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PRYNT: a tool for prioritization 
of disease candidates 
from proteomics data using 
a combination of shortest‑path 
and random walk algorithms
Franck Boizard1,2,5, Bénédicte Buffin‑Meyer1,2,5, Julien Aligon3, Olivier Teste4, 
Joost P. Schanstra1,2,5 & Julie Klein1,2,5*

The urinary proteome is a promising pool of biomarkers of kidney disease. However, the protein 
changes observed in urine only partially reflect the deregulated mechanisms within kidney 
tissue. In order to improve on the mechanistic insight based on the urinary protein changes, we 
developed a new prioritization strategy called PRYNT (PRioritization bY protein NeTwork) that 
employs a combination of two closeness-based algorithms, shortest-path and random walk, and 
a contextualized protein–protein interaction (PPI) network, mainly based on clique consolidation 
of STRING network. To assess the performance of our approach, we evaluated both precision and 
specificity of PRYNT in prioritizing kidney disease candidates. Using four urinary proteome datasets, 
PRYNT prioritization performed better than other prioritization methods and tools available in the 
literature. Moreover, PRYNT performed to a similar, but complementary, extent compared to the 
upstream regulator analysis from the commercial Ingenuity Pathway Analysis software. In conclusion, 
PRYNT appears to be a valuable freely accessible tool to predict key proteins indirectly from urinary 
proteome data. In the future, PRYNT approach could be applied to other biofluids, molecular traits 
and diseases. The source code is freely available on GitHub at: https​://githu​b.com/Boiza​rd/PRYNT​ and 
has been integrated as an interactive web apps to improved accessibility (https​://githu​b.com/Boiza​rd/
PRYNT​/tree/maste​r/AppPR​YNT).

Kidney diseases can be defined as any chronic or acute disorder that affects renal structure and function1. In 
their most severe form, they are associated with a variety of complications, such as anemia, mineral and bone 
disorder or cardiovascular disease, leading to overall increased mortality2. Causes of renal failure are highly vari-
able and sometimes unknown3. Some kidney diseases are monogenic, resulting from modifications in a single 
gene. Others are more complex and can result from a multifactorial combination of genetic, environmental and 
additional modifiers such as age, diabetes, smoking or hypertension.The use of high-resolution analytical omics 
technologies have resulted in major advances in the elucidation of diverse molecular pathophysiological mecha-
nisms associated with kidney disease. While genomics is frequently used to unravel specific mutations in the 
genome that can increase the risk of developing certain diseases, disease activity is best captured by transcriptome 
or proteome analysis, as these traits are closer to the phenotype4. Moreover, whilst urine has been known for a 
very long time as a very informative and non-invasive source of potential candidates in the context of kidney 
disease5–9, the molecular changes observed in urine partially reflect the deregulated mechanisms within kidney 
tissue. Urinary proteins predominately originate (~ 70%) from kidney and urinary tract by mechanisms of secre-
tion and cellular shedding10–12. The remaining challenge associated with such analysis is that these techniques 
require time-consuming validation experiments to try precisely pinpointing the most probable disease candidate 
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from a list of hundreds of potential candidates. Most of these studies considered urinary proteins showing most 
prominent changes, either based on fold change or p-value, as new promising disease-related candidates. How-
ever, not all renal proteins can be found in urine and not all urinary proteins originate from the kidney. Hence, 
ranking disease proteins solely based on observed urinary changes might limit the complex view of the disease 
and insight in its pathophysiology.

