
The impetus for this review dates back more than a few 
decades, having originated with a curious malady, i.e., the 
severe headaches that were often suffered by diners who had 
ingested monosodium glutamate, a common food additive in 
general use in homes and restaurants. It came to be known by 
a variety of names, the most common being the “The Chinese 
Restaurant Syndrome” because of its perhaps excessive use 
in wonton soup. The cause remained a mystery until 1969, 
when John Olney and his colleagues unequivocally demon-
strated the neurotoxic effects of monosodium glutamate. In 
an impressive series of papers, they showed that when applied 
topically or by injection, glutamate and its analogs (aspartate, 
kainate, N-methyl-d-aspartate [NMDA], α-amino-3-hydroxy-
5-methyl-4-isoxazole-propionic acid [AMPA]) were cytotoxic 
to nerve cells in every part of the central nervous system 
(CNS) [1-3]. The issue is of more than academic interest, 
since glutamate-triggered neuronal damage is known to occur 
when the glutamate concentration of interstitial fluids reaches 

abnormally high levels as a result of hypoxia, ischemia, or 
brain trauma.

A striking curiosity was seen when Olney’s studies were 
extended to the visual system. In the neonatal mouse retina, 
for example, he reported that a 30 min exposure to paren-
terally administered glutamate (1 mM) produced a histo-
pathological lesion characterized by swollen cell bodies in 
the ganglion cell layer, the proximal half of the inner nuclear 
layer, and extending to the inner plexiform layer. Even after 
washing and transferring the excised retina to glutamate-free 
medium, Olney found that the lesion had progressed further, 
particularly in cells within the inner half of the inner nuclear 
layer, [2]. It is noteworthy that although the retina had been 
bathed in glutamate, only the inner layers were seriously 
affected.

Why had the nerve cells in the distal layers been spared? 
Neurons and glia have been shown to sequester glutamate via 
high-affinity uptake systems. These transport mechanisms, 
regarded as responsible for clearing L-glutamate from the 
synaptic cleft [4,5] and for terminating the excitatory signal 
[6], represent the first step in the recycling of the transmitter 
through the “glutamine cycle” [7,8]. Glutamate uptake 
undoubtedly plays a cytoprotective role, but it is clearly 
inadequate to spare the inner retina when exposed to toxic 
levels of glutamate. Rather, it seems likely that there are 
one or more endogenous substances that serve to protect the 
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outer retina from the typically severe reaction to glutamate. 
We suggest that one of the most effective endogenous agents 
protecting the distal retina from the application of toxic levels 
of glutamate is the amino acid taurine.

Other cytoprotectants: Before considering further some of the 
biochemical and physiological features of taurine, as well as 
the broad range of conditions in which taurine has been shown 
to be beneficial, we must acknowledge that the retina may 
be exposed to several other survival-promoting agents under 
normal conditions. Many that have been shown to be effec-
tive, e.g., brain-derived neurotrophic factor (BDNF), ciliary 
neurotrophic factor (CNTF), and basic fibroblast growth 
factor (bFGF) were identified and extensively investigated by 
LaVail and coworkers [9-12]. These and other members of the 
transforming growth factor-β family help to protect retinal 
neurons from ischemia, free radical formation, light damage, 
and related forms of neuronal insult. Although levels of some 
of these factors are upregulated in response to injury [11,13], 
these agents, even when applied exogenously, primarily tend 
to slow the cell death process. Treatment with combinations 
of antioxidants has also proven to effectively rescue photore-
ceptors in an animal model (rd1) of retinal degeneration [14], 
but here too the agents were applied exogenously. We suggest 
that the high concentration of endogenous taurine throughout 
the retina can better serve the role of neuroprotectant against 
glutamate-induced excitotoxicity.

Some Functional Properties:

A broad-spectrum cytoprotective agent—Taurine 
(2-aminoethane- sulfonic acid), an organic osmolyte 
involved in cell volume regulation, provides a substrate for 
the formation of bile salts, and plays a role in the modulation 
of intracellular free calcium concentration [15,16]. Taurine 
is one of the most abundant amino acids in the brain and 
spinal cord, leukocytes, heart and muscle cells, the retina, and 
indeed almost every tissue throughout the body. It was first 
identified and isolated from the bile of the ox (Bos taurus), 
from which it derives its name [17,18]. The chemical struc-
ture of taurine, shown in Figure 1A, reveals that it lacks the 
carboxyl group typical of other amino acids, but does contain 
a sulfonate group. The major route for the biosynthesis of 
taurine, shown in Figure 1B is from methionine and cysteine 
via cysteinesulfinic acid decarboxylase (CSD), and typically 
requires oxidation of hypotaurine to taurine as the final step 
[19].

