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Background. Colorectal cancer (CRC) is one of the most common gastrointestinal tumors, which accounts for approximately 10%
of all diagnosed cancers and cancer deaths worldwide per year. Scutellariae barbatae Herba (SBH) is one of the most frequently
used traditional Chinese medicine (TCM) in the treatment of CRC. Although many experiments have been carried out to explain
the mechanisms of SBH, the mechanisms of SBH have not been illuminated fully. *us, we constructed a network pharmacology
and molecular docking to investigate the mechanisms of SBH. Methods. We adopted active constituent prescreening, target
predicting, protein-protein interaction (PPI) analysis, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes
(KEGG) analysis, differentially expressed gene analysis, and molecular docking to establish a system pharmacology database of
SBH against CRC. Results. A total of 64 active constituents of SBH were obtained and 377 targets were predicted, and the result
indicated that quercetin, luteolin, wogonin, and apigenin were the main active constituents of SBH. Glucocorticoid receptor
(NR3C1), pPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform (PIK3CA), cellular tumor antigen p53
(TP53), transcription factor AP-1 (JUN), mitogen-activated protein kinase 1 (MAPK1), Myc protooncogene protein (MYC),
cyclin-dependent kinase 1 (CDK1), and broad substrate specificity ATP-binding cassette transporter ABCG2 (ABCG2) were the
major targets of SBH in the treatment of CRC. GO analysis illustrated that the core biological process regulated by SBH was the
regulation of the cell cycle. *irty pathways were presented and 8 pathways related to CRC were involved. Molecular docking
presented the binding details of 3 key targets with 6 active constituents. Conclusions.*emechanisms of SBH against CRC depend
on the synergistic effect of multiple active constituents, multiple targets, and multiple pathways.

1. Introduction

Colorectal cancer (CRC) is one of the most common
gastrointestinal tumors. Nowadays, CRC accounts for
approximately 10% of all diagnosed cancers and cancer
deaths worldwide per year [1]. *e amounts of CRC pa-
tients will increase to 2.5 million in 2035 around the world
according to the prediction ofWHO [1, 2]. Previous studies
have indicated that the majority of CRC cells originate from
colon stem cells, which were located at the base of colonic
crypts [3, 4], and several risk factors such as smoking [5],
excessive alcohol ingestion [6], and red meat consumption

[7] have been identified to contribute to the genetic mu-
tations of colon stem cells. *e therapies for CRC include
endoscopic treatment, surgery, radiotherapy, chemother-
apy, and immunotherapy [1]. Although there is brilliant
progress in diagnostic techniques and treatment strategies
[8], there still exist a sizeable percentage of patients at an
advanced stage of CRC along with a high degree of me-
tastasis when diagnosed [9]. In addition, the cost of an-
ticancer drugs keeps increasing, which brings heavy
economic burden to families, especially in developing
countries [10]. *us, it is necessary to search for more cost-
effective and less toxic drugs.
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Traditional Chinese medicine (TCM) has a 5000-year
history in China, and it is presently regarded as a useful
complementary and alternative medication worldwide [11].
Many historic studies have shown that TCM could induce
apoptosis, tumor growth, angiogenesis, and metastasis
[12–15]. TCM also plays a role in ameliorating the side
effects engendered by radiotherapy and chemotherapy [16].
Scutellariae barbatae Herba (also known as BanZhiLian in
Chinese) is the dried full plant of Scutellaria barbata D. Don
in the Lamiaceae family, which has been used for thousands
of years in China as a “heat-clearing and detoxifying” drug
[17, 18]. Moreover, the anticancer effect of SBH has been
examined in many types of cancer including lung cancer,
hepatic cancer, breast cancer, colorectal cancer, leukemia,
and prostate cancer [17]. Although a considerable amount of
literature has been published on searching the mechanisms
of SBH, the potential mechanisms of SBH have not yet been
systematically investigated.

*e traditional drug discovery paradigm focuses on
screening exquisite ligands, and the presupposition of “one
drug for one target for one disease” is accepted by the
majority of researchers [19]. However, this paradigm is not
suitable for TCM, which is characterized by multiple
components, multiple targets, and multiple pathways [20].
Network pharmacology highlights the consolidation of drug
targets, biological network, and pharmacology network [19],
which provides a feasible method for TCM exploration. It
has already been used for searching core active constituents
and targets and detecting the mechanisms of TCM.

Molecular docking is an essential tool in computer-
assisted drug design, which was firstly proposed in the mid-
80s with the purpose of predicting mode of ligand and
protein and virtually screening digital compound libraries to
reduce expense and speed up drug discovery. *e accuracy
of molecular docking keeps increasing with the development
of computing power and hardware capability.

In this study, we adopted network pharmacology and
molecular docking to investigate the mechanisms of SBH in
the treatment of CRC. Our work involved 6 parts as follows:
(1) collecting active constituents of SBH from online TCM
databases and literatures; (2) predicting the targets of SBH
and disease targets of CRC; (3) constructing network to
show the interaction between SBH and CRC; (4) conducting
function analysis including Gene Ontology (GO) analysis
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis; (5) seeking differentially expressed genes
of CRC with a bioinformatics analysis; (6) implementing
molecular docking after a literature retrieval.

2. Materials and Methods

A detailed diagram used to describe the overall design of this
study is shown in Figure 1.

2.1. Data Sources of Network Pharmacology

2.1.1. Active Constituents of SBH and Target Proteins
Prediction. *e active constituents of SBH were obtained in
3 steps. Step 1: data retrieval was performed with 7 databases:

Traditional Chinese Medicine Systems Pharmacology Da-
tabase and Analysis Platform (TCMSP, http://lsp.nwu.edu.
cn/tcmsp.php) [21], *e Encyclopedia of Traditional Chi-
nese Medicine (ETCM, http://www.nrc.ac.cn:9090/ETCM/)
[22], Traditional Chinese Medicines Integrated Database
(TCMID, http://www.megabionet.org/tcmid/) [23], Tradi-
tional Chinese Medicine Information Database (TCM-ID,
http://bidd.nus.edu.sg/group/TCMsite/) [24], TCM-Mesh
System (http://mesh.tcm.microbioinformatics.org/) [25],
TCMGeneDIT Databases (http://tcm.lifescience.ntu.edu.tw/
index.html) [26], and Bioinformatics Analysis Tool for
Molecular Mechanism of Traditional Chinese Medicine
(BATMAN-TCM, http://bionet.ncpsb.org/batman-tcm/)
[27]. *e benefit of this approach is that all the databases
provide a comprehensive study for Chinese herb. *e oral
bioavailability (OB) and drug-likeness (DL) were adopted to
find out the active constituents with better pharmacokinetics
[28], and active constituents with OB≥ 30% and DL≥ 0.18
were selected for subsequent network construction [29]. Step
2: Anticancer Herbs Database of Systems Pharmacology
(CancerHSP, http://lsp.nwsuaf.edu.cn/CancerHSP.php)
[30] was retrieved to collect the active constituents with
anticancer activity, which contains 2439 anticancer herbal
medicines with 3575 anticancer active constituents. In ad-
dition, it also provides 832 targets of the active constituents
that are predicted by state-of-art methods or collected from
the literature. Step 3: to obtain the active constituents which
showed bioavailability activities for CRC but were not
recorded in aforementioned databases, we constructed a text
mining in PubMed using “Scutellariae Barbata Herba” and
“cancer” as search terms. After manual filtering of the search
results, barbatin F, barbatin G [31], barbatin H [32], SPS2p
[33], and SBPW3 [34] were supplemented.

Target protein prediction was based on TCMSP database
and DrugBank database (https://www.drugbank.ca/) [35].
Active constituents, whose targets could not be predicted in
TCMSP or DrugBank, were predicted by Swis-
sTargetPrediction (http://www.swisstargetprediction.ch),
and the top 15 predicted targets were selected for each result
of the predicted target classes [36, 37].

To better visualize the relationship between active
constituents and target proteins, we coded each active
constituent and the SBH active constituent-target protein
network was generated using Cytoscape (v3.7.1) software
(http://www.cytoscape.org/) [38]. We used Network Ana-
lyzer (a cytoscape plugin) to calculate the degree and be-
tweenness centrality of the network. *e degree of an active
constituent n is the number of target proteins linked to n.
*e betweenness centrality reflects the extent to which a
node acts as a communication intermediate in the network.

2.1.2. CRC-Related Genes and Corresponding Proteins.
CRC-related genes were obtained from 4 databases: Gene-
Cards: the Human Gene Database (https://www.genecards.
org/), which integrates more than 190 data source about
gene, disease, pathway, and compound [39]; Online Men-
delian Inheritance in Man (OMIM, https://omim.org/),
which contains information on all known Mendelian
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disorders and over 15000 genes [40]; *erapeutic Target
Database (TTD, http://db.idrblab.net/ttd/), which is a da-
tabase to provide therapeutic proteins and nucleic acid
targets, the targeted disease, and the correspondence be-
tween drugs and these targets [41]; Comparative Tox-
icogenomics Database (CTD, http://ctdbase.org/), which
supplies information of 3 interactions: chemical-gene/pro-
tein, chemical-disease, and gene-disease [42]. Four databases
were searched with the same keywords: “colorectal cancer”
or “colorectal Neoplasms” or “Colorectal Carcinoma” or
“Colorectal Tumor”, and the species was limited to Homo
sapiens. *e proteins corresponding to the CRC-related
genes were standardized using UniProt database for sub-
sequent analysis.

2.1.3. Potential Active Target Proteins (PATPs). Finally, we
took the intersection between the target proteins of SBH and
CRC-related proteins as the PATPs for subsequent analysis.

2.2. Data Analysis of Network Pharmacology

2.2.1. Protein-Protein Interaction (PPI) Analysis. To figure
out the interactions between PATPs, we used the STRING
database (https://string-db.org/) to construct the PPI net-
work [43], the species was limited to Homo sapiens, and we
selected confidence score as 0.95 in the minimum (low

confidence< 0.4, medium≤ 0.7, and high> 0.7). *e PPI
data was exported as a.tsv file for further analysis. Afterward,
we used CytoNCA (a Cytoscape plugin) to evaluate the PPI
network [44], and the PPI network was constructed by the
top 150 proteins.

2.2.2. Gene Ontology (GO) Analysis. *e GO enrichment
analysis is one of the most common procedures for deter-
mining potential molecular mechanisms of drugs. We did
GO biological process (BP) analysis using MCODE
(a Cytoscape plugin) [45] and ClueGO (a Cytoscape plugin)
[46]. First, the PPI data were filtered in Cytoscape using
MCODE plugin and the top 3 clusters (sorted by cluster
score) were analyzed by the ClueGo plugin. During this
procedure, the significance level of GO terms was set to 0.05,
and the species was limited to Homo sapiens.

2.2.3. Kyoto Encyclopedia of Genes and Genomes (KEGG)
Pathway Analysis. Traditionally, one of the most well-
known methods of exploring biological pathways and po-
tential biological functions is KEGG pathway enrichment
analysis. In our study, KEGG pathway analysis was per-
formed with ClusterProfiler package of R language [47], and
the significance level of GO terms was set to 0.05 and species
was limited to Homo sapiens.
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2.3. Bioinformatics Analysis

2.3.1. Microarray Data. Microarray data was collected from
the GEO database (https://www.ncbi.nlm.nih.gov/geo/) with
the following limits: “colorectal cancer” (keyword), “Homo
sapiens” (study organism), and “tissue” (attribute name).
After collection, the GSE32323 dataset, which contained 17
pairs of matched CRC samples based on the GPL570
platform, and the GSE44076 dataset, which contained 98
pairs of matched CRC samples based on the GPL13667
platform, were selected for seeking differentially expressed
genes of CRC.

2.3.2. Identification of Differentially Expressed Genes.
GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/), an
online web tool based on limma package of R language, is
one of the most common tools of determining differentially
expressed genes (DEGs) of upregulation or downregulation.
In our study, we used GEO2R to finish this procedure, and
the results were presented as a table of genes.We set adjusted
p value <0.05 and |log 2 fold change (FC)|≥ 2 as a criterion
to screen out DEGs. *e proteins corresponding to the
DEGs are standardized using UniProt database for subse-
quent molecular docking.

2.4. Molecular Docking between Key Targets and Active
Constituents

2.4.1. Determination of Key Target Proteins and Active
Constituents. We took the intersection between PATPs and
DEGs-related proteins as the key target proteins for mo-
lecular docking. Afterward, we plotted a network diagram to
represent the correspondence between key target proteins
and active constituents of SBH. Finally, a literature review
was conducted to learn the relationship between key target
proteins and CRC, and those that were experimentally
validated as potential therapeutic targets for CRC would be
selected for molecular docking.

2.4.2. Molecular Docking Simulation. First, a suitable pro-
tein structure of each target was obtained from the RCSB
Protein Data Bank (https://www.rcsb.org/) [48], and the
suitable protein was required to satisfy the following 3
conditions as far as possible: (1) the protein owned a 3D
structure with a high resolution; (2) the protein owned one
or more original ligands; (3) the ligand owned a similar
structure with active constituent. Second, Chimera (v1.14)
software was applied to remove the heteroatom and water
molecule from the proteins and divide the proteins into
ligands and receptors. *e ligand and receptor files were
converted into a pdbqt file then by AutoDockTools (v1.5.6)
software.*ird, the 2D structures of active constituents were
downloaded from the PubChem website (https://pubchem.
ncbi.nlm.nih.gov/) [49]. AutoDockTools (v1.5.6) software
was used to convert them into a pdbqt file then. Fourth, a
grid box size set as 40× 40× 40 points with a Vina spacing of
1.0 Å was generated. Finally, we used AutoDock Vina
(v1.1.2), an open-source program for molecular docking

simulation, to accomplish the docking stimulation, which
significantly improved the average accuracy of the binding
mode predictions and speed of docking when compared
with AutoDock [50]. *e result of docking was analyzed by
Discovery Studio.

3. Results

3.1. SBHActiveConstituent-TargetNetwork. In our study, we
obtained 64 active constituents in total. All active constit-
uents were ranked and detailed information of each active
constituent is shown in Table 1. *e result of SBH active
constituent-target network is presented in Supplementary
Figure S1, which was composed of 441 nodes (including 64
active constituent nodes and 377 target nodes) and 1161
edges, and the result of the top 10 active constituents and
targets according to the degree is set out in Supplementary
Table S1.

3.2. Potential Active Target Proteins andPPINetwork. A total
of 377 targets of SBH and 6390 target genes of CRC were
obtained, and the intersection of the two groups was
regarded as PATPs (Figure 2). A total of 297 proteins were
identified and used for constructing the PPI network. After
limiting the species toHomo sapiens and setting a minimum
confidence score as 0.95, 150 proteins were retained as
shown in Figure 3. TP53, JUN, AKT1, MAPK1, PIK3CA, etc.
were the core proteins of PPI.

3.3. GO Enrichment Analysis. We constructed a cluster
analysis using MCODE before GO enrichment analysis, and
9 clusters were obtained altogether (Table 2). Afterwards, the
top 3 clusters with high cluster scores were used for the
procedure of GO enrichment analysis as shown in Figure 4.
Interestingly, the majority of biological processes in cluster
1 were described as follows: negative regulation of G1/S
transition of mitotic cell cycle (45.16%), cyclin-dependent
protein serine/threonine kinase regulator activity (25.81%),
and regulation of G1/S transition of mitotic cell cycle
(19.35%), and they are of great importance to cell prolif-
eration and influence the occurrence of cancer. Cluster 2
was constructed by membrane protein ectodomain pro-
teolysis and notch receptor processing, which is ligand-
dependent. Cluster 3 was composed of chemokine-medi-
ated signaling pathway (40.51%), lipopolysaccharide-me-
diated signaling pathway (16.46%), mononuclear cell
migration (12.66%), etc.

3.4. KEGG Pathway Analysis. KEGG pathway analysis was
conducted with the ClusterProfiler package of R language,
and 174 significant pathways (adjusted p value< 0.05) were
identified. We sorted them with adjusted p value and the top
30 terms are shown in Figure 5(a). Eight KEGG pathways
related to human solid cancers including prostate cancer,
small cell lung cancer, pancreatic cancer, bladder cancer,
non-small cell lung cancer, hepatocellular carcinoma, co-
lorectal cancer, and breast cancer were gathered. KEGG
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website summarized 9 pathways associated with CRC, eight
of which were significantly enriched in our results
(Figure 5(b)). Notably, the result of the colorectal cancer
pathway is significant with adjusted p value< 0.05.

3.5. Identification of Key Target Protein and Active
Constituent. In this section, we did an analysis of DEGs in
CRC firstly using GEO2R. Two datasets including GSE32323
and GSE44076 were screened from the GEO database. A
total of 369 DEGs were obtained from the GSE32323 dataset
and 541 DEGs were obtained from the GSE44076. We
normalized the proteins corresponding to these DEGs by the
STRING database. Seventeen key target proteins were
remaining after intersecting with PATPs (Figure 6): ABCG2,
SFRP1, MMP7, MYC, CA2, NR3C2, HSD17B2, PLAU,
ADH1C, HSD11B2, MMP3, XDH, FABP6, CDK1, MMP1,
MMP12, and SPP1. We constructed a network to show the
active constituents that corresponded to these target pro-
teins as presented in Figure 7. Among the active constituents
mapped by key target proteins, quercetin, luteolin, baicalein,
etc., were identified to be the top 10 active constituents in
terms of degree value in the SBH active constituent-target
network. After a literature review of these key target pro-
teins, we chose MYC, ABCG2, and CDK1 for molecular
docking.

3.6. Molecular Docking Analysis. To verify how an active
constituent binds to target as previously referred to a mo-
lecular docking using Autodock Vina was developed in this
section. We predicted whether an active constituent could
enter the active pocket of the target protein successfully and
calculated the affinities between them. We summarized the

Table 1: Active constituents of Scutellariae barbata herba.

Ranking Active constituents

Mol01 (2R)-5,7-Dihydroxy-2-(4-hydroxyphenyl)chroman-4-
one

Mol02 24-Ethylcholest-4-en-3-one
Mol03 5,7,4′-Trihydroxy-6-methoxyflavanone
Mol04 5,7,4′-Trihydroxy-8-methoxyflavanone

Mol05 5-Hydroxy-7,8-dimethoxy-2-(4-methoxyphenyl)
chromone

Mol06 6-Hydroxynaringenin
Mol07 7-Hydroxy-5,8-dimethoxy-2-phenyl-chromone
Mol08 9,19-Cyclolanost-24-en-3-ol
Mol09 Baicalein
Mol10 Baicalin
Mol11 Beta-sitosterol
Mol12 Campesterol
Mol13 Carthamidin
Mol14 Chrysin-5-methylether
Mol15 CLR
Mol16 Daucostero_qt
Mol17 Dinatin
Mol18 Eriodictyol
Mol19 Luteolin
Mol20 Moslosooflavone
Mol21 Quercetin
Mol22 Rhamnazin
Mol23 Rivularin
Mol24 Salvigenin
Mol25 Sitosterol
Mol26 Sitosterol acetate
Mol27 Stigmasta-5,22-dien-3-ol-acetate
Mol28 Stigmastan-3,5,22-triene
Mol29 Stigmasterol
Mol30 Wogonin
Mol31 Scutebarbatine F
Mol32 6-O-Nicotinoylscutebarbatine G
Mol33 Apigenin
Mol34 Scutelinquanine D
Mol35 Scutebarbatine E
Mol36 Scutebarbatine N
Mol37 6-O-(2-Carbonyl-3-methylbutanoyl)scutehenanine A
Mol38 6-O-Acetylscutehenanine A
Mol39 7-O-Nicotinoylscutebarbatine H
Mol40 Barbatellarine B
Mol41 Barbatin C
Mol42 Barbatin E
Mol43 Scutebarbatine C
Mol44 Scutebarbatine D
Mol45 Scutebarbatine H
Mol46 Scutebata A
Mol47 Scutehenanine A
Mol48 Scutehenanine D
Mol49 6,7-Di-O-nicotinoylscutebarbatine G
Mol50 6-O-Nicotinoyl-7-O-acetylscutebarbatine G
Mol51 Barbatin A
Mol52 Barbatin B
Mol53 Barbatin D
Mol54 Pheophorbide a
Mol55 Scutebarbatine B
Mol56 Scutehenanine B
Mol57 Scutehenanine C
Mol58 Scutebarbatine O
Mol59 Scutebarbatine G

Table 1: Continued.

Ranking Active constituents
Mol60 Scutellarin
Mol61 7-Acetoxybarbatin C
Mol62 6-Acetoxybarbatin C
Mol63 Barbatin F
Mol64 Barbatin H

80
(1.2%)

297
(4.6%)

6093
(94.2%)

CRC-related proteins SRH target proteins

Figure 2: Potential active target proteins.
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affinities of the selected active constituents with interactive
residues and the count of hydrogen bonds formed between
interactive residues, which are set out in Table 3 and
Figure 8.

3.6.1. Docking of Quercetin on MYC. As shown in Table 3
and Figure 8, the binding affinity of this combination was
−7.6 kcal/mol, and GLN958, GLN954, ALA955, MET253,
and GLU957 were identified as interactive residues. Quer-
cetin was bound with MYC by forming 4 hydrogen bonds
with GLN954, GLN957, and ALA955. *e MET253 residue
was found to form a pi-sulfur and the ALA955 residue was
formed with pi-alkyl. In addition, there were 8 van derWaals
interactions between quercetin and ILE961, LYS256,
GLU957, TYR252, TYR259, LEU951, GLN954, and
GLN958.

3.6.2. Docking of the 3 Active Constituents on ABCG2.
As presented in Table 3, the binding affinity of the luteolin
upon ABCG2 was −8 kcal/mol. *e PHE439 residue
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Figure 3: PPI network of potential active target proteins.*e nodes represent proteins, and the color of the node represents the degree value.

Table 2: Detailed information of 9 clusters using MCODE.

Cluster Score Nodes Edges
1 7.846 14 51
2 5.6 6 14
3 4.211 20 40
4 3.4 11 17
5 3.333 4 5
6 3.333 4 5
7 3 3 3
8 2.933 16 22
9 2.889 10 13

6 Evidence-Based Complementary and Alternative Medicine



Positive regulation
of mitotic cell

cycle phase transition 

Cyclin-dependentn-Cyc
protein serine/threoninesprot
kinase regulator activitye rk

Positive regulation of
cell cycle G2/M

phase transition 

Regulation of
cyclin-dependent

protein kinase activity 

Cyclin-dependent
protein serine/threonine

kinase activity 

Cyclin-dependent protein
kinase activity

Positive regulation of
G2/M transition

of mitotic cell cycle 

Regulation of cyclin-dependent
protein serine/threonine

kinase activity

Regulation of
fibroblast proliferation

r
of fibroblastr
proliferationfe

Regulation of
transcription involved in

G1/S transition of
mitotic cell cycle

Negative regulation of cell cycle
G1/S phase transition 

Mitotic DNA integrity
checkpoint

Intracellular signal transduction
involved in G1 DNA
damage checkpoint

Signal transduction involved in
mitotic cell cycle checkpoint 

Signal transduction involved in
mitotic DNA damage checkpoint

Regulation of G1/S
transition of mitotic

cell cycle 

Mitotic G1/S transition
checkpoint

Negative regulation
of G1/S transition of

mitotic cell cycle 

G1 DNA damage checkpoint

Mitotic G1 DNA damage checkpoint

Histone phosphorylation

Signal transduction involved in
mitotic G1 DNA damage checkpoint

DNA damage response, signal
transduction by p53 class mediator

resulting in cell cycle arrest 

Histone kinase activity

Signal transduction involved in
mitotic DNA integrity checkpoint

Negative regulation of
G1/S transition of

mitotic cell
cycle 45.16%

Regulation of
transcription involved

in G1/S transition
of mitotic cell
cycle 3.23%

Positive regulation of
fibroblast proliferation

6.45%

Regulation of G1/S
transition of mitotic

cell cycle 19.35%

Cyclin-dependent
protien serine/threonine

kinase regulator
activity 25.81%

% terms per group

0 2 4 6 8 10 12

Regulation of transcription involved in G1/S transition of mitotic cell cycle
Regulation of fibroblast proliferation

Positive regulation of fibroblast proliferation
Negative regulation of cell cycle G1/S phase transition

G1 DNA damage checkpoint
Mitotic G1/S transition checkpoint

Regulation of G1/S transition of mitotic cell cycle
Negative regulation of G1/S transition of mitotic cell cycle

Mitotic G1 DNA damage checkpoint
Cyclin-dependent protein kinase activity

Positive regulation of mitotic cell cycle phase transition
Positive regulation of cell cycle G2/M phase transition
Regulation of cyclin-dependent protein kinase activity

Cyclin-dependent protein serine/threonine kinase activity
Positive regulation of G2/M transition of mitotic cell cycle

Regulation of cyclin-dependent protein serine/threonine kinase activity
Cyclin-dependent protein serine/threonine kinase regulator activity

Mitotic DNA integrity checkpoint
Signal transduction involved in mitotic cell cycle checkpoint

Negative regulation of cell cycle G1/S phase transition_1
G1 DNA damage checkpoint_1

Mitotic G1/S transition checkpoint_1
Signal transduction involved in mitotic dNA inte grity checkpoint

Negative regulation of G1/s transition of mitotic cell cycle_1
Mitotic G1 DNA damage checkpoint 1

Histone kinase activity
Intracelluar signal transduction involved in G1 DNA damage checkpoin

Signal transduction involved in mitotic DNA damage checkpoint
DNA damage response, signal transduction by p53 class mediator resulting

Signal transduction involved in mitotic G1 dNA damage checkpoint

% Genes (term)

(a)

Amyloid precursor
protein metabolic

process

Membrane protein
intracellular

domain proteolysis

Notch receptor h rec

processing,

ligand-dependentend-de

Amyloid-beta formation Amyloid-beta metabolic process

Membrane protein proteolysis

Membrane protein
ectodomain
proteolysis 

Ephrin receptor
signaling pathway

Amyloid precursor
protein catabolic

process

Notch receptor processing

Membrane Protien
ectodomain
proteolysis

50.00% 
Notch receptor

processing,
ligand-dependent

50.00%

% terms per group

0 5 10 15 20 25 30 35 40 45 50

Notch receptor processing

Membrane protein proteolysis

Membrane protein intracellular domain proteolysis

Notch receptor processing, ligand-dependent

Ephrin receptor signaling pathway

Amyloid precursor protein metabolic process

Amyloid precursor protein catabolic process

Amyloid-beta metabolic process

Membrane protein ectodomain proteolysis

Amyloid-beta formation

% Genes (term)

(b)

Figure 4: Continued.

Evidence-Based Complementary and Alternative Medicine 7



Regulation of polysaccharide
biosynthetic process 

Positive regulation
of fibroblast

proliferation 

Exocrine system
development

Positive regulation
of mitotic nuclear

division 

Positive regulation of
nuclear division

Regulation of polysaccharide
metabolic process 

Positive regulation of
receptor-mediated

endocytosis 

Positive regulation of
tissue development

cardiac muscle 

Positive regulation
of chemotaxis

Macrophage chemotaxis

Regulation of endothelial cell
apoptotic process 

Positive regulation of
nucleocytoplasmic transport 

Positive regulation
of monocyte
chemotaxis 

Response to chemokine

Regulation of monocyte
chemotaxis

Positive regulation
of mononuclear
cell migration 

Cellular response to chemokine

G protein-coupled
chemoattractant
receptor activity 

T cell migration

ne-mediatee medmokine-mnek minChemokininC mokiCh mediateddiiateatediateddkine-mne m-mmokineinki e-mediateded edded
signaling pathway ignaling pasig aling gnanal waywayathway 

Neutrophil migration

ERBB2 signaling
pathway

Regulation of protein
import into nucleus

Positive regulation of
protein import into nucleus 

Regulation of myoblast
differentiation

Lipopolysaccharide-mediatedys i ediatatedtedac ii e-medieride-mediatedi ed aati e me-mediatedd atedride-mediateded aattede m
signaling pathwaygn a wayyyna pasigng

Protein tyrosine
kinase activator

activity

Positive regulation of
protein tyrosine
kinase activity 

Hyaluronan
biosyntheticic

processs

Chemokine receptor
activity

Chemokine
activity

Positive regulation
of leukocyte
chemotaxis

T cell chemotaxis

Monocyte chemotaxis

C-C chemokine
receptor activity

Dendritic cell chemotaxis

Neutrophil chemotaxis

Pegulation of lymphocyte
chemotaxis

Positive regulation of
protein import

Granulocyte
migration Regulation of

mononuclear cell
migration

Mononuclear cell
migration

Regulation of
granulocyte
chemotaxis

Granulocyte
chemotaxis

Positive regulation of leukocyte
migration

Regulation of leukocyte chemotaxis

Lymphocyte chemotaxis

Dendritic cell migration

Hyaluronan metabolic process

Macrophage migration

Osteoclast differentiation

Positive regulation of glucose import

Regulation of glucose importPositive regulation of glucose
transmembrane transport 

Chemokine-mediated
signaling pathway

40.51%

Lipopolysaccharide-
mediated signaling

pathway 16.46%

Positive regulation of
receptor-mediated
endocytosis 2.53%

ERBB2 signaling
pathway

3.80%

Hyaluronan
biosynthetic

process 11.39%

Granulocyte
chemotaxis

12.66%

Mononuclear cell
migration

12.66%

% terms per group

0 2 4 6 8 10 12 14 16 18 20

Positive regulation of receptor-mediated endocytosis
Regulation of endothelial cell apoptotic process

Positive regulation of protein tyrosine kin ase activity
Protein tyrosine kinase activator activity

ERBB2 signaling pathway
Exocrine system development

Positive regulation of fibroblast proliferation
Regulation of polysaccharide metabolic process

Regulation of polysaccharide biosynthetic process
Positive regulation of mitotic nuclear division

Positive regulation of nucleocyto plasmic transport
Positive regulation of nuclear division

Hyaluronan metabolic process
Hyaluronan biosynthetic process

Mononuclear cell migration
Granulocyte migration
Macrophage migration

Regulation of leuko cyte chemotaxis
Positive regulation of nucleocytoplasmic transport_1

Macrophage chemotaxis
Granulocyte chemotaxis

Lipopolysaccharide-mediated signaling pathway
Regulation of granulocyte chemotaxis
Regulation of lymphocyte chemotaxis
Regulation of myoblast differentiation

Positive regulation of chemotaxis
Mononuclear cell migration_1

Positive regulation of leukocyte migration
Positive regulation of nucleocytoplasmic transport_2

Regulation of mononuclear cell migration
Positive regulation of protein import

Positive regulation of protein import into nucleus
Positive regulation of cardiac muscle tissue development

Regulation of protein import into nucleus
Regulation of myoblast differentiation_1

Positive re gulation of nucleocytoplasmic transport_3
Lipopolysaccharide-mediated signaling pathway_1

Hyaluronan metabolic process_1
Hyaluronan biosynthetic process_1

Positive regulation of protein import_1
Positive re gulation of glucose transmembrane transport

Positive regulation of protein import into nucleus_1
Positive regulation of cardiac muscle tissue development_1

Osteoclast differentiation
Regulation of protein import into nucleus_1

Positive regulation of glucose import
Regulation of glucose import

Regulation of myoblast differentiation_2
positive regulation of chemotaxis_1

Dendritic cell migration
Mononuclear cell migration_2

Esponse to chemokine
Positive regulation of le uko cyte migration_1

Dendritic cell chemotaxis
Monocyte chemotaxis

Lymphocyte chemotaxis
T cell migration

Granulocyte migration_1
Macrophage migration_1

Regulation of leukocyte chemotaxis_1
Macrophage chemotaxis_1

Chemokine-mediated signaling pathway
Granulocyte chemotaxis_1

Regulation of mononuclear cell migration_1
Cellular response to chemokine

Polysaccharide- mediated signaling pathway_2
Positive regulation of leukocyte chemotaxis

Positive regulation of mononuclear cell migration
T cell chemotaxis

Neutrophil migration
Protein-coupled chemo attractant receptor activity

Neutrophil chemotaxis
Regulation of granulocyte chemotaxis 1

Regulation of monocyte chemotaxis
Regulation of lymphocyte chemotaxis_1

Chemokine receptor activity
Chemokine activity

Positive requlation of monocyte chemotaxis

% Genes (term)

(c)
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interacted with luteolin by forming one hydrogen bond and
the THR435 residue formed one hydrogen bond. *e
binding affinity between apigenin and ABCG2 was the
highest among 3 integrations. Although only one hydrogen
bond was found between apigenin and ABCG2, we observed
8 van der Waals interactions between apigenin and ILE543,

MET549, VAL401, PHE432, LEU405, ASN436, and SER440.
Interestingly, the PHE439 residue formed 3 pi-pi stacked
interactions. As for quercetin, one hydrogen bond, four pi-
alkyl interactions, and one pi-anion interactions were
identified.

3.6.3. Docking of the 2 Active Constituents on CDK1. *e
binding affinity of 2 active constituents on CDK1 was
−8 kcal/mol. From Figure 8, there were 3 hydrogen bonds
provided by the GLU81, ASP86, and GLU12 residues in the
interaction with quercetin. In addition, the PHE80, PHE82,
LEU83, GLY11, GLY13, and ASP146 residues constituted 6
van derWaals interactions. However, there was no hydrogen
bond between baicalein and CDK1.

4. Discussion

SBH has been used in TCM for thousands of years, the
function of which is described as “heat-clearing and de-
toxifying” in TCM therapeutic principle and the Chinese
Pharmacopoeia 2015. In spite of that, SBH has been used in
various cancers, specially treated with CRC [17].

In our study, we investigated the potential mechanisms
of SBH on CRC and predicted the pivotal active constituents
and target proteins. *e SBH active constituent-target
network consisted of 64 active constituents and 441 targets,
revealing the pharmacological foundation of SBH. *e
potential active constituents and targets were deduced in this
section. *e majority of potential active constituents of SBH
are flavonoids. Quercetin (degree� 147) is a polyphenolic
flavonoid with underlying anticancer activity, which exists
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ubiquitously in the vegetal food source, especially in various
traditional Chinese medicine [51]. Accumulation of in vitro
and in vivo studies has concentrated on potential chemo-
preventive activity and underlying mechanisms of quercetin
in CRC. In vitro studies have identified the following effects
of quercetin: induction of cell cycle arrest at the G1 phase,
induction of apoptosis and autophagy, decreased expression
of cyclooxygenase-2 (COX-2), and heat shock protein
synthesis (HSP90AA1, degree� 18), etc. [52–57]. In vivo
studies have found that quercetin regulated proliferation and
apoptosis via suppressed expression of cyclooxygenase-1

(COX-1), COX-2, and inducible nitric oxide synthase
(iNOS) [58]. Luteolin (degree� 93) is a naturally occurring
flavonoid, which also serves as a dietary flavonoid [59]. *e
effects of luteolin in CRC have been proved similar to
quercetin such as cell growth inhibition and induction of
apoptosis [60, 61]. Wogonin (degree� 55) and baicalein
(degree� 37) also belong to the flavonoid, and both of them
have shown a significant antitumor effect that has been
verified experimentally on CRC cells [62]. In addition,
apigenin (degree� 40), beta-sitosterol (degree� 37), stig-
masterol (degree� 31), etc., which are not flavonoids but are
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Figure 7: *e network of key target proteins and related active constituents. *e circular nodes represent the key target proteins, and the
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Table 3: Molecular interactions of key target and active constituent.

Integration Targets Affinity (kcal/mol) Number of hydrogen bonds H bond interacting residues
Quercetin MYC −7.6 3 GLU957, GLN954, ALA955
Luteolin ABCG2 −8 2 PHE439, THR435
Quercetin ABCG2 −7.8 1 THR435
Apigenin ABCG2 −8.3 1 THR435
Baicalein CDK1 −8 1 LYS33
Quercetin CDK1 −8 3 GLU81, ASP86, GLU12
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confirmed to have effects on CRC in vivo or in vitro, also
contribute to the primary potential active constituents. A
total of 441 targets were predicted and we noticed that many
targets were contacted with several active constituents such
as NR3C1, HSD11B2, PTGS2, CYP23B1, and PTGS1, and
we speculated the top 10 targets could be important in the
treatment of CRC as shown in Supplementary Table S1.
NR3C1, a receptor of glucocorticoids [63], plays an im-
portant role in inflammatory responses and cellular pro-
liferation and differentiation [64]. However, NR3C1
(degree� 24) has been identified likely to be a CRC sup-
pressor gene [65]. Moreover, NR3C1 was proved as a dif-
ferentially expressed gene in CRC by bioinformatics analysis
[66]. Prostaglandin G/H synthase 2 (PTGS2, degree� 21)
and prostaglandin G/H synthase 1 (PTGS1, degree� 19) are
crucial enzymes in the conversion of arachidonate to
prostaglandin H2 (PGH2), which are well known as the
targets of nonsteroidal anti-inflammatory drugs (NSAIDs)
such as aspirin and ibuprofen [67]. Previous research has
established that inhibition of the PGHSs with NSAIDs re-
duced the development of colon cancer [68]. PTGS2-positive
patients were faced with an increased risk of CRC recurrence
and poorer CRC-specific survival [69]. In particular,
PIK3CA, the gene coding for PI3K p110α and the catalytic
subunit of PI3K [70], was found in this network. *e mu-
tation of PIK3CA exists in approximately 15–20% of CRC
[71], which influences the activation of PI3K-AKT signaling
pathway and mTOR signaling pathway [72–74]. PI3KCA
was simultaneously targeted by 2 active constituents: scu-
tebarbatine E and scutebarbatine N. Scutebarbatine E is a
kind of neo-clerodane diterpenoid alkaloid extracted from
SBH, and an in vitro experiment has shown significant
cytotoxic activities against HT29 CRC cells [75].

Scutebarbatine N belongs to norditerpenoid alkaloids, which
also showed significant cytotoxic activities in HT29 CRC
cells [76]. However, their specific mechanisms have not been
reported yet, so our study contributes to this aspect.

We defined the intersection of SBH target proteins and
CRC-related proteins as the PATPs. In order to describe the
target protein’s function fully, a PPI network was con-
structed using the PATPs, as could be seen in Figure 3. TP53,
JUN, AKT1, MAPK1, etc. were the core proteins of PPI. To
date, previous studies have revealed that TP53 is a tumor
suppressor gene in many tumor types, which induces cell
cycle arrest and apoptosis [77]. TP53 mutation is the most
typical phenomenon in human cancers [78]. An interna-
tional collaborative study has reported the occurrence of
TP53 mutations in CRC, which was found in 34% of the
proximal colon tumors as well as 45% of the distal colon and
rectal tumors [79]. Although the mechanisms of TP53
mutation are not understood fully, there is no doubt TP53
has a great capability as a therapeutic strategy in the future.
JUN was identified to be bound to the USP28 (a nuclear-
localized deubiquitinase related to DNA damage response
checkpoint and MYC protooncogene stability) promoter
and involved in GTPase KRas (KRAS)-mediated tran-
scriptional activation of USP28 in CRC [80]. AKT1 is one of
the AKT kinases, involved in many biological processes such
as proliferation, cell survival growth, and angiogenesis, and
the therapeutic potential of inhibitors targeting PI3K-AKT
pathway in cancer has been discussed [81]. PI3K-AKT
pathway plays a pivotal role in the mechanisms of traditional
Chinese medicine, which are used frequently when treated
with CRC. *e majority of them are involved in the inhi-
bition of PI3K-AKT pathway through SRC and AKT1 [82].
*ree MAP kinases (MAPK) including MAPK1, MAPK14,

Interactions

Van der waals

Unfavorable acceptor-acceptor

Conventional hydrogen bond

Pi-Alkyl

Pi-Anion

(e)

Interactions

Van der waals

Unfavorable donor-donor

Conventional hydrogen bond

Pi-Alkyl

Pi-Sigma

(f )

Figure 8: Molecular docking of key target proteins and active constituents. (a) For quercetin and MYC. (b–d) For luteolin, apigenin, and
quercetin, respectively. (e) For baicalein and CDK1. (f ) For quercetin and CDK1.
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and MAPK10 are found in Figure 3, and MAPK plays a
crucial role in the MAPK/ERK cascade [83]. Historically,
research has investigated that MAPK1 and MAPK14 were
associated with cancer risk and survival in CRC [84]. In
addition to the 4 proteins mentioned above, other proteins,
such as VEGFA, IL6, CDK1, MYC, could also induce the
survival of CRC cells. *erefore, we speculated that one of
the core functions of the PPI network was involved in the
regulation of cancer cells.

KEGG pathway analysis was accomplished using R
package ClusterProfiler, and the most significant 30 of 174
pathways are set out in Figure 5. *e most striking result
emerging from the data is that colorectal cancer pathway
(adjusted p value: 4.89E− 15) is significant, and the results
also indicate that SBH has the potential to treat diverse
cancers such as prostate cancer [85, 86], lung cancer [87, 88],
breast cancer [86, 89, 90], and pancreatic cancer [91], which
has been confirmed by previous studies. *e KEGG website
has summarized 9 pathways related to colorectal cancer and
we investigated the enrichment information in our study of
these pathways. Eight of 9 pathways were found in our study
including MAPK signaling pathway (adjusted p value:
1.46E− 12), ErbB signaling pathway (adjusted p value:
2.82E− 11), cell cycle pathway (adjusted p value: 1.18E− 10),
p53 signaling pathway (adjusted p value: 7.10E− 17), mTOR
signaling pathway (adjusted p value: 0.001478074), PI3K-
Akt signaling pathway (adjusted p value: 1.58E− 18), apo-
ptosis pathway (adjusted p value: 1.78E− 16), and Wnt
signaling pathway (adjusted p value: 7.62E− 05). It indicates
that the therapeutical effects of TCM depend on the co-
operation of multiple pathways. We speculated the PI3K-
AKT signaling pathway was the most important pathway,
which was themost significant among themwith a total of 52
genes gathered. With many fundamental cellular functions
such as proliferation, growth, and survival identified
[92, 93], the potential of PI3K-AKT signaling pathway in
cancer has already been discussed [81, 94]. Inhibition of
PI3K has become a new therapeutic strategy in CRC with
PIK3CA mutation [95]. Interestingly, PI3K-AKT signaling
pathway corresponds to mTOR signaling pathway. mTOR, a
serine/threonine protein kinase, is known as an important
downstream effector of AKT and related to the activation of
AKT [96]. In addition, MAPK signaling pathway is inter-
connected with PI3K-AKT signaling pathway [97], and
approximately 30–40% CRC patients harbor a mutation in
KRAS [70], which is a part of RAS-RAF-MAPK cascade
joining in the cellular function of CRC cells [98]. *erefore,
inhibition of both MAPK and PI3K-AKT signaling pathway
could be a more effective strategy. Recurrent genetic alter-
ations of Wnt signaling pathway occur in the majority of
CRC. *e adenomatous polyposis coli (APC) is a tumor
suppressor gene and regarded as a central hub in early CRC,
and mutations in the APC often dysregulate the Wnt sig-
naling pathway [99]. Our findings indicate that SBH pro-
duces the healing efficacy for CRC possibly by regulating the
pathways mentioned above.

*ree key target proteins were selected for molecular
docking. MYC is a protooncogene encoding nuclear tran-
scription factor and regulates tumorigenesis [100], which

also serves as a downstream effector of Wnt and Ras sig-
naling pathways in CRC [101]. Genetic ablation of c-Myc, a
member of the MYC family, suppresses intestinal tumori-
genesis in CRCmouse models [102]. Moreover, the inhibitor
of c-Myc was identified to be advantageous in anticancer,
such as 10058-F4, which could induce apoptosis and dif-
ferentiation of acute myeloid leukemia cell [103].*us,MYC
plays an important role in further CRC therapy [104], and in
vitro experiment has proved that quercetin induced apo-
ptosis in HT-29 cells and reduced expression of c-Myc [54].
Our molecular docking results indicated that quercetin has a
good docking affinity withMYC.*e previous set of analyses
has identified that quercetin was a pivotal active constituent
of SBH, which formed 3 hydrogen bonds with CDK1, and
that the binding energy was −8 kcal/mol. *ough there is no
hydrogen bond found between baicalein and CDK1, bai-
calein shared the same affinity with quercetin. CDK1 is a
serine/threonine kinase which belongs to the CDKs family
and regulates the cell cycle, and it has been wildly accepted
that CDK1 is the only essential cell cycle CDK [105]. *e
nonselective inhibitor of CDK-dinaciclib has been shown to
arrest cell-cycle progression and inhibit tumor growth [106].
In recent years, literature has identified that CDK1 is a
mediator of apoptosis resistance in CRC [107]. Among the
three active constituents including quercetin, luteolin, and
apigenin targeted ABCG2, apigenin seems to be the most
promising active constituent. Multidrug resistance (MDR) is
a pivotal factor influencing the efficacy of chemotherapy and
the prognosis of tumor patients. Overexpression of aden-
osine triphosphate (ATP)-binding cassette (ABC) trans-
porter family is one of the most important mechanisms of
MDR, and the major ABC transporters include P-glyco-
protein (P-gp/ABCB1), breast cancer resistance protein
(BCRP/ABCG2), and multidrug resistance-associated pro-
tein 2(MRP2/ABCC2) [108]. Importantly, one of the
mechanisms of resistance to irinotecan in CRC is that
ABCG2 gene encodes ABC efflux transporter and reduces
intracellular drug accumulation [109], so targeting ABCG2
is an effective therapeutic principle to enhance the efficacy of
irinotecan [110]. Interestingly, it has been reported that
decreasing expression of ABCG2 and ABCB5 may induce
the depletion of c-Myc and enhance the chemosensitivity of
colon cancer stem cells (CSCs) [111]. We did not perform
molecular docking analyses for the remaining 14 of the 17
key targets, due to the lack of sufficiently strong evidence for
their use as therapeutic targets at this time. *e expression
level of HSD11B2 gene was significantly increased in CRC
tissues, and the ectopic expression of HSD11B2 gene pro-
moted the metastasis of CRC [112]. FABP6, hyper-
methylated SFRP1, XDH, PLAU, ADH1C, HSD17B2, and
SPP1 have been identified more as a colorectal cancer
biomarker than as a therapeutic target at present [113–119].
NR3C2, CA2, and MMP1 were identified as key target
proteins in another network pharmacological pharmacology
analysis of the colorectal cancer. Jin et al. [120] performed
molecular docking between these proteins and quercetin,
stigmasterol, and baicalein which were also identified in our
study as shown in Figure 7. MMP1,MMP3,MMP7,MMP12,
and MMP13 belong to the matrix metalloproteinase family,
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and MMPs were able to participate in the tumor metastasis
process by degrading the ECM. However, MMP2 and
MMP9 were significantly related to colorectal cancer and
could be regulated by Chinese medicine [121]. *ese targets
are closely related to CRC, which may become potentially
therapeutic targets and provide reference for future research.

5. Conclusions

Traditional Chinese medicine is characterized by multiple
components, multiple targets, and multiple pathways.
Network pharmacology, along with molecular docking,
bioinformation, and system biology, provides an available
methodology to uncover the complex therapeutical effects of
TCM. Prior studies have confirmed that SBH presents
noticeable antitumor effects. We set out to investigate the
potential mechanisms of SBH and hunt pivotal active
constituents, targets, and pathways.

In this study, a total of 64 active constituents of SBHwere
obtained from 7 TCM databases and literature, and these
active constituents were associated with 377 targets, which
were mapped to predicted targets of CRC to get 297
common targets treated as PATPs. After that, a PPI network
was constructed to demonstrate the interactions between
PATPs. *e second major investigation was that we did a
GO and KEGG analysis using PATPs. Finally, we did a
differentially expressed gene analysis of CRC and 229 DEGs
were obtained. After the DEGs related proteins weremapped
to PATPs, seventeen key target proteins were remaining for
molecular docking. *e result indicated that quercetin,
luteolin, wogonin, and apigenin were the effective active
constituents of SBH. NR3C1, PIK3CA, TP53, JUN, MAPK1,
MYC, CDK1, and ABCG2 were the major targets of SBH in
the treatment of CRC. *e most obvious finding emerging
from GO analysis was that the core biological process
regulated by SBH was the regulation of cell cycle. One of the
most significant findings from KEGG analysis was that
pathways were significantly enriched in CRC and its related
pathways. Molecular docking results reveal that SBH’s active
constituents have an acceptable binding affinity with MYC,
CDK1, and ABCG2, all of which have shown the potential to
treat with CRC. Interestingly, we found that targeting MYC
and ABCG2 could contribute to enhancing the efficacy of
chemotherapy. A limitation of this study is that further
experiments are necessary to demonstrate our findings.
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