To help decipher the picture of the deregulated molecular networks and prioritize disease candidates, com-
putational methods and tools have been proposed13. Some approaches prioritize candidates based on their 
similarity to the list of disease-modified genes14. These methods use databases (e.g. OMIM), ontologies (e.g. Gene 
Ontology) or text-mining from literature to assess similarity of sequence (e.g. POCUS15), functional annotation 
(e.g. PANDA16, Endeavour17, ToppGene18) or locus proximity (e.g. OPEN19, PhenoRank20). Other approaches 
use biological networks in order to prioritize candidates (e.g. MaxLink21, ToppNet18). One of the network-based 
software most commonly used by biologists in order to interpret high-throughput expression data is Ingenu-
ity Pathway Analysis (IPA)22. This suite is based on a PPI network containing millions of structured, manually 
curated experimental observations. In IPA, the “Upstream Regulator Analysis” (URA) algorithm prioritizes 
disease candidates using in-house causal network approach to elucidate upstream biological causes that can 
explain the observed molecular changes23,24. One of the main limitations hampering the use of IPA is that the 
software is proprietary and therefore its use cannot be broadly generalized to the biology community. Many 
other computational prioritization methods already exist13. Some are looking for candidates that directly interact 
with known disease genes, following the principle of “guilt-by-association”14,25. Other, such as shortest-path26 
or random walk27 algorithms, further consider the closeness between candidates and known disease genes in a 
network considering both direct and indirect relationships. Previous studies have shown that closeness-based 
approaches outperformed direct neighbour-based methods and that combining closeness-based approaches fur-
ther improved disease candidate prioritization14,28. However, most of these strategies have been used to identify 
disease candidates at the transcriptome level and not at the proteome level. Moreover, to date, none have been 
tested in the context of biological fluids.

In order to move from this status quo, we developed an approach, named PRYNT (PRioritization bY protein 
NeTwork) that could help expand and fill the gaps of the molecular view, and predict the significance of pro-
teins that were undetectable in the urine. PRYNT is based on the integration of Search Tool for the Retrieval of 
Interacting (STRING, version 10.5)29 PPI network and a combination of shortest-path and random walk, two 
closeness-based algorithms as it has been previously shown in the literature that this method outperformed 
other computational methods14,26–28. We used PRYNT in the context of two prototypic human kidney diseases: 
autosomal dominant polycystic kidney disease (ADPKD)5,9 and ureteropelvic junction obstruction (UPJ)6,7. 
ADPKD is a well-characterized monogenic kidney disease induced by a mutation of the PKD1 or PKD2 gene. 
UPJ is a congenital kidney disease resulting from a complex multifactorial combination of genetic and environ-
mental factors. In order to assess the performance of our approach, we first evaluated the precision of PRYNT 
in prioritizing ADPKD and UPJ disease candidates and compared it with other methods from recent literature. 
We also performed an in-depth comparison of the results obtained with PRYNT to two main reference prior-
itization methods currently used by biologists: prioritization based on experimental results and prioritization 
based on IPA’s URA algorithm.

Results
Contextualization of PRYNT PPI network.  In order to test PRYNT approach, four urinary proteome 
datasets were used: two associated with ADPKD (ADPKD1 and ADPKD2) and two associated with UPJ (UPJ1 
and UPJ2) (Table 1 and Supplementary Tables S1–S4). We constructed a PPI network based on STRING data-
base. Approximately 50–60% of the deregulated urinary proteins from ADPKD and UPJ proteomic datasets 
were present in the raw PPI network (Fig.  1). This rather low percentage could be explained either because 
part of the deregulated proteins were absent from STRING v10.5 database altogether, or because they did not 
match the STRING settings that were selected i.e. sharing a protein.actions interactions with other proteins in the 
network, directional interaction and interaction reaching the highest confidence level (Fig. 1). Moreover, 56% 
(3569 proteins) of the 6391 proteins present in the network were grouped in 265 cliques, which are sets of pro-
teins that all interact with each other and often share similar biological functions. In order to assess the impact 
of the missing biological input and of the presence of clique sub-graphs in the network, we modified the raw 
PPI network into three additional contextualized PPI networks (Fig. 2). The first contextualization consisted in 
generating a PPI network where the deregulated urinary proteins were added regardless of their confidence level 
(Fig. 2, +DP). The second contextualization consisted in generating a PPI network where cliques were taken into 
account (Fig. 2, +C). The last network combined both contextualization strategies (Fig. 2, +DP +C). We applied 
the prioritization strategy combining shortest path and random walk on the four different PPI networks on the 

Table 1.   Dataset description.

Reference Type of kidney disease Controls Cases Deregulated proteins

ADPKD1 Bakun et al.5 Monogenic 30 30 155

ADPKD2 Rauniyar et al.9 Monogenic 18 14 69

UPJ1 Lacroix et al.7 Complex 10 8 174

UPJ2 Chen et al.6 Complex 23 23 175
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Figure 1.   Number of deregulated urinary proteins from proteomic datasets present in the raw PPI network. 
Part of the deregulated proteins (DP) present in the proteomics datasets could not be included as they were 
absent in String v10.5 database (Homo sapiens). Moreover, a number of DP was excluded as they did not share 
any interaction with other proteins (absent from protein.actions PPI) or did not have a directional interaction 
with highest confidence (> = 0.9). PPI: protein–protein interaction network; DP: deregulated protein.

Figure 2.   Description of PRYNT algorithm. PRYNT PPI network was based on STRING 10.5 protein.actions 
restricted to Homo sapiens (9606.protein.actions), and only directional interaction with confidence >  = 0.9 were 
selected. The raw PPI network (Raw) was further contextualized by adding the deregulated proteins (+DP) 
regardless of their confidence level and by grouping the proteins within cliques (+C). PRYNT prioritization 
approach was based on the combination of shortest-path (SP) and random walk (RW) algorithms and was 
achieved by multiplying the rank of the protein with the shortest-path ranking strategy (ranksp), and the rank of 
the protein with the random walk strategy (rankrw). PPI: protein–protein interaction network; DP: deregulated 
proteins; C: clique.
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four proteomics datasets (Fig. 2). We compared the ranked lists to a list of 500 reference disease candidates of 
ADPKD for ADPKD1 and ADPKD2, and of UPJ for UPJ1 and UPJ2. The precision was plotted (Fig. 3a) and 
the areas under the precision curves (AUC) were compared (Fig. 3b). Compared to the raw PPI, the use of the 
contextualized PPI + DP and PPI + C networks slightly increased the AUC of the precision. However, in the four 
datasets, the combined PPI + DP + C showed much better performance in terms of prioritizing disease candi-
dates. Based on these results, we generated a contextualized PRYNT PPI network combining both the addition 
of the deregulated proteins and the management of the cliques (Fig. 2).

Precision of PRYNT compared to other approaches.  We first compared PRYNT performance to 
shortest-path (SP) and random walk (RW) prioritization methods (Fig. 4a and Supplementary Figure S1). Short-
est-path between a disease candidate and a differentially abundant urinary protein is defined by the distance 
between any protein in the network and the differentially abundant proteins, taking into account the direc-
tion of interactions. Random walk with restarts simulates a random walker starting on differentially abundant 
urinary proteins and moving to their immediate neighbors’ randomly at each step. Each protein in the graph 
is prioritized by the probability of the random walker reaching it. Overall, PRYNT approach, combining both 
algorithms, showed better performance compared to the two strategies taken separately. Next, we compared 
PRYNT to seven additional state-of-the-art prioritization algorithms and tools (Fig. 4b and Supplementary Fig-
ure S2): direct ranking (Direct), interconnectedness combined with random walk (ICN + RW), Phenolyzer30, 
Endeavour17, MaxLink21, ToppGene18 and ToppNet18. Direct ranking and interconnectedness combined with 
random walk were applied to String raw PPI network. Direct ranking was performed by applying out-degree 
centrality as described in the study of Oti et al.25. Disease candidates were prioritized based on the number of 
directly interacting differentially abundant urinary proteins. The interconnectedness-based approach combined 
with random walk was implemented following the study of Hsu et al.28. Phenolyzer, Endeavour and ToppGene 
are similarity-based prioritization approaches, extracting knowledge from diverse databases such as OMIM, 
Disease Ontology, or Gene Ontology. ToppNet and MaxLink are network-based prioritization approaches, using 
k-step markov and neighbor-based algorithms respectively. Overall, PRYNT showed better precision compared 
with these methods (Fig. 4b and Supplementary Figure S2). In particular, the number of candidates predicted 
by MaxLink was < 100 so we could not assess the AUC for the precision in the top 100 predicted candidates in 
ADPKD2, UPJ1 and UPJ2. PRYNT performance was then compared to two reference approaches commonly 
used by biologists (Fig. 4c and Supplementary Figure S3): URA from IPA (URA), and prioritization based on 
experimental results (Exp). Except for Exp, all tested approaches so far mine a network to find and rank new 
disease candidates that are linked to the deregulated proteins, without being in the initial set of deregulated pro-
teins. In Exp however, the deregulated proteins are the disease candidates and their prioritization is based on a 

Figure 3.   Performance of PRYNT depending on PPI network contextualization. (a) The precision was 
calculated based on the percentage of reference ADPKD or UPJ disease candidates that were prioritized in 
the top 100 candidates ranked by PRYNT in the four datasets using either the raw PPI network (Raw) or the 
PPI networks contextualized by the addition of deregulated urinary proteins regardless of their confidence 
level (+DP), by the management of clique sub-graphs (+C) or by the combination of both (+DP +C). (b) The 
corresponding area under the precision curve (AUC) was calculated in the four datasets. Graphs were designed 
using GraphPad Prism version 5.0 for Mac, GraphPad Software, San Diego, California USA, http://www.graph​
pad.com. DP: deregulated protein; C: clique.

http://www.graphpad.com
http://www.graphpad.com
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p-value ranking, the most significant proteins being the highest ranked candidates. In the four datasets, PRYNT 
showed higher performance to prioritize reference disease candidates compared to URA and Exp, with better 
precision and superior AUC (Fig. 4c and Supplementary Figure S3). We next analyzed the overlap of reference 
disease candidates ranked in the top 100 by PRYNT, URA and Exp in the four datasets (Fig. 5). We observed 
that only a minority of reference disease candidates prioritized by PRYNT and URA were commonly prioritized 
by both approaches (59–70% uniquely prioritized by PRYNT and 48–64% uniquely prioritized by URA). For 

Figure 4.   Performance of PRYNT compared to other approaches. PRYNT performance was compared to 
prioritization using shortest-path or random walk algorithms alone (a), to prioritization by other common, 
state of the art prioritization strategies (b), or to prioritization by reference approaches (c). The precision was 
calculated based on the percentage of reference ADPKD or UPJ disease candidates that were prioritized in the 
top 100 candidates ranked by the different strategies in the four datasets. The corresponding area under the 
precision curve (AUC) was then calculated. Graphs were designed using GraphPad Prism version 5.0 for Mac, 
GraphPad Software, San Diego, California USA, http://www.graph​pad.com. SP: shortest-path; RW: random 
walk; D: direct; ICN + RW: interconnectedness combined with random walk; Exp: experimental; URA: upstream 
regulator analysis.

Figure 5.   Overlap of reference disease candidates prioritized in the top 100 by PRYNT, URA or Exp. 
Prioritization by PRYNT, URA or from the experimental urinary proteomic candidates (Exp) was applied and 
reference ADPKD and UPJ disease candidates ranked in the top 100 were compared in the four datasets. Exp: 
experimental; URA: upstream regulator analysis.

http://www.graphpad.com
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Exp, not only the number of prioritized reference disease candidates was very low, but it also showed very poor 
overlap with URA and no overlap with PRYNT.

Specificity of PRYNT compared to reference approaches.  We next assessed how the different pri-
oritization strategies ranked candidates that were specific to the disease under study. First, we studied cross-
specificity by analyzing whether prioritization in ADPKD datasets was better for specific ADPKD reference 
disease candidates compared to non-specific UPJ reference disease candidates, and conversely for UPJ datasets 
(Fig.  6a). For ADPKD1 and ADPKD2, all prioritization strategies showed similar cross-specificity, with the 
AUC for specific ADPKD candidates (AUC​ADPKD) being superior to the AUC for non-specific UPJ candidates 
(AUC​UPJ). However, for UPJ1 and UPJ2, only PRYNT displayed adequate cross-specificity in both datasets. We 
next compared overall specificity of the approaches by comparing the AUC of the specific disease to the AUC 
of 80 non-specific diseases (list in Supplementary Table S5) (Fig. 6b). For APDKD datasets, overall specificity 
was similar for all strategies in ADPKD1 with the AUC of the specific disease (AUC​ADPKD) being in the top 15 
out of 80 non-specific diseases. In ADPKD2, PRYNT showed better performance compared to URA and Exp 
(rank of specific AUC​ADPKD of 14/81, 34/81 and 21/81 for PRYNT, URA and Exp respectively). For UPJ datasets, 
overall specificity was lower compared to ADPKD datasets and in both datasets, PRYNT prioritization showed 
best specificity, with a rank of specific AUC​UPJ of 21/81 and 27/81 for UPJ1 and UPJ2 respectively. In UPJ2, Exp 
showed the lowest specificity with the specific AUC​UPJ being ranked 65/81.

Pathway annotation.  We used KEGG pathway enrichment analysis31 to assess the biological relevance of 
the disease candidates prioritized by PRYNT (Fig. 7). For ADPKD, the 500 reference disease candidates were 
associated to 166 pathways. Approximately 85% of these pathways were also enriched with the top 100 ranked 
candidates prioritized by PRYNT (141/166 and 139/166 for ADPKD1 and ADPKD2 respectively) whereas 
enrichment was 67–72% for URA top 100 (112/166 and 119/166 for ADPKD1 and ADPKD2 respectively) and 
dropped to approximately 5% for Exp (9/166 and 10/166 for ADPKD1 and ADPKD2 respectively). Similarly for 
UPJ, PRYNT results showed higher number of enriched pathways and more overlapping pathways associated to 
the reference UPJ candidates compared to URA and Exp.

Links of proteins with pathology of interest.  Next we assessed the involvement of the top 10 protein 
candidates in the disease of interest by a systematic search of the scientific literature (Supplementary Tables S6 
and S7). For the top ranked ADPKD proteins, all but two were previously linked to ADPKD, confirming the 
potential of PRYNT in ranking disease candidates (Supplementary Table S6). The two proteins (F2 and HSPA8) 

Figure 6.   Specificity of PRYNT compared to reference approaches. (a) Cross-specificity of the prioritization 
strategies was assessed for the four datasets by calculating the difference between the AUC of the precision curve 
for specific disease candidates (AUC​ADPKD for ADPKD datasets and AUC​UPJ for UPJ datasets) and the AUC 
of non-specific disease candidates (AUC​UPJ for ADPKD datasets and AUC​ADPKD for UPJ datasets). (b) Overall 
specificity of the prioritization strategies was assessed for the four datasets by assessing the rank of the AUC of 
the precision curve for specific reference disease candidates (AUC​ADPKD for ADPKD datasets and AUC​UPJ for 
UPJ datasets) compared to 80 additional AUCs of reference candidates from non-specific diseases, including 40 
diseases associated to urogenital tract and 40 diseases from other origin. Graphs were designed using GraphPad 
Prism version 5.0 for Mac, GraphPad Software, San Diego, California USA, http://www.graph​pad.com. Exp: 
experimental, URA: upstream regulator analysis.

http://www.graphpad.com
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not previously linked to ADPKD thus constitute potential candidates for future experiments. All but three of the 
top 10 proteins were previously linked to UPJ (Supplementary Table S7).

Discussion
In this study we developed and assessed the performance of PRYNT, a new network-based approach using 
urinary proteomic profiles to prioritize disease candidates in the context of kidney disease. While many tools 
and methods are available to predict disease candidates, we developed PRYNT to tackle the specificity of our 
research question. Indeed, most of these methods, such as Phenolyzer, Endeavour, MaxLink, ToppGene and 
ToppNet, have been developed on genomic data, seeking for new disease genes and showed that they were less 
suitable than PRYNT to predict new disease candidates from proteomic data. Combining both shortest-path and 
random walk, showed better results than using them alone as previously shown by Hsu et al.28 but also better 
results than using direct ranking. This latter result proves that closeness-based algorithms are more efficient to 
mine the PPI network in the context of research on biological fluids, because they are able to select key proteins 
of kidney disease in the network even though the links between excreted proteins in the urine and modified gene 
expression at the tissue level (i.e. in the kidney) are not necessarily straightforward. Another specificity of PRYNT 
has been to work on improving the PPI network. To build PRYNT PPI network, we chose to work with STRING 
database, as it is a well-known, recognized comprehensive database of PPI based on experimental evidence as 
well as interactions predicted by comparative genomics and text mining. To limit the risk of false prediction, 
we decided to only select PPI with highest confidence. Two major drawbacks that we identified in this network 
and using such settings were that a lot of the input information was missing and that the network was massively 

