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As a key element of the tumormicroenvironment (TME), immune cell infiltration (ICI) is a frequently
observed histologic finding in people with triple-negative breast cancer (TNBC), and it is linked to
immunotherapy sensitivity. Nonetheless, the ICI in TNBC, to the best of our knowledge, has not
been comprehensively characterized. In our current work, computational algorithms based on
biological data from next-generation sequencing were employed to characterize ICI in a large
cohort of TNBC patients. We defined various ICI patterns by unsupervised clustering and
constructed the ICI scores using the principal component analysis (PCA). We observed patients
with different clustering patterns had distinct ICI profiles and different signatures of differentially
expressed genes. Patients with a high ICI score tended to have an increased PD-L1 expression
and improved outcomes, and these patients were associated with decreased tumor mutational
burden (TMB). Interestingly, it was showed that patients with high TMB exhibited an ameliorated
overall survival (OS) than patients with low TMB. Furthermore, TMB scores only affected the
prognosis of TNBC patients in the low-ICI score group but not in the high group. Finally, we
identified a new immune-related lncRNA (irlncRNA) signature and established a riskmodel for the
TNBCprognosis prediction. In addition, the high-risk groupwas related to poor prognosis, a high
infiltration level of plasmaBcells,monocytes,M2macrophages, andneutrophils and a lowPD-L1
expression. Therefore, the characterization and systematic evaluation of ICI patterns might
potentially predict the prognosis and immunotherapy response in TNBC patients.
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HIGHLIGHTS

1) Identification of TNBC patients by utilizing the ICI scoring
system to predict the prognosis and immunotherapeutic
response.

2) The correlation of ICI scores with the PD-L1 expression and
TMB score.

3) Construction of a novel 13-irlncRNA signature to evaluate the
prognosis of TNBC patients.

INTRODUCTION

As a type of aggressive cancer, triple-negative breast cancer
(TNBC) includes the estrogen receptor (ER), progesterone
receptor (PR), and human epidermal growth factor
receptor-2 protein (HER-2). TNBC takes up roughly
10–20% of all breast cancers, and it is generally related to
unfavorable prognosis compared with non-TNBC (Kumar and
Aggarwal, 2016). Since TNBC responds to neither hormonal
therapy nor medications targeting Her-2 protein,
chemotherapy and immunotherapy play a pivotal role in
the treatment of TNBC (Lyons, 2019). Immunotherapy
empowers the host’s natural immune system to fight against
tumor cells by activating various immune cells such as
macrophages and CD8 T cells (Muenst et al., 2016). Studies
have shown promising results that immunotherapy can
improve the prognosis of TNBC. For instance, a current
meta-analysis has noted that the blockade of PD1/PD-L1
can significantly improve the pathological complete
response rates in TNBC patients, especially in patients at a
high risk of relapse (Tarantino et al., 2021). Numerous results
have demonstrated that higher infiltration levels of T
lymphocytes are observed in TNBC, and the TNBC patients
have the most promising outcomes in single-agent cancer
immunotherapy compared with other molecular subtypes
(Sugie, 2018). Nonetheless, not all TNBC patients would be
universally appropriate for immunotherapy. Therefore, it is
urgently vital to look for novel bio targets which can aid in the
precise pretreatment selection of patients.

High-density inflammatory cell infiltration is not an
uncommon histologic finding in TNBC, especially in high-
grade TNBC. Advances in the field of immunotherapy have
rejuvenated intense investigations on the so-called tumor
microenvironment (TME), which predominately consists of
transformed cells, including immune and stromal cells. Many
studies concerning TME have elucidated that tumor-infiltrating
lymphocytes (TILs) are intimately implicated in metastasis,
recurrence, therapeutic response, and even patient survival of
TNBC. For instance, Oshi and colleagues have found that
inflammation is associated with improved prognosis in
TNBC patients, while worse outcomes are observed in other
types of breast cancer (Oshi et al., 2020). TNBC cells have also
been observed to secrete interleukin (IL)-4, IL-10, and other
factors (Laoui et al., 2011) to promote tumor-associated
macrophage polarization toward M2, which is associated