CSD was initially cloned and identified in the liver as 
the rate-limiting enzyme in the biosynthesis of taurine [20], 
and was later shown to be present in the kidney as well as 
the brain, where it is localized in glial cells. CSD levels are 

very low in cats, as well as humans and other primates, but 
the ingestion of meat and seafood—or taurine supplements—
helps to maintain normal tissue concentrations of taurine. 
As Sinwell and Gorodischer [21] have shown, there is an 
increased incidence of pediatric problems in children being 
raised on the totally vegetarian diets of vegan communities. 
Aside from the retina, every region of the brain that has been 
tested contains or takes up taurine; this includes the pineal 
[22,23], pons medulla [24], hypothalamus [25], striatum 
[26], and cerebellum [27,28]. At each of these sites, there is 
evidence of taurine’s ability to ameliorate certain forms of 
neuropathology.

Because it is one of the few amino acids not used in 
protein synthesis, taurine is often referred to as a “nones-
sential” amino acid, or more generously as a “conditionally 
essential” amino acid. Considering its broad distribution, 
its many cytoprotective attributes [29,30], and its functional 
significance in cell development, nutrition, and survival 
[31,32], these are clearly misnomers. Taurine is undoubtedly 
one of the most essential substances in the body. Moreover, 
there is ever-increasing evidence that taurine depletion leads 
to a wide range of pathological conditions, including severe 

Figure 1. Structure and formation of taurine. A: The chemical 
formula of taurine is C2H7NO3S MW=125.15. B: This oversimpli-
fied diagram shows the main steps in the conversion of L-cysteine 
to taurine. The enzyme cysteine dioxygenase (CDO) catalyzes the 
conversion of L-cysteine to cysteine sulfinate, and the oxidation of 
hypotaurine (2-aminoethane sulfinate) results in taurine. 
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cardiomyopathy [33], renal dysfunction [34], pancreatic β cell 
malfunction [35], and loss of retinal photoreceptors [36]. The 
close relationship between taurine levels and nutritionally 
induced degeneration is supported further in that taurine 
supplementation can inhibit light-induced lipid peroxidation, 
and thereby protect isolated rod outer segments from photic 
damage [37,38].

There is a long list of diseases that are impacted by 
taurine, although the precise biochemical mechanism of 
action is often not entirely clear. A case in point is its role in 
diabetes. Numerous studies have indicated that taurine plays 
a significant role in overcoming insulin resistance and other 
risk factors in animal models of Type 1 and Type 2 diabetes 
[39-47]. More specifically, taurine administration has been 
shown to prevent high glucose-induced microangiopathy, i.e., 
vascular endothelial cell apoptosis [48], and in fructose-fed 
rats, it has been found to restore glucose metabolizing enzyme 
activities and improve insulin sensitivity by modifying the 
postreceptor events of insulin action [49]. The suggestion that 
nitric oxide (NO) may be implicated in the pathogenesis of 
diabetes prompted a study to determine whether endogenous 
NO synthesis or local reactivity to endogenous NO might be 
impaired in patients with Type 1 insulin-dependent diabetes 
mellitus [50]. The results showed that either NO- synthase 
activity is increased or NO sensitivity is decreased in Type 1 
patients, a good indication that the L-arginine–NO system is 
involved in the pathophysiology of diabetes and its sequelae, 
e.g., diabetic retinopathy. Subsequently, the elevated levels of 
NO were shown to cause upregulation of the taurine trans-
porter gene and a concomitant increase in taurine uptake in 
human retinal pigment epithelial cells [51].

Taurine’s effect on renal function [52], particularly as 
it relates to streptozotocin-induced diabetic animal models, 
is also noteworthy. As Trachtman et al. (1995) have shown, 
taurine ameliorates diabetic nephropathy by decreasing lipid 
peroxidation and lessening the accumulation of advanced 
glycation end-products in the kidney [39]. However, whether 
the findings from animal models of diabetes translate to an 
effective therapy in the management of diabetes in humans 
is an open question. In this connection, it is important to 
note that taurine was shown to reduce insulin secretion by 
β cells in vitro [53]. Moreover, contrary to the results from 
animal experiments, a study of 20 obese human subjects with 
a genetic predisposition for Type 2 diabetes demonstrate that 
taurine supplementation (1.5 g for 8 weeks) had no effect on 
insulin secretion or sensitivity [54]. In short, these findings do 
not support the view that dietary supplementation with taurine 
can be used to prevent the development of Type 2 diabetes. 
However, it should be noted that this study was clearly too 

small and of too short a duration to have any clinical signifi-
cance. Further experimental and clinical studies will be of 
importance in evaluating taurine’s therapeutic potential in 
the management of diabetes in humans [45].

Similar issues have clouded the relationship between 
taurine and epilepsy, although there is little doubt that 
taurine has antiepileptic activity in experimental animals. 
The efficacy of taurine has been demonstrated in both 
naturally occurring and drug-induced epilepsy in cats [55], 
mice [56], rats [57], and dogs [58], and evidence that taurine 
blocks dentato-hippocampal synapses, a locus of importance 
in epileptogenesis, indicates a specific action in epilepsy. 
Indeed, preliminary experiments in human epileptic subjects 
confirm the anticonvulsive effect of taurine, but the effects 
are not robust, nor are they consistent [59]. This may be 
because taurine does not readily cross the blood-brain barrier, 
and several taurine analogs that do are currently under inves-
tigation for their therapeutic potential [60].

Taurine in the eye: It has long been known that all ocular 
tissues, both neural and nonneural, contain taurine [61,62], 
prompting a host of studies to identify its cellular distribu-
tion [63-66]. Quantitative analysis of whole ocular tissue 
extracts of the rat eye revealed that taurine was the most 
abundant amino acid in the retina, vitreous, lens, cornea, iris, 
and ciliary body [67]. The highest level of taurine was, of 
course, in the vertebrate retina, and an ingenious experiment 
involving a judicious selection of normal and diseased mouse 
retinas enabled Cohen and coworkers [68] to quantify the 
distribution of taurine and other amino acids across the layers 
of retinal cells (Figure 2). Note that in the normal (control) 
retina, taurine exceeds the concentration of each of the other 
amino acids by tenfold or more, whereas in the photore-
ceptorless C3H mouse, its concentration is about one-third 
of its value in the control retina. Note also that destruction 
of the inner retina by glutamate has little effect on taurine 
concentration. It is apparent, therefore, that taurine is highly 
concentrated in the outermost layers of the vertebrate retina. 
This is consistent with the findings that animals (e.g., cats, 
monkeys, man) that do not produce adequate levels of taurine 
experience severe degenerative changes in their photorecep-
tors and retinal pigment epithelium (RPE) when deprived of 
dietary taurine [36,69-75].

The selective distribution of taurine within the retinal 
laminas, as well as in other tissues, is attributable to the pres-
ence of both high and low affinity Na+- and Cl-- dependent 
taurine transporters [66,76,77]. At the cellular level, the 
taurine content is determined primarily by the sum of three 
processes: (i) its synthesis from methionine/cysteine, (ii) its 
active uptake by the taurine transporter, and (iii) its release 
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via a volume-sensitive leak pathway [78]. The principal trans-
port protein is the saturable, high-affinity TauT transporter 
(Km=18 μM), a member of the neurotransmitter transporter 
family that includes the transporters for serotonin, creatine, 
and gamma amino-butyric acid (GABA) [79]. All members 
of this family have 12 membrane-spanning helices, with the 
N- and C-terminal ends exposed to the cytosol [80]. The 
cytosolic domains contain several highly conserved serine, 
tyrosine, and threonine residues that provide sites for phos-
phorylation. In terms of its stoichiometry, the active uptake 
of one molecule of taurine requires two to three sodium ions 
and one chloride ion [78], and only guanidinoethyl sulfonate 
(GES) and other close analogs of taurine, e.g., β-alanine, 
GABA, are inhibitors of taurine uptake. Interestingly, both 
a GABA transporter and a taurine transporter are active at 
apical membrane vesicles from bovine RPE; they both require 
Na+ and Cl- and exhibit a similar stoichiometry. An analysis 
of taurine uptake at this site showed that uptake was severely 
depressed in the presence of GABA, and conversely, GABA 
uptake was suppressed by the presence of taurine [81].

Depletion of taurine in rats treated with GES leads to 
a marked and progressive reduction in the amplitude of the 
electroretinogram [82] and severe degenerative changes in 
photoreceptors and the RPE [83], effects that can be reversed 
by intravenous infusion of taurine [84]. A precipitous loss of 
taurine is also seen after genetic disruption of TauT in mice. 
In this model, there is severe photoreceptor degeneration 2–4 
weeks after birth, and this spreads to the inner retinal neurons 
after 4 weeks [85]. Clearly, endogenous taurine is crucial for 
preventing retinal neurodegeneration. Findings such as these, 
although difficult to interpret precisely, add to an appreciation 
of the importance of taurine in the cell biology of the retina.

Taurine and cytoprotection: Photoreceptors are considerably 
richer in taurine than other retinal neurons, but all retinal 
cells from the outer and inner nuclear layers to the ganglion 
cell layer, and seemingly the radial glia (Müller cells) as well 
[86], take up taurine from the extracellular milieu [66,87-91]. 
Therefore, it is not surprising that depleting endogenous 
taurine by the genetic knockout of TauT or by blocking 
the taurine transporter with GES has been shown to cause 
ganglion cell loss, along with degenerative changes in the 
distal retina [75,85]. It is apparent that taurine serves a neuro-
protective role in ganglion cells, as well as in photoreceptors. 
On the other hand, it was surprising to learn that the early in 
vivo experiments on the active transport of taurine through 
the frog RPE showed the main flux to be in the retina to 
choroid direction [92]. However, the ship was righted with 
evidence of bidirectional transport [93], and the demonstra-
tion of taurine transport from the blood to retina direction 
[94]. In addition, passive diffusion of such a small molecule 
as taurine would allow it to traverse the plasma membrane of 
retinal cells without the aid of an active transport mechanism, 
and there is experimental evidence that both path length and 
matrix components (collagen and elastic tissue) influence 
the diffusion of taurine across human and bovine tissues 
comprised of Bruch’s membrane–choroid [95].

Perhaps the most exhaustive body of experimental work 
on the neuroprotective properties of taurine was performed 
by Wu and colleagues [29,30,96-98]. These innovative studies 
provide convincing evidence that there are several avenues 
by which taurine exerts its protective role. Using primary 
neuronal cultures from the fetal rat brain, these researchers 
showed that taurine suppresses glutamate-induced toxicity 
through several pathways: (i) it inhibits calcium influx 
through L-, N- and P/Q-type voltage-gated calcium channels, 

Figure 2. Chemical and genetic 
fractionation of the retina. A: 
Juxtaposed images of histological 
sections comparing the retinas of 
a normal (control) mouse, with 
one whose inner retina has been 
damaged by glutamate, and another 
that was taken from a C3H mouse 
suffering the loss of the distal 
retina. B: The concentrations of five 
amino acids in each preparation. 

The latter values represent the averages from six different groups of dark-adapted animals. (Modified from Cohen et al., 1973, with the 
permission of the publishers). 
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(ii) it prevents the downregulation of Bcl-2 and the upregula-
tion of Bax, the protein products of which otherwise would 
translocate to the mitochondria and result in the release of 
the highly toxic cytochrome C (cyC), (iii) it protects neurons 
from oxidative stress, and (iv) it inhibits glutamate-induced 
calpain activation, thereby preventing the cleavage of Bcl-2 
(see also [99]).

There is obviously a broad array of mechanisms by 
which taurine serves its cytoprotective role, but the molecular 
identity of a taurine-selective receptor remains a mystery. 
Several studies have implicated a metabotropic GABAB-
binding site as mediating the action of taurine, particularly in 
the brain regions of the mouse and rat [100,101], as well as in 
the mammalian retina [75]. However, the pathway linking the 
GABAB receptor to its physiologic action has yet to be identi-
fied, and there is a high level of uncertainty regarding the 
existence or nature of a taurine-specific receptor (see below).

An experimental study: One of the many experiments demon-
strating the cytoprotective action of taurine is based on the 
now well-established fact that when cells die, they tend to 
generate toxic substances. These toxins can pass through 
gap junctions to kill their neighbors, a process referred to 
as “bystander” cell death [102-104]. Because RPE cells are 
extensively interconnected via gap junctions [105], a human 
RPE cell line (ARPE-19) expressing Cx43 and Cx46 was 
chosen to conduct an experiment that directly tested the effi-
cacy of taurine in the prevention of cell death [106]. Using a 
very fine blade, a small incision was made in the monolayer 
of ARPE-19 cells, and a solution of the potent cytotoxin 
cyC was applied to the site of the cut. Since cyC (molecular 
mass ~12 kDa) cannot pass through the cell wall, nor can 
it traverse gap junctions, entry was confined to the narrow 
row of injured cells. However, not only did cyC induce the 
death of cells along the scrape, but it also caused apoptosis 
in cells remote from the site of injury. In contrast, when the 
cells were preincubated in taurine, or the gap junctions were 
blocked with octanol, cell death was confined to those cells 
that were injured by the scrape. To ensure that the taurine 
effect was not due to the blockage of gap junctions, voltage 
clamp recordings from electrically coupled Xenopus oocytes 
transfected with Cx43 showed that junctional communication 
was not affected by taurine [106].

We should stress that experimentally induced cell death 
by cyC (as used in the foregoing study) simply bypasses the 
usual mitochondrial pathway to apoptosis. In more physi-
ological circumstances, pathological conditions often lead 
to mitochondrial dysfunction, triggering the release of cyC, 
activation of a downstream caspase cascade, and eventual 
nuclear disruption. How taurine interferes with this process 

is unclear, although the results of experiments by Takatani et 
al. [107] suggest that taurine inhibits apoptosis by preventing 
the formation of the Apaf-1/caspase 9 apoptosome, a key 
stage in the mitochondrial pathway to cell death. However, 
this finding has not been independently confirmed, nor as 
we have already mentioned is it likely to be its sole mode of 
action.

Its role in development: In addition to its protective and 
therapeutic actions, taurine has proven essential for normal 
development [85,108], and the genetic TauT knockout mouse 
has been valuable in this regard. Without appropriate taurine 
uptake, cell degeneration is inevitable, and this mouse line 
experiences birth defects in their mitochondria, and in 
myocardial and skeletal muscle development, e.g., increased 
ventricular wall thickness and cardiac atrophy.

Taurine also plays a critical role in brain development. 
Taurine deficiency leads to a delay in cell differentiation and 
migration in cerebellum, pyramidal cells, and visual cortex in 
cats and monkeys [109-113]. Moreover, Hernandez-Benitez et 
al. [114] have shown that taurine promotes neural development 
not only in embryonic brain, but also in adult brain regions. 
Of particular interest is the fact that within the subventricular 
zone of the cultured adult mouse brain, taurine activates stem 
cells and neural precursor cells to differentiate into neurons 
rather than astrocytes. The subventricular zone is one of the 
few regions in the brain in which neurogenesis continues 
throughout adulthood, and the cells from this region can 
proliferate and migrate via the rostral migratory stream to 
the olfactory bulb where they differentiate into neurons [115]. 
Considering the high taurine content in the adult olfactory 
bulb, it is likely that taurine is an important factor for neuro-
genesis. It should also be noted that the actions of taurine on 
adult subventricular stem cells and progenitor cells are not 
mimicked by glycine, GABA, or alanine [114].

The importance of taurine in retinal development was 
revealed in many of the earlier studies in which endogenous 
taurine was depleted by the taurine transport inhibitor GES, 
or by feeding mothers and their newborn taurine-free diets. 
The findings showed that taurine deficiency during the early 
stages of retinal development leads to impaired photoreceptor 
development, loss of ganglion cell axons, a higher frequency 
of fetal resorption, and stillbirth [109,110,116-119]. Perhaps 
even more relevant are the striking results from the Cepko 
laboratory, where it was shown that taurine stimulates rod 
development when added to media containing rat retinal 
cultures [120]. Interestingly, taurine uptake could be blocked 
without inhibiting its ability to stimulate rod production, 
evidence that the mechanism of action is neither osmoregu-
latory nor nutritive. Subsequent studies have implicated the 
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ligand-gated glycine α2 receptor in photoreceptor develop-
ment [121], since mice with targeted deletion of this receptor 
no longer experienced proper normal photoreceptor develop-
ment. However, the spotlight focused once again on taurine 
when a genome-wide analysis identified a noncoding RNA 
expressed in the developing retina, taurine upregulated gene 
1, and that its knockdown with RNA interference resulted 
in malformed or nonexistent photoreceptor outer segments 
[122].

Further evidence for the involvement of taurine in 
retinal development was provided in a recent study showing 
that under defined culture conditions, taurine (and certain 
growth factors) can efficiently promote the in vitro generation 
of putative rod and cone photoreceptors from mouse, monkey, 
and human embryonic stem cells [123]. The suggestion that 
taurine’s ability to promote photoreceptor development may 
be mediated by GlyRα2 subunit-containing glycine receptors 
[124] is apparently at odds with the evidence that neither the 
addition of glycine nor GABA to the media had the same 
effect as taurine [125].

Taurine and oxidative stress: It has become increasingly 
apparent that oxidative stress plays a major role in a broad 
range of human diseases. The overproduction of reactive 
oxygen specie and the body’s inability to stem the accumula-
tion of highly reactive free radicals have been implicated in 
cardiovascular disease [126], diabetes-induced renal injury 
[127], inflammatory disease [128], light-induced lipid peroxi-
dation in photoreceptors [38], reperfusion injury [129], and 
several of the major disorders of the CNS [130,131]. In each 
case, taurine, by virtue of its antioxidant activity, has been 
shown to play a crucial role as a cytoprotectant and in the 
attenuation of apoptosis. Despite this diversity of pathophysi-
ology in so varied a group of seemingly unrelated disorders, 
there is a growing consensus that oxidative stress is linked to 
mitochondrial dysfunction [127,130-133], and that the benefi-
cial effects of taurine are a result of its antioxidant properties 
[126,128,129], as well as its ability to improve mitochondrial 
function by stabilizing the electron transport chain and inhib-
iting the generation of reactive oxygen species [134,135].

This mode of action has been described by Schaffer and 
coworkers [135] in cases of diabetes. They find that in this 
condition, there occurs a decline in the levels of endogenous 
taurine, and suggest that this taurine deficiency reduces the 
expression of the respiratory chain components required for 
normal translation of mitochondrial-encoded proteins. They 
propose that the dysfunctional respiratory chain accumulates 
electron donors, thereby diverting electrons from the respira-
tory chain to oxygen, and forming superoxide anion in the 
process. Increasing taurine levels restores respiratory chain 

activity and increases the synthesis of ATP at the expense of 
superoxide anion production.

Taurine and neurotransmission: Perhaps the most enigmatic 
question regarding taurine is whether it is a neurotransmitter. 
The structural resemblance between γ-aminobutyric acid and 
taurine, the similar distributions of these amino acids and 
their synthesizing enzymes in various regions of the brain, 
and the evidence that taurine, when applied to CNS neurons, 
exerts an inhibitory effect on their firing rate [136] have all 
contributed to the view that taurine is indeed a neurotrans-
mitter. Adding to this is the fact that there is a rapid calcium-
dependent eff lux of taurine after electrical stimulation 
of cortical slices of rat brain, and the presence of uptake 
mechanisms to terminate its action [137-139]. Nevertheless, 
the issue is far from resolved, and the effects of taurine on the 
responses of retinal neurons have served to highlight some of 
the difficulties.

In their initial studies on the action of taurine on neuronal 
pathways in the rabbit retina, Cunningham and Miller [140] 
showed that taurine was able to separate the ‘On’ and ‘Off’ 
channels of the parallel pathways identified in recordings 
of the electroretinogram, the proximal negative response of 
amacrine cells [141], and the spontaneous activity of ganglion 
cells. Without detailing the findings in this paper, it is note-
worthy that application of 20 μM strychnine blocked the 
neuronal effects of taurine, suggesting that taurine was acting 
on receptors that were also responsive to glycine. Subsequent 
studies by these authors on the actions of both of these agents 
revealed that the same concentrations of either amino acid 
had similar effects on intra- and extracellular recordings 
from retinal neurons and Müller (glial) cells [142,143]. The 
fact that this array of responses to both taurine and glycine 
were blocked by strychnine suggests that a single glycinergic 
receptor may be sensitive to both agents. However, there is 
some evidence to the contrary. For example, the inhibitory 
actions of both glycine and taurine on the frog spinal cord 
are blocked by strychnine, but the hyperpolarizing effect 
of taurine could be blocked by a strychnine concentration 
of 100 μM, which had no effect on the response to glycine 
[144]. In addition, the taurine antagonist TAG (6-amino-
methyl-3-methyl-4H,1,2,4-benzothiadiazine-1,1-dioxide) 
blocks spinal cord depolarization without affecting the 
similar response to glycine [145]. Thus, although the actions 
of glycine and taurine overlap at similar receptors, there is 
reason to suspect that the receptor populations are not the 
same [146].

A similar situation arose with the inhibitory neurotrans-
mitter GABA, another ω-amino acid whose molecular 
structure is strikingly similar to that of glycine and taurine. 
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Once again it was difficult to clearly distinguish between 
their neuronal actions. Electrical stimulation significantly 
enhanced both the formation and efflux of GABA and taurine 
in isolated synaptosomes from the mouse brain, and the 
kinetic parameters for their high affinity uptake were almost 
identical [147]. Moreover, equivalent amounts of taurine and 
GABA depressed the firing rate of brainstem neurons almost 
equally [148], and similar specific, carrier-mediated trans-
port systems are known to operate at brain cell membranes 
[149,150]. However, unlike the findings with glycine, there are 
significant differences between taurine and GABA. Both in 
retina and isolated synaptosomes, strychnine suppressed the 
action of taurine but not that of GABA, whereas the GABA 
antagonist bicuculline had no effect on the inhibitory action 
of taurine, but blocked the depressant action of GABA. In 
sum, these observations suggest that taurine and GABA are 
acting on different receptors, and thus, there is no convincing 
evidence that the electrophysiological actions of taurine are 
mediated via binding to an ionotropic GABA receptor.

Criteria that define a neurotransmitter: Uncertainties as 
to whether a molecule is a neurotransmitter have led to the 
establishment of various criteria (some more essential than 
others) for inclusion. These are as follows:

(i) Evidence that the substance, together with the 
enzymes and related chemical machinery required for its 
synthesis are present within the presynaptic neurons;

(ii) Evidence that the substance is released by a calcium-
dependent mechanism in response to presynaptic depolariza-
tion, and that it exerts an effect on postsynaptic cells;

(iii) The presence of a mechanism to terminate the action 
of the transmitter (e.g.., degradation, high-affinity uptake), 
and the availability of a relatively specific antagonist; and

(iv) The presence on postsynaptic cells of a receptor that 
specifically binds the putative neurotransmitter.

Studies too numerous to cite here have shown that agents 
such as GABA, glutamate, acetylcholine, and glycine satisfy 
these criteria, and studies already cited show that taurine 
satisfies all but one of the above criteria. Thus, although 
taurine is released after electrical stimulation, and at physi-
ologic concentrations it exerts a powerful inhibitory effect on 
the bioelectric activity of the retina and on synaptic transmis-
sion in retinotectal pathways, the one crucial criterion that has 
not yet been met is the presence of a taurine-specific receptor 
on postsynaptic cells.

There is no shortage of publications claiming to have 
detected one or more putative taurine receptors. Results 
obtained by Kudo et al. [151] on the effects of taurine in the 
frog spinal cord were interpreted as revealing two taurine 

receptor subtypes. This conclusion was based on their 
observation that the application of 10 mM taurine caused a 
biphasic response consisting of a hyperpolarization followed 
by a slow onset depolarization. The former was selectively 
depressed by low concentrations of bicuculline that had 
no significant effect on the antagonizing action of GABA, 
whereas the hyperpolarizing component was selectively 
reduced by a strychnine concentration that had no effect on 
the response to glycine. Clearly these findings are highly 
suggestive, but cannot be considered definitive evidence 
of the presence of taurine-specific receptors. Other studies 
purporting to have detected taurine receptors in rabbit brain 
[152] and in RPE cells in culture [153] have been similarly 
inconclusive. In contrast, the kinetics and pharmacology of 
a receptor prepared from mammalian brain are consistent 
with what one might expect of a taurine-specific receptor, 
i.e., the binding of 3H-taurine was highly specific, and not 
affected by agonists or antagonists of receptors for glutamate, 
glycine, benzodiazepine, and GABAB, nor by monovalent or 
divalent cations [154]. The binding was completely abolished 
by 0.1 mM cobalt, zinc, or mercury, suggesting the presence 
of free sulfhydryl groups near or at the ligand-binding site.

Another study examining proteins that interact with 
taurine used the cross-linker bis-(sulfosuccinimidyl) suberate 
(BS3) to covalently bind 3H-taurine to cell surface proteins 
on membranes from the olfactory organ of the spiny lobster 
[155]. In their inhibition studies, only taurine inhibited the 
crosslinkage of 3H-taurine to the membrane, and the taurine-
evoked behavioral search response was significantly reduced 
following treatment of their antennules with BS3 + taurine 
as compared with animals treated with BS3 alone. This 
suggests that the taurine-labeled binding proteins include 
taurine receptor proteins involved in the first stage of olfac-
tory transduction. However, neither of these studies attempted 
to determine the molecular structure of a taurine receptor at 
the respective sites.