Figure 7.   Pathway annotation. KEGG pathway enrichment analysis was applied to the 500 reference ADPKD 
and UPJ disease candidates, and compared to the pathways enriched from top 100 ranked candidates by PRYNT 
or URA or from the experimental urinary proteomic candidates (Exp) in the four datasets.
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structured into clique sub-graphs. Instead of using the raw PPI network, we hence decided to contextualize then 
network by adding the deregulated proteins from the input data, regardless of their confidence, and by grouping 
the cliques. Cliques are important structures in PPI networks32,33. Taking cliques into account by grouping the 
proteins allowed simplifying the network and helping find the most important disease candidates. As a result, our 
specific PRYNT contextualized network showed better performance compared to the raw STRING network. We 
also compared PRYNT to IPA’s URA and to ranking based on experimental results, two references approaches 
commonly used by biologists. We showed that PRYNT displayed higher precision, higher specificity, and was 
very informative in terms of pathways and predicted disease candidates.

Whilst PRYNT appears as a valuable method, PRYNT and URA still appear to be complementary as the refer-
ence disease candidates short-listed in the top 100 showed rather poor overlap. This confirms that although urine 
could be a very promising source of biomarkers of kidney disease, complementary methods are still required to 
allow a closer look into pathophysiology. The consideration of a "tissue-specific" PPI network is an interesting 
complementary approach for the identification of specific renal mechanisms. This approach has already been used 
for specialized kidney structures, such as glomeruli34 or kidney cells such as podocytes35. Such “whole kidney” 
network is not available yet but it would be a great alternative to current, more global, PRYNT PPI network. With 
the emergence of multi-omics approaches and the increased importance of additional molecular traits such as 
miRNA or metabolites in biological research36–38, another perspective for PRYNT would be to build an hetero-
geneous network including several molecular layers (miRNA, mRNA, metabolites, proteins, genes), study them 
simultaneously, and therefore obtain a more integrated picture of pathologies39–41. In the future, PRYNT could 
evolve towards such application, as the random walk algorithm has already been reported to be efficient in this 
type of application42–44. Another interesting point is that, although a plethora of computational prioritization 
methods are freely available, the approach most commonly used by biologists still remains the commercial IPA 
suite. One explanation could be that from a practical point of view, biologists need user-friendly interfaces with 
little to none required additional programming skills. In this context, we developed a beta version, R-based, 
web application of PRYNT that can be find in https​://githu​b.com/Boiza​rd/PRYNT​/tree/maste​r/AppPR​YNT. 
One perspective of this work will be to improve the user experience of PRYNT web application to increase its 
applicability to the biologists.

In conclusion, the use of the PRYNT could be of great benefit to identify new key proteins associated to renal 
diseases from urinary proteomic datasets obtained non-invasively. Such approach, that could be applied to any 
other form of biological fluid and generalized to any other disease, will help fill the gaps and generate the missing 
links necessary to better understand the deregulated molecular networks, identify new potential biomarkers or 
develop alternative therapeutic strategies.

Material and methods
Urinary proteomic datasets.  Study by Bakun et al.5 (ADPKD1) analyzed urine protein composition from 
30 ADPKD patients and 30 healthy volunteers identifying 155 differentially abundant proteins (Supplementary 
Table S1). Study by Rauniyar et al.9 (ADPKD2) compared 14 urine samples from ADPKD patients to 18 normal 
controls and identified 69 significantly deregulated proteins (Supplementary Table S2). Lacroix et al.7 (UPJ1) 
explored the urinary proteome of newborns with (n = 8) or without (n = 10) UPJ and discovered 174 differen-
tially abundant proteins (Supplementary Table S3). Chen et al.6 (UPJ2) analyzed the proteome of urine from 23 
infants with UPJ and 23 controls and identified 175 proteins with different urinary abundance between the two 
groups (Supplementary Table S4).

PRYNT algorithm.  PRYNT algorithm was developed using R45 . PRYNT description can be found in 
pseudo-code in Supplementary Data S1.

Protein–protein interaction network.  In the present study, we used STRING 10.5 protein.actions restricted to 
Homo sapiens (9606.protein.actions), which compiles physical interactions such as reaction, binding, catalysis, 
inhibition and activation (Fig. 2). Each interaction has a confidence score between 0 and 1 according to the 
number and the type of source that was used to describe the interaction. Only interactions with the highest 
confidence level (score greater than 0.9) were selected for PRYNT (Fig. 2). Moreover, directionality of the inter-
action could be applicable or not to its physical action. Only directional interactions were considered for PRYNT 
analysis as ranking strategies use directionality (Fig. 2). After removing duplicates and self-linked interactions, 
we obtained 353643 interactions between 6391 proteins. The raw PPI network was contextualized by adding the 
deregulated urinary proteins regardless of their confidence level and by removing cliques (Fig. 2).

Clique calculation.  Applied to a PPI network, a clique is defined as a group of proteins that all interact with 
each other. Interactions in those cliques in the PRYNT network were considering as undirected, as there is no 
published method using directionality in cliques. We took into account the maximal cliques of the network, 
using the R igraph package46. In the raw PPI network, 3569 proteins of the 6391 were included in 265 cliques, 
each clique containing on average 13.5 proteins. We grouped proteins that were part of cliques and selected for 
each clique the protein candidate with best ranking following prioritization. This led to a PPI network containing 
21,051 interactions between 3109 nodes (proteins or cliques).

Prioritization approach.  Prioritization was based on the combination of two closeness-based approaches, 
namely shortest-path26 and random walk27 algorithms. The shortest-path score (SP) of a protein x was calculated 
as the reciprocal of the sum of the length of the shortest-path between x and the deregulated proteins (y) in the 
network as specified in Eq. (1).

https://github.com/Boizard/PRYNT/tree/master/AppPRYNT
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The symbol d(x,y) is the minimum number of interaction from x to y. Disease candidates are ranked from 
higher to lower SP (ranksp) (Fig. 2).

The random walk score (RW) corresponds to the probability of a protein to be reached by the walker at the 
next step t + 1 and can be formally described as follow in Eq. (2).

A is the column-normalized adjacency matrix; r the restart probability (set to 0.7 as the default parameters); P0 
the initial probability of the random walk, i.e. the inverse of the number of deregulated protein for a deregulated 
protein and 0 for other proteins in the network; and Pt the probability after the t-th round of the step. Prioritiza-
tion based on random walk was calculated using the R package RandomWalkRestartMH43. Disease candidates 
are ranked from higher to lower RW (rankrw) (Fig. 2).

For each disease candidate, a combined score (CS) was calculated as defined by Eq. (3).

Ranksp is the rank of the protein in the shortest-path ranking strategy, and rankrw in the random walk strategy 
(Fig. 2).

Additional prioritization methods.  Additional prioritization algorithms.  Direct and interconnected-
ness combined with random walk (ICN + RW) algorithms have been applied on the raw SRING PPI network. 
The direct method prioritizes candidates based on whether they directly interact with deregulated urinary 
proteins25. For ICN + RW, the closeness between proteins in the network is quantified by considering not only 
direct interaction but also the number of connectors between genes28.

Independent prioritization tools.  Recent review from Zolotareva et al.13 described 14 up-to-date and available 
gene prioritization tools. From those, 7 tools were adapted to our problematic and 5 where fully operational: 
Phenolyzer30, Endeavour17, MaxLink21, ToppGene18, ToppNet18. To run each method, we used the list of deregu-
lated urinary proteins as input and selected default parameters. The detailed parameters are available in Sup-
plementary Data S2–S6.

Prioritization based on experimental results (Exp).  For prioritization based on experimental results, differen-
tially abundant proteins from the four proteomics datasets were ranked based on their p-value (from smallest 
to largest).

Prioritization based on URA algorithm.  Prioritization based on URA algorithm was performed using IPA 
software (content version release date 2017-12-07). This analysis examines how many known targets of each 
upstream regulator are present in the experimental dataset. Disease candidates (limited to proteins) were ranked 
based on the overlap p-value. The overlap p-value, calculated using Fisher’s Exact Test, measures whether there is 
a statistically significant overlap between the experimental dataset and the known targets that are under control 
of the upstream regulator.

List of reference disease candidates.  Disease candidates already referenced to be associated to ADPKD 
and UPJ were collected from Comparative Toxicogenomics Database (CTDbase) (http://ctdba​se.org)47 using 
the R package CTDquerier48. CTDbase contains curated and inferred disease candidates. Curated candidates are 
extracted from the published literature by CTD curators or are derived from the OMIM database. The majority 
of disease candidates are inferred thought the association with a ‘drug and chemicals’ element (according to the 
MeSH definition49). A disease candidate is associated to the disease if a chemical compound or drug has an effect 
on the disease and on the expression of the gene. The more chemicals or drugs are associated with the disease 
and the disease candidate, the stronger is the association. For ADPKD, 504 disease candidates were found to be 
associated to the term “Polycystic Kidney, Autosomal Dominant”. For UPJ, 17,786 disease candidates were asso-
ciated to the term “Ureteral Obstruction”. In order to obtain comparable results with ADPKD, we selected the 
first 500 reference disease candidates according to their inference score. Moreover, to assess overall specificity of 
the prioritization strategies, we also collected reference disease candidates from 80 other diseases (40 associated 
to the term “Urogenital disease” and 40 associated to other type of diseases) (Supplementary Table S5). For each 
of these diseases, we selected the first 500 reference disease candidates according to their inference score.

Precision measurement.  In order to evaluate the performance of PRYNT and the reference approaches, 
we compared the top 100 ranked candidates to the list of reference disease candidates obtained from CTDbase 
and calculated the precision of each method. The precision of the prioritization is the percentage of reference 
disease candidates in the ranking. The precision curve represents the precision depending on the size of the 
ranking taken into account. The area under the precision curve (AUC) was estimated using the trapezoidal rule.

Specificity assessment.  Cross‑specificity.  Cross-specificity was assessed by calculating the difference be-
tween precision AUC for reference specific disease candidates and precision AUC for reference non-specific 

(1)SP =
1

∑

yd
(

x, y
)

(2)RW = (1− r)APt + rP0

(3)CS = ranksp.rankrw

http://ctdbase.org
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disease candidates. A positive difference was expected to be associated with specific approach while a negative 
difference was expected to be in favor of a lack of specificity. For ADPKD datasets, specific precision AUC was 
calculated based on prioritization of reference ADPKD candidates, and non-specific AUC was calculated based 
on prioritization of reference UPJ candidates. Conversely, specific precision AUC for UPJ datasets was calculated 
based on prioritization of reference UPJ candidates, and non-specific AUC was calculated based on prioritiza-
tion of reference ADPKD candidates.

Overall specificity.  Overall specificity was assessed by ranking precision AUC for reference specific disease 
candidates and precision AUC of reference candidates from the 80 non-specific diseases. Specific prioritization 
method was expected to be associated with specific AUC being in the top ranked AUCs.

Pathway enrichment analysis.  KEGG pathway enrichment analysis31 was performed using the R pack-
age limma50. A pathway was considered associated to the set of candidates if its p-value was under 0.05.

Systematic literature research.  A systematic scientific literature search was performed to determine 
the link between the top 10 predicted proteins and the diseases of interests using the Google search engine by 
association of the different aliases of the top 10 proteins listed in Genecards with terms related to the disease. The 
terms used for ADPKD were: ’ADPKD’, ’PKD1’, ’PKD2’ or ’polycystic kidney disease’. The terms chosen for the 
UPJ were: ’UPJ’, ’ureteropelvic junction obstruction’, ’UUO model’, and ‘ureteral obstruction’. The publications 
selected by this strategy were then analyzed manually to confirm the relevance of these studies linking a protein 
candidate to the disease of interest.

Access to PRYNT.  We developed an R interactive web application to improved accessibility of our method. 
Guide to getting started is available at: https​://githu​b.com/Boiza​rd/PRYNT​/tree/maste​r/AppPR​YNT.

Data availability
All data analyzed during this study are included in Bakun et al.5 (ADPKD1) (Supplementary Table S1); Rauni-
yar et al.9 (ADPKD2) (Supplementary Table S2); Lacroix et al.7 (UPJ1) (Supplementary Table S3); Chen et al.6 
(UPJ2) (Supplementary Table S4). Data are also available on GitHub at: https​://githu​b.com/Boiza​rd/PRYNT​/
tree/maste​r/datas​.

Code availability
PRYNT’s source code is freely available on GitHub at: https​://githu​b.com/Boiza​rd/PRYNT​.
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