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Abstract: Recent work has shown that people use temporal information including order, delay, and
variability to infer causality between events. In this study, we build on this work by investigating the
role of time in dynamic systems, where causes take continuous values and also continually influence
their effects. Recent studies of learning in these systems explored short interactions in a setting with
rapidly evolving dynamics and modeled people as relying on simpler, resource-limited strategies
to grapple with the stream of information. A natural question that arises from such an account is
whether interacting with systems that unfold more slowly might reduce the systematic errors that
result from these strategies. Paradoxically, we find that slowing the task indeed reduced the frequency
of one type of error, albeit at the cost of increasing the overall error rate. To explain these results we
posit that human learners analyze continuous dynamics into discrete events and use the observed
relationships between events to draw conclusions about causal structure. We formalize this intuition
in terms of a novel Causal Event Abstraction model and show that this model indeed captures the
observed pattern of errors. We comment on the implications these results have for causal cognition.

Keywords: causal inference; causal graphs; dynamic systems; causal learning; time; continuous;
event cognition; interventions

1. Introduction

Learning about causal structure is central to higher level cognition because it allows
people to predict the future, select beneficial actions, and make sense of the past. The study
of how people learn causal structure has historically focused on simple scenarios involving
the presence or absence of binary variables (e.g., did a patient take a drug, and did they
feel better?). This has taught us much about how people use causal structure for a host
of decisions (e.g., [2–5]). However, this focus on simple stimuli obscures other important
questions, such as how we incorporate continuous covariation and temporal information
into our causal judgments.

Time is central to our notions of causality [6], making it unsurprising that temporal
contiguity is one of the strongest psychological cues to causality [7]. Sophisticated expecta-
tions about delays between events shape causal judgments [8,9], interventions [10], and
goal directed actions [11]. People also judge that highly variable delays are less causal [12]
and use variability as a cue for structure in the absence of order or covariational cues [10].

Prior work on the role of time in causality has focused on delay distributions, i.e., the
time that it takes for one event to influence another, where events are largely treated as
punctate rather than extended in time. In this project we instead study a fully continuous
setting in which continuous valued causes continually affect rates of change of their effects,
introducing a different set of representational challenges. Rather than reasoning directly
about rates of occurrence of events or delay distributions between events, people must
reason from unfolding timeseries data.

How might varying the speed at which a continuous system evolves affect what people
learn about it? Extrapolating from the literature on events cited above, one might expect

Entropy 2022, 24, 863. https://doi.org/10.3390/e24070863 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24070863
https://doi.org/10.3390/e24070863
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-4141-8476
https://doi.org/10.3390/e24070863
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24070863?type=check_update&version=1


Entropy 2022, 24, 863 2 of 17

that a more slowly evolving system would make learners less likely to infer the presence
of causal linkages between variables. Yet a system that unfolds more slowly may have
advantages as well. In the setting originally explored by [1], people were well described
with a Local Computations (LC) model, which characterized them as focusing on establishing
the relationship between pairs of variables independently, that is, rather than controlling
for other variables, as one would if one considered the full space of possible structural
models. The key support for the LC model came from a particular characteristic error.
Participants frequently inferred direct connections between variables that were indirectly
related (e.g., in the network X → Y → Z concluding incorrectly that additionally X → Z).
This error was first observed in studies with binary variables observed at discrete time
points [13,14]. One potential explanation of these errors in [1] is that participants failed to
notice the relative time delays among the variables. In network X → Y → Z, the mediated
influence of X on Z will be delayed in time compared to the direct influences of X on Y
and of Y on Z. A learner who fails to notice these temporal differences will incorrectly
conclude that X → Z. This hypothesis predicts that increasing the saliency of these time
delay differences by slowing the system will reduce instances of these errors.

We also aim to understand how people learn causal structure from a continuous
flow of information by comparing different formal accounts of how people represent
continuous information and use it to infer causal relationships. Firstly, we follow [1]
in describing people as computing likelihoods on the basis of the continuous dynamics
directly—either considering all hypotheses in parallel (normative model), or focusing
separately on individual edges (Local Computations variant). Secondly, we introduce a
new account of how people might handle continuous information in time—the Causal Event
Abstraction (CEA) model—that characterizes people as segmenting the continuous stream
into discrete events, and using those to infer causal structure.

In summary, we ask two questions. Firstly, does slowing the dynamics of the system
reduce the systematic errors that have been previously observed? We do find the expected
reduction in those errors but at the cost of accuracy on other types of causal links. Secondly,
how do people represent continuous information in dynamic systems? We find that
a model describing people as segmenting continuous information into discrete events
captures people’s behavior across conditions.

1.1. Ornstein–Uhlenbeck Networks

The stimuli in our task were generated using a new approach for simulating contin-
uous causal systems first proposed in [15]. See [1] for a full explication of the generative
process, but briefly Ornstein–Uhlenbeck (OU) networks represent causality with autore-
gressive processes that move towards a basin point as a function of time [16]. Importantly,
however, when one variable is causally influenced by another (as defined by the causal
structure of the OU network), this is modelled by making the effect’s basin point nonsta-
tionary, following some function of the state of its cause(s). Specifically, we stipulate that
the basin point is the sum of the causal influences exerted by each of the effect’s causal
parents. Formally, the change in a variable vi following time t, ∆vt

i , is given by

P(∆vt
i |vt, ω, σ, θ•i) = ω

[[
∑

j
θji · vt

j
]
− vt

i

]
+ N(0, σ) (1)

where vt
i is the value of variable i at time t, θji is the causal influence of variable j on variable

i, ∑j θjivt
j (the sum of vi’s causal parents, each multiplied by its corresponding θji) is the

basin to which vi is attracted, and σ is the endogenous noise of each variable. ω (also
known as the “spring rigidity” of the system) is the rate at which vi reverts to its basin.
For example, ω = 0.10 means that the variable’s expected value will move 10% of the way
toward the basin.

We now consider a number of alternative hypotheses regarding how OU networks
are learned.
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1.2. An Optimal Learner

The normative account of learning of a causal graph in an OU networks involves
inverting the above generative model. (Note that although we specify normative learning in
light of observed data and the interventions on the causal system made by a learner, we do
not specify what interventions a learner should perform to maximize learning). Assuming
an initially-uniform prior, the inferred causal structure is the one most likely to produce the
changes in all variables at all time points, taking into account the learner’s interventions.
Consider a hypothesis space G in which a learner’s task to estimate the likelihood of discrete
causal hypotheses, ones where the θ associated with every potential causal relationship
has been trichotomized into one of three states: positive, inverse (negative), or zero. For a
system with three variables, G would contain 729 distinct causal hypotheses. (In this work,
we exclude the possibility of self-cycles in which a variable is causally influenced by itself.
That is, θii = 0 for all i).

The likelihood of observing the change in variable vi at t given graph g is therefore,

P(∆vt
i |g, ω, σ, ιti) =

∫
θ•i

P(∆vt
i |vt, ω, σ, θ•i, ιti)P(θ•i|g)P(g)dθ•i (2)

where
∫

θ•i
is a multiple integral over each of vi’s incoming causal strengths, θ•i. P(θ•i|g)

represents the priors over θ•i corresponding to hypothesis g. For example, for a graph
g that includes a positive X → Y causal relationship, P(θXY|g) = 0 for all θXY ≤ 0 but
otherwise represents the learner’s priors over the strength of a positive causal relationship
when θXY > 0.

ιti is an indicator variable that is true if vi is intervened on at t and false otherwise. We
accommodate interventions by the standard notion of graph surgery [17]. Thus, if vi is
manipulated at time t, the likelihood of the observed ∆vt

i is 1 (i.e., is independent of vi’s
current value or the value of its causes). Otherwise, it is given by Equation (1). That is,

P(∆vt
i |vt, ω, σ, θ•i, ιti) =

{
1 ιti True
N(ω(∑j θjivt

j − vt
i), σ) ιti False

(3)

The likelihood of all observed variables at all time points, taking into account potential
uncertainty regarding ω and σ, is,

P(v|g, ι) =
N

∏
i=1

T−1

∏
t=1

∫
ω

∫
σ

P(∆vt
i |vt, g, ω, σ, ιti)P(ω)P(σ)dωdσ (4)

P(ω) and P(σ) represent the learner’s priors over ω and σ. See [1] for additional
details and explanation.

Simulations of an Optimal Learner

We now present simulations of an optimal learner to identify some key factors that
determine its success at learning a causal network. Several assumptions were made to
make these simulations relevant to the experiment that appears at the end of this paper.
In that experiment, the variables of the OU system are presented as sliders that take on a
value between −100 and 100 (see Figure 1 for an example). Human learners are asked to
identify the causal structure that relates these variables.

First, because learners will be allowed to manipulate the variables of the OU network,
our theoretical analysis will assume the presence of manipulations qualitatively similar
to those observed in [1]. In particular, we assume that each variable is manipulated by
first setting it to one extreme value (100) and then the other (–100) during each learning
trial. Figure 2 shows examples of the variable manipulations that were presented to the
optimal learner.
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Figure 1. An OU system with three variables displayed as “sliders” on a computer screen. The values
of the sliders take on values from −100 to 100 and are updated continuously as a function of the
input they receive from their causal parents and system noise σ.
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Figure 2. Examples of manipulating an OU network with three variables that form a causal chain
X → Y → Z. In each panel X is first manipulated, followed by Y and then Z. Each manipulation
consists holding the variable at 100 and then −100. Panels (A,B) present manipulations that last
32 and 64 time units, respectively. Interventions were separated by 32 time units, allowing the
variables to return to a baseline value near 0. The resulting changