increased risk for ischemic stroke (Schürks
et al., 2009; Sacco and Kurth, 2014). Moreover, patients that
experience high frequency migraine have a further increased
risk of stroke (Kurth et al., 2009). More to the point, in
the largest ever meta-analysis that included over 1 million
subjects, migraine has been confirmed to be associated with
a higher long-term risk of both ischemic and hemorrhagic
stroke and myocardial infarction (Mahmoud et al., 2018).
Another study that corroborates a role in migraine is a
genome wide association meta-analysis in 2016 by Gormley
et al. (2016) that identified 38 susceptibility loci that were
enriched for genes associated with arterial tissue. Moreover,
several of these genes are associated with smooth muscle
dysfunction and cardiovascular disorders linked to migraine as
a comorbidity.

There is debate on whether hypertension and/or hypotension
have a relationship with migraine (Hagen et al., 2002; Low and
Merikangas, 2003; Hamed et al., 2010). It has been suggested
that migraine and hypertension have a high prevalence of co-
morbidity. Reports that there is a high incidence of migraine in
patients with hypertension go as far back as 1913 (Janeway, 1913).
Additionally, in a retrospective study, Grebe et al. (2001) found
61% of patients that had developed medicine overuse headache
from the treatment of migraine also had hypertension. The
same group also found that migraineurs with aura had increased
systolic pressure compared to control subjects.

Migraine has a sex disparity and affects a substantial number
of women in their reproductive years (Sacco et al., 2012;
Finocchi and Strada, 2014). Preeclampsia is a vascular disorder
of pregnancy and is characterized by the sudden onset of
hypertension and occurrence of vasospasm. It is the leading
cause of death among pregnant women (MacKay et al., 2001).
In 1959, Rotton et al. (1959) published the first study correlating
migraine and preeclampsia and eclampsia in pregnant women.
This study noted that a large population of women whose
migraine attacks were exacerbated during pregnancy, were also
found to have preeclampsia. Moreover, Adeney and Williams
used a retrospective approach to examine the association of
migraine and preeclampsia and found that 8 out of 10 studies
showed a correlation between the two disorders (Adeney and
Williams, 2006).

The renin-angiotensin system (RAS), which is involved in
hypertension, has been thought to be involved in migraine
pathogenesis (Ba’albaki and Rapoport, 2008). Indeed, the
efficacy of angiotensin converting enzyme inhibitors in migraine
treatment is indicative of a link between migraine and
hypertension (Tronvik et al., 2003). Additionally, blood pressure

homeostasis is maintained by close communication between
the RAS and natriuretic peptides. It has been reported that
brain natriuretic peptide (BNP), which is produced by cardiac
cells, is elevated in migraine (Uzar et al., 2011). However, BNP
is reported to negatively regulate sensory neuron excitability
(Vilotti et al., 2013). Further investigations are necessary to
elucidate the role of BNP, RAS and hypertension in migraine.
Conversely, several studies have also found no correlation
between migraine and hypertension (Hagen et al., 2002; Wiehe
et al., 2002; Tzourio et al., 2003). In fact, one study suggested
that individuals with migraine-like episodes had a higher
correlation with lower blood pressure than individuals without
headache (Seçil et al., 2010). Furthermore, Seçil et al. (2010)
detected diastolic hypotension in normotensive patients at
the beginning, during, and up to 1 h following a migraine
attack. These observations point to a possible link, but more
comprehensive studies are needed to determine if hypertension
or hypotension contribute to a sub-population of migraine
attacks.

CONCLUSION

The ability of vasoactive substances to induce migraine,
effective drugs to have a vascular site of action, and the
associated correlation of migraine and cardiovascular disease
convey that vascular contributions should not be considered
an epiphenomenon, but more so a causative component in
migraine. Yet, clearly many lines of evidence establish that
migraine is a neural disorder. We suggest that the vascular and
neural theories can be linked by vascular activation of the nervous
system (Figure 1). Understanding the communication between
blood vessels, neurons and possibly mast cells will be integral in
unraveling the pathophysiology of migraine and future studies
should focus on dissecting this intersection of vascular and neural
actions in migraine.
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