Currently, perhaps the best hope for establishing the 
molecular structure of a taurine receptor stems from the 
elegant work of Anderson and Trapido-Rosenthal [156], 
who discovered a unique taurine receptor candidate at a fast 
excitatory synapse in the motor nerve net (MNN) of the 
jellyfish Cyanea capillata. Intracellular recording from these 
relatively large cells in the MNN showed that only taurine 
(a β-sulfonic acid) and β-alanine (a β-carboxylic acid), both 
of which are present in the neurons and released on depo-
larization, produced responses consistent with those of the 
normal excitatory post-synaptic potentials (EPSPs) in these 
cells. They tested the effects of 28 candidate neurotrans-
mitters including glycine, GABA, dopamine, epinephrine, 
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acetylcholine, and a variety of neuropeptides and nucleotides. 
Although a very small response was elicited with GABA, 
the most effective agents were taurine and β-alanine, both of 
which produced large depolarizations that varied in ampli-
tude with membrane potential. Either or both of these amino 
acids, or a closely related unidentified compound, is likely 
to be the neurotransmitter at this fast chemical synapse. The 
magnitude of the changes they elicited was exceeded only 
by the taurine analog homotaurine (3-aminopropane-sulfonic 
acid), although the time course of the response decay was 
much slower. As the authors noted, while it is evident that 
glycine is not a transmitter at the MNN synapse, the features 
of the taurine response are unlike that typically seen in 
mammalian preparations, i.e., a hyperpolarizing, inhibitory 
response. The slow, long-lasting nature of these depolarizing 
responses suggests that they may be mediated by metabo-
tropic receptors rather than the ionotropic receptors acting at 
the fast excitatory synapses of the MNN. It remains to be seen 
whether cloning and expression of the proteins of the MNN 
neurons will yield a taurine-specific receptor.

Summary and Final Thoughts: In this brief review, we have 
described several conditions, both normal and pathological, 
in which taurine has been shown to exert a significant effect. 
More inclusive reviews can be found in excellent accounts 
by Huxtable [157], Lombardini [158], Timbrell et al. [159], 
Schaffer et al. [134], and Yamori et al. [34]. In addition, the 
reader may wish to consult the many insightful studies on the 
effects of taurine on intercellular communication (cf. [160-
163]), the axonal transport of taurine in the retina and CNS 
[25,164-166], and a comprehensive review devoted solely to 
the actions of taurine in the retina [167].

Taurine plays an important role as a basic factor for 
maintaining cellular integrity in the heart, muscle, retina, 
and throughout the CNS. As we have attempted to show, 
this ubiquitous amino acid is a potent cytoprotective agent; 
moreover, it is considered to be a neurotransmitter candidate, 
is clearly a modulator of neuronal activity, and is a molecule 
that deserves significantly more attention than it has received 
thus far. It is likely that the multiple functions of taurine we 
have described are mediated at different loci on both extracel-
lular sites (e.g., to participate in neuronal activity, stimulate 
rod production) and intracellular targets (e.g., to fulfill its role 
in development and cytoprotection).

Although there is considerable evidence that, in specific 
circumstances, taurine can interact with GABAB receptors 
to activate a metabotropic pathway, neither the intracellular 
link nor a taurine-specific receptor has yet to be identified at 
the molecular level. However, the quest may end before too 
long. Although there is no shortage of nonhuman neuronal 

systems in which taurine is a prominent component, e.g., the 
squid giant axon [168], the mollusk Aplysia [169], and the 
migratory locust [170], results obtained from the jellyfish 
motor nerve net suggest that a taurine-specific receptor may 
be present in this unusual beast [156]. If it could be described 
at the molecular level, this would be a major achievement, 
and a significant step toward unraveling the pathway(s) by 
which taurine provides cytoprotection, osmoregulation, 
neuromodulation, and the myriad of important functions it 
serves in humans and animals.

In the preface to the second edition of their fine text on 
Molecular Cell Biology [171], James Darnell, Harvey Lodish, 
and David Baltimore state that the quest in all biologic disci-
plines is the same: “to discover proteins that could carry out 
specific biologically important tasks.” A rephrasing of that 
statement might well include all molecules that engage in 
such tasks, even the “nonessential” amino acid taurine, which 
participates in so many vital biological functions.
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