with fast tumor progression (Sousa et al., 2015). By
comparison, increased TILs are linked with the increased
disease-free survival (DFS) in TNBC (Tomioka et al., 2018),
which may be related to escalated response to immunotherapy.
However, given the intimate and complex interaction between
tumor cells and various inflammatory cell infiltrates, it is
insufficient to use single populations of inflammatory cells
for predicting prognostication. Instead, characterization of
the overall immune cell landscape would probably offer more
valuable information. In addition, recent studies have focused
on constructing the irlncRNA signature to predict the response
of immunotherapy in many cancers, such as bladder cancer
(Zhang L et al., 2020), hepatocellular carcinoma (Hong et al.,
2020), clear cell renal cell carcinoma (Sun et al., 2020), and
breast cancer (Shen et al., 2020). However, no studies have
attempted to construct an irlncRNA risk model in TNBC
patients.

In our current work, we analyzed the biological
information obtained from next-generation sequencing to
elucidate the gene expression profiles in TNBC and
characterize the intra-tumoral landscape of the infiltrated
immune cells. In addition, we demonstrated that TNBC
could be categorized into two discrete subgroups with
distinct outcomes based on the infiltration pattern of
immune cells. We also established the immune cell
infiltration (ICI) scoring system for predicting the
prognosis and immunotherapeutic response. Finally, we
identified a novel 13-irlncRNA signature and established a
risk model to evaluate TNBC prognosis, as well as the
correlation between clinicopathologic variables and the PD-
L1 level or tumor mutational burden (TMB) score.

MATERIALS AND METHODS

Discovery Cohort and Validation Cohort
The discovery cohort contained 435 TNBC samples from three
available datasets (TCGA program and GSE33926 and
GSE103091 datasets). The reads per kilobase of exon per
million reads mapped (RPKM) data of 146 TNBC samples
were acquired from TCGA (The Cancer Genome Atlas). The
FPKM values were converted into TPMs to eliminate statistical
biases inherent in the FPKMmeasure (Wagner et al., 2012). The
microarray datasets (51 cases from GSE33926 and 238 cases
from GSE103091) were from the GEO datasets (Gene
Expression Omnibus). The corresponding array annotation
files were adopted to annotate data, and genes represented by
multiple probes were collapsed by averaging. The expressions of
13,723 genes were obtained after the three databases got merged
and normalized. The “Combat” algorithm was applied to adjust
the batch effect from multiple batches of microarray
experiments (Johnson et al., 2007). Normalized expression
matrices of the METABRIC program were obtained from
cBioPortal for Cancer Genomics (http://www.cbioportal.org/).
A total of 209 cases of basal-like breast cancer were set as the
validation cohort.
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The Unsupervised Clustering of
Tumor-Infiltrating Immune Cells
The CIBERSORT R package (Newman et al., 2015) was
applied to evaluate the percentages of the 22 TILs by gene
expression profiles, and 1,000 permutations were performed.
As a newly developed algorithm, ESTIMATE (Yoshihara et al.,
2013) was for inferring the fraction of immune and stromal
cells, and their scores were determined to assess the
infiltration levels of the cells in each sample. The ICI
pattern of each TNBC sample was used to conduct
hierarchical agglomerative clustering. The
ConsensusClusterPlus R package was applied to conduct
unsupervised clustering (Yu et al., 2012).

Kaplan–Meier Plotter for Survival Analysis
OS (overall survival) analysis got conducted by the Kaplan–Meier
plotter, and the log-rank test was for evaluating the differences
between distinct subgroups. A p-value < 0.05 of the log-rank test
was regarded as the statistical significance.

Identification of DEGs Concerning the ICI
Phenotype
The samples were categorized into the ICI clusters, and DEGs
(differentially expressed genes) about ICI patterns were identified
based on the optimal cutoff (FDR < 0.05 and |fold-change| > 1)
through the limma R package.

Functional Enrichment Analysis for DEGs
GO (gene ontology) analyses containing the BP (biological
process), MF (molecular function), and CC (the cellular
component), as well as KEGG (Kyoto Encyclopedia of Genes
and Genomes) enrichment analyses, were performed using the R
module profiler package to reveal the different biological
pathways in gene signature groups A and B.

Construction of High- and Low-ICI Score
Groups
Each patient was categorized by unsupervised clustering based on
the DEG values. ICI gene signature A was given to DEG values
that were favorably related with the cluster signature, whereas
signature B was given to DEG values that was negatively
associated with the cluster signature. By using PCA (principal
component analysis), the primary element became the signature
score by the calculation formula as follows: ICI score (Zhang X
et al., 2020) = ∑PC1A- ∑PC1B.

GSEA in High- and Low-ICI Score Groups
GSEA was carried out through the GSEA software (Gene Set
Enrichment Analysis, 4.0.1 version, http://software.
broadinstitute.org/gsea/index.jsp). GSEA (Subramanian et al.,
2005) examined a group of related genes that are highly up-
or downregulated in a predetermined phenotype, allowing big
gene sets to be broken down into smaller, more coherent sets,
such as those that reflect a specific route.

Construction of the irlncRNA Prognostic
Model
To acquire irlncRNAs, 2,483 immune-related genes were
obtained from the ImmPort database, and the correlation
analysis was applied through the standards of correlation
coefficients > 0.4 and p < 0.001. Subsequently, univariate and
multivariate Cox regressions, as well as Lasso regression, were
performed to establish a risk model. The AUC (area under the
curve) values were computed, and the ROC (receiver operating
characteristic) curve was plotted. The samples were categorized
into high- and low-risk groups based on the best cutoff value.
KMA was conducted to evaluate the OS between the two
categories.

Correlation of the Risk Score and ICI
Seven common methods, containing xCell, EPIC, quanTIseq,
CIBERSORT-ABS, MCPcounter, TIMER, and CIBERSORT,
were adopted to assess the ICI scores. The Wilcoxon signed-
rank test and Spearman test were for the different analysis
between distinct risk groups and immune infiltration statuses,
and the correlation coefficients were calculated.

Statistical Analyses
All data were processed by R software (version 4.0.3). The
statistical analysis between the two categories was determined
through theWilcoxon rank-sum test, and the Kruskal–Wallis test
was adopted for over two categories. The coefficient was
calculated with Spearman correlation analysis. A Chi-square
test was performed for the relationship between TMB and ICI
scores. A p < 0.05 indicated the statistical significance.

RESULTS

The Characterization of ICI in the Discovery
and Validation Cohorts of TNBC
CIBERSORT and ESTIMATE algorithms were combined to
evaluate the infiltration level of immune and stromal cells in
TNBC samples. In total, 435 cases were merged as the
discovery cohort. A total of 209 cases of basal-like breast
cancer from the METABRIC program were obtained as the
validation cohort. The ConsensusClusterPlus R package was
employed for unsupervised clustering to divide patients into
different groups. Two distinct ICI subtypes were identified by
unsupervised clustering (Figure 1A) with obviously different
OS in both cohorts (log-rank test: p = 0.042, discovery cohort;
p = 0.036, and validation cohort, Figure 1B) revealing that ICI
cluster A had an improved prognosis compared with ICI
cluster B. To further expound on the inherent divergences
of the two subtypes, we compared 22 immune cell
compositions, as well as immune and stromal scores. The
infiltrations of only regulatory T cells (Tregs), resting NK
cells, M0 macrophages, and activated mast cells were
increased in ICI cluster A of the discovery and validation
cohorts. The ICI cluster B was featured with high infiltration
levels of the majority of rest immune cells, such as naive B cells,
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FIGURE 1 | Characterization of ICI in two cohorts of TNBC. (A) Two independent ICI subtypes were determined through the ConsensusClusterPlus R package in
the discovery and validation cohorts. (B)OS curves of two ICI subtypes in two cohorts. The log-rank test showed p = 0.042 and p = 0.036 in the discovery and validation
cohorts. (C) Estimation of the fraction of 22 immune cells, as well as immune and stromal scores in ICI clusters A and B of two cohorts (D,E) Interaction of 22 immune
cells, as well as immune and stromal scores, in the discovery cohort (D) and validation cohort (E). (F) Different PD-L1 levels between ICI clusters A and B in two
cohorts. (G) Unsupervised clustering of ICI with distinct clinical phenotypes in TCGA-TNBC and GSE33926 datasets. *p < 0.05; **p < 0.01; ***p < 0.001; and ****p <
0.0001.
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memory B cells, plasma, CD8 T cells, naive CD4 T cells,
activated memory CD4 T cells, delta gamma T cells, and
resting mast cells in the discovery cohort, and the immune
and stromal scores were also greater. The result of the
validation cohort conformed to the discovery cohort, except
for naive B cells, memory B cells, naive CD4 T cells, and M1
macrophages (Figure 1C). Moreover, the correlation
coefficient heatmap of the discovery cohort (Figure 1D)
displayed a significant relation among immune cells, such as
an obvious positive association between naive B cells and naive
CD4 T cells, M0 macrophages and activated mast cells, and
resting dendritic cells and eosinophils, and a marked negative
correlation between CD8 T and resting memory CD4 T cells,

and M0 macrophages and resting mast cells. Various immune
cells, such as delta gamma T cells, were positively related to the
Immune Score, while M0 macrophages were negatively
correlated with the Immune Score, and helper follicular
T cells were negatively correlated with the Stromal Score,
which conformed to the results of the validation cohort
(Figure 1E). Furthermore, the Wilcoxon rank-sum test was
performed to analyze the PD-L1 expression in the two ICI
subtypes, and the outcomes demonstrated the PD-L1 level was
significantly greater in ICI cluster B compared with cluster A in
both cohorts (Figure 1F). Figure 1G illustrates the
unsupervised clustering of ICI with abundant clinical
information in TCGA-TNBC and GSE33926 datasets.

FIGURE 2 | Identification of immune gene subtypes in the discovery cohort of TNBC. (A) Unsupervised clustering was performed, and the discovery cohort was
divided into four gene clusters (A–D). (B) KMA for four gene clusters, p = 0.010. (C) Fraction of 22 tumor-infiltrating immune cells, as well as immune and stromal scores,
among four gene clusters. (D) Interaction of 22 immune cells, as well as immune and stromal scores, in the discovery cohort of TNBC. (E) PD-L1 expression levels in the
four gene clusters. (F)Heatmap of DEGs in four gene clusters with distinct clinicopathological characteristics. (G,H)GO analysis of gene signatures A (G) and B (H).
*p < 0.05; **p < 0.01; and ***p < 0.001.
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Determination of the Immune Gene Subtype
in the Discovery Cohort of TNBC
A total of 149 DEGs were obtained with the limma R package
using the cutoff criteria of FDR <0.05 and |fold-change|> 1. Based
on these DEGs, unsupervised clustering was performed, and the
discovery cohort was divided into four genomic clusters (A, B, C,
and D) (Figure 2A). Kaplan–Meier analysis (KMA) showed that
clusters A and B were correlated with a significantly favorable
prognosis, while clusters C and D were associated with a poor
prognosis (Figure 2B). The difference in ICI was significant in the
four-gene clusters, except for eosinophils, activated NK, and
dendritic cells (Figure 2C). Gene clusters A and B were
featured with a high Immune Score, while gene clusters C and
D had the opposite results. The correlation coefficients between
22 immune cells and the Immune Score or Stromal Score were
determined by correlation analysis (Figure 2D). We also found
that the PD-L1 level was dramatically related to distinct gene
clusters. Gene clusters A and B had a higher PD-L1 expression
than gene clusters C and D (Figure 2E). Furthermore, we
integrated the expressions of DEGs and clinical-pathological
characters with gene clusters A–D. The heatmap is shown in
Figure 2F. Next, we detached DEGs as gene signatures A and B

that were positively or negatively associated with gene clusters,
respectively. To remove the superfluous genes, the Boruta
algorithm was performed, and 134 DEGs were selected to
conduct further study. Finally, GO enrichment analysis
showed different pathways between gene signatures A and B,
indicating that distinct gene clusters were involved in different
BPs. Figure 2G (gene signature A) and 2H (gene signature B)
show the top 30 enriched pathways, revealing that gene signature
A was enriched in multicellular organismal homeostasis, the
extracellular matrix, and extracellular matrix structural
constituent pathways, and gene signature B was related to the
external side of the plasma membrane, T-cell activation, and
cytokine receptor binding pathways.

TNBC High- or Low-Score Groups
According to ICI Scores
According to gene signatures A and B, we used PCA to obtain ICI
scores A and B of each TNBC patient. Figure 3A showed the
allocation of patients in the four-gene clusters, as well as the ICI
score and survival state. To compare immune conditions between
high- and low-ICI score groups, we selected 15 immune-related
genes, including CD274, IDO1, PDCD1, LAG3, HAVCR2, and

FIGURE 3 | TNBC high- or low-score groups according to ICI scores. (A) Alluvial diagram of ICI gene cluster distribution in the four-gene groups with distinct ICI
scores and survival states. (B) Expressions of immune checkpoint and immune activation relevant genes between two groups. (C) GSEA analysis in high- and low-ICI
score groups. (D) KMA for two groups in the TCGA-TNBC cohort. p = 0.056.
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CTLA4, which acted as immune checkpoint-related genes, and
CD8A, IFNG, TNF, CXCL9, GZMA, GZMB, TBX2, CXCL10, and
PRF1, which served as immune activation-related genes. We
performed the Wilcoxon rank-sum test and found that all of
these genes had higher expressions in the high-ICI score group
than the low-ICI score group, except that TBX2 had no statistical
significance (Figure 3B). Furthermore, we performed GSEA and
found that different pathways were associated with the high- and
low-ICI groups, respectively. Figure 3C showed the top five
pathways with the most significant difference, indicating that a
high ICI score was related to T-cell receptor, B-cell receptor,
chemokine, fc_epsilon_ri signaling pathways, and proteasome,
whereas the low-ICI score group was enriched with
glycosylphosphatidylinositol gpl anchor biosynthesis, aminoacyl
tRNA biosynthesis, nitrogen metabolism, homologous
recombination, and glycosphingolipid biosynthesis lacto and
neolacto series pathways. To compare the OS of the two
groups, we performed the KMA and log-rank test. Although no
obvious difference was detected (p = 0.056), the TNBC patients of

the TCGA cohort had a better prognosis in the high-ICI score
group (Figure 3D).

A Combination of ICI and TMB Scores Can
Be Used to Predict the Prognosis in TNBC
Increasing evidence has shown that TMB has an important effect
on the immunotherapeutic response of cancer patients (Rizvi
et al., 2015). To reveal the inherent correlation between TMB and
ICI score groups, we assessed the TMB levels of TNBC patients in
the TCGA cohort. Our data revealed that patients had a
dramatically lower level of TMB in the high-ICI score group
(p = 0.031, Figure 4A). We further ensured TMB and ICI scores
had an obvious negative relation (Figure 4B). Interestingly, the
patients with high TMB had a better OS than individuals with low
TMB (Figure 4C). Considering the prognosis value of ICI and
TMB scores, we further assessed the antagonistic impacts of these
scores on the prognosis stratification of TNBC patients. It showed
the low-TMB + low-ICI score group had the worst prognosis,

FIGURE 4 | Combination of ICI and TMB scores to predict prognosis in TNBC. (A) Compared TMB level between two ICI score subgroups. p = 0.031. (B)
Correlation between ICI and TMB scores in four gene clusters. Spearman test, correlation coefficient (R) =−0.2, p = 0.019. (C)OS curves for high- and low-TMB groups
of the TCGA-TNBC cohort. p = 0.026. (D) KMA for patients in the TCGA-TNBC cohort was stratified by both TMB and ICI scores. p = 0.002.
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while the high-TMB + high-ICI score group and low-TMB +
high-ICI score group had a favorable prognosis. We also observed
no remarkable difference existed between high-TMB and low-
TMB patients in the high-ICI score group, whereas the high-TMB
group displayed a remarkably favorable prognosis compared with
the low-TMB group in the low-ICI score group (Figure 4D). All
the findings demonstrated the combination of ICI and TMB
scores might better predict the immunotherapeutic response and
outcomes in TNBC patients.

Construction of the irlncRNA Prognostic
Model
To establish an irlncRNA risk model, we obtained 2,483 immune-
related genes from the ImmPort database. By performing the
correlation analysis, we identified 1,370 irlncRNAs. Integrated
with survival information, univariate Cox regression analysis was
adopted to obtain survival-related irlncRNAs. Lasso analysis
(Figure 5A) and multivariate Cox regression analysis
(Figure 5B) were further applied to establish a prognosis
signature. The expressions of 13 irlncRNAs were for
calculating the risk score by the following formula: risk score
= Exp (DLGAP-AS1) × (-0.61) + Exp (AC104083.1) × (0.08) +
Exp (LINC00472) × (0.63) + Exp (YTHDF3-AS1) × (−0.62) +
Exp (CA3-AS1) × (1.21) + Exp (AC104958.2) × (0.86) + Exp

(LINC00839) × (0.23) + Exp (AC245297.4) × (−0.87) + Exp
(BRWD1-AS2) × (2.26) + Exp (USP30-AS1) × (−0.44) + Exp
(AL133338.1) × (−0.69) + Exp (NIFK-AS1) × (−1.15) + Exp
(AC016888.1) × (0.34). Next, we plotted a 5-year ROC curve and
calculated the AUC, and the maximum inflection point was
accepted as the cutoff point by the AIC values (Figure 5C).
The 3, 5, and 10-year ROC curves were also mapped with high
AUC values over 0.75 (Figure 5D). KMA suggested a significantly
better prognosis in the low-risk group than the high-risk group
(Figure 5E, log-rank test, p < 0.001).

Correlation of the Risk Score With
Clinicopathologic Variables, Immune Cells,
PD-L1 Expression, and TMB Score
Furthermore, we compared the AUC values between the risk
score and traditional clinicopathologic variables, including
clinical, T, M, N, stages, and age. Figure 6A showed that the
risk score with the highest AUC value was compared with other
variables. Moreover, the chi-square tests revealed the risk score
was associated with clinical, N and T stages (Figure 6B). To study
the mechanism between irlncRNA risk scores and ICI, the
Spearman test was conducted, revealing that high-risk score
was negatively related to most immune cells, except for
plasma B, monocytes, M2 macrophages, and neutrophil cells

FIGURE 5 | Construction of the irlncRNA prognostic model. (A) Lasso regression analysis. (B) Forest map of identified irlncRNAs by Cox proportional hazard
regression. (C) ROC curve was plotted with the AUC value and optimal cutoff value. (D) The 3-, 5- and 10-year ROC curves were mapped with AUC values. (E) KMA
between the high- and low-risk groups, p < 0.001.
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(Figure 6C). In addition, the PD-L1 expression was lower in the
high-risk group than that of the low-risk group (Figure 6D).
However, there was no statistical difference in the TMB score
between the two groups (Figure 6E). These findings indicated the
irlncRNA risk score was related to the PD-L1 level but not with
the TMB score.

DISCUSSION

In our current work, we successfully constructed the ICI scoring
system and demonstrated that it could be used as a robust
biomarker for predicting the immunotherapeutic response in a
cohort consisting of 644 TNBC patients. Although
immunotherapy is highly effective in suppressing tumor
growth and improving patient life quality, it is limited by the
high cost. This conundrum is further aggravated by the fact that
only a minority of patients favorably receive immunotherapy. As
a result, it is vital to accurately identify people who might benefit
from immunotherapy.

To devise novel immune-modulatory strategies to deal with
TNBC, we need to better understand the immune
characteristics and profiles of TNBC. Herein, we categorized
TNBC from a meta-cohort including 435 samples into ICI
clusters A and B. The ICI cluster B, characterized by more
infiltrations of CD4 T, CD8 T, B, activated NK cells, M1
macrophages, and high expression of immune checkpoint
molecule PD-L1 showed improved OS, which was consistent
with the previous studies (Wu et al., 2019; Tokumaru et al.,
2020; O’Melia et al., 2021). Intense ICI has been reported to be
present in as high as 48% of TNBC cases, especially in TNBC
with the basal-like subtype (Harano et al., 2018). TNBC
patients with high levels of immune infiltration, which are
measured by immune signatures, show an improved OS
(Iwamoto et al., 2011). In addition, for TNBC patients
undergoing neoadjuvant chemotherapy, intense ICI is
associated with a higher pathological complete response and
a better outcome. A neoadjuvant GeparSixto trial has shown
that a subset of TNBC patients with strong immunologic
signals can hopefully benefit from the immunotherapy

FIGURE 6 | Correlation of the risk score with clinicopathological variables, immune cells, PD-L1 expression, and TMB scores (A,B) A comparison of 5-year ROC
curves (A) and correlation analysis (B) between risk scores and traditional clinicopathologic variables. (C) Spearman analysis between risk scores and ICI with seven
common methods. (D) Different PD-L1 expression levels in the high-risk and low-risk groups. (E) Compared TMB level in the high-risk and low-risk groups. *p < 0.05;
**p < 0.01; and ***p < 0.001.
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strategy (Denkert et al., 2015). Researchers have reported that
PD-L1 is expressed in immune cells of 40–65% TNBC tissues
(Beckers et al., 2016), and PD-L1 ( + ) tumors have a greater
CD8 ( + ) T-cell infiltration compared with PD-L1 (−) tumors
(Mittendorf et al., 2014). However, some PD-L1 (−) patients
still obtain a clinical response with immune checkpoint
inhibitors (Ribas and Hu-Lieskovan, 2016). Furthermore,
only an objective response rate of 18.5% has been reported
in TNBC patients in a recent phase Ib clinical trial of PD-L1
immune checkpoint inhibition (Nanda et al., 2016). Therefore,
simple ICI alone is insufficient for the precise prediction of
immunotherapeutic response.

Therefore, we hypothesized that a combination of data from
the ICI model and immune-related signature would offer
more information concerning individualized
immunotherapy. We observed that ICI gene clusters A and
B were linked with a favorable prognosis and a dramatically
greater immune score than clusters C and D. In addition, there
were increased infiltrations of B cells, CD8 T cells, activated
memory CD4 T cells, and M1 macrophages cells in ICI gene
clusters A and B. Therefore, patients categorized into clusters
A or B might benefit from immunotherapy. In contrast,
clusters C and D with higher infiltrations of plasma, resting
memory CD4 T cells, M0 cells, and M2 macrophages,
exhibited an immune-cold phenotype. Plasma cell-
predominant breast cancer has been reported as an
independently predicted value for worse OS and DFS (Wei
et al., 2016). In contrast, research has shown that
aforementioned median densities of CD38+ plasma cells are
associated with a better DFS but not OS (Yeong et al., 2018).
Presently, we revealed that TNBC patients with high
infiltrations of plasma cells had a poor outcome. M0 and
M2 macrophages are strongly associated with a poor outcome,
contributing to cell migration in breast cancer (Ali et al., 2016;
Tu et al., 2021). Furthermore, we divided DEGs into ICI gene
signatures A and B to obtain tumor subtype-specific
biomarkers, which have been well studied to enhance the
outcome prediction (Callari et al., 2016). Compatible with
previous studies, ICI gene signature A was linked to
multicellular organismal homeostasis and extracellular
matrix pathways, which have been noted to portend
improved survival for patients with breast cancer (Roy and
Walsh, 2014).

Through GSEA, we revealed that genes involved in the T-
and B-cell receptor, proteasome, and chemokine signaling
pathways were related to the high-ICI score group. However,
glycosylphosphatidylinositol gpl anchor biosynthesis,
aminoacyl tRNA biosynthesis, nitrogen metabolism, and
homologous recombination pathways were connected with
the low-ICI score group, which have been rarely reported in
cancer. The KMA showed the high-ICI score group exhibited
a better prognosis compared with the low-ICI score group,
although there was no statistical significance (p = 0.056).
Furthermore, increasing evidence demonstrates TMB is
related to immunotherapeutic response in breast cancer
(Thomas et al., 2018) and other types of cancer (Zhang
et al., 2019; Lv et al., 2020). For instance, Romualdo et al.

have shown that a high TMB has a relation with a longer OS in
metastatic TNBC patients treated with anti-PD-1/L1
therapies (Barroso-Sousa et al., 2020). In line with this
result, our study indicated TNBC patients with a higher
TMB exhibited a better OS. We also noted that TMB was
remarkably increased in patients with low ICI scores,
indicating a significant negative relation between TMB and
ICI scores. The combined use of TMB and ICI scores
suggested that patients with a low-TMB + low-ICI score
had the worst prognosis. We also found that TMB scores
had no prognostic value in the high-ICI score group, whereas
the high-TMB + low-ICI score group had a favorable
prognosis compared with the low-TMB + low-ICI score
group. This finding suggested that the combination of ICI
and TMB scores could improve the prediction of outcomes to
immunotherapy.

Furthermore, we identified a novel 13-irlncRNA signature
to design a risk model to assess TNBC prognosis. Among these
irlncRNAs, LINC00472 acts as a tumor suppressor and
predictive marker in breast cancer (Shen et al., 2015a). The
high expression of LINC00472 has been correlated with ER-
positive, low-grade breast cancer, and favorable molecular
subtypes (Shen et al., 2015b). The cell experiment has
confirmed that LINC00472 suppresses the phosphorylation
of NF-kB through binding to IKKβ in breast cancer (Wang
et al., 2019). The nuclear lncRNA Linc00839 is upregulated in
chemoresistant breast cancer cells, and its overexpression
enhances Myc and activates the PI3K/AKT signaling
pathway, thus facilitating proliferation, invasion, and
migration, as well as leading to a poor prognosis in breast
cancer (Chen et al., 2020). By calculating the AUC values, we
verified the risk model could better forecast the 3-, 5-, and 10-
year survival rate than the traditional clinicopathologic
characteristics. Moreover, a high-risk score marked with
poor prognosis and low PD-L1 had a positive relation with
infiltrations of plasma B cells, monocytes, M2 macrophages,
and neutrophils, which was consistent with the ICI score.

CONCLUSION

Collectively, we comprehensively evaluated the ICI landscape of
TNBC with biological information obtained from next-
generation sequencing with computational algorithms.
Characterization of the ICI landscape served to elucidate the
complex and dynamic anti-/pro-tumor immune response
regulation in TNBC. Moreover, the ICI patterns were
negatively correlated with TMB in TNBC. Therefore, the
characterization and systematic evaluation of the ICI patterns
in combination with TMB scores in TNBC might potentially
serve to identify candidate patients for optimal individualized
immunotherapy. The combination of ICI and TMB scores might
function as a potentially effective biomarker for
immunotherapeutic response prediction in TNBC patients.
Furthermore, a novel 13-irlncRNA signature was determined
and applied to conduct a risk model to accurately predict
TNBC prognosis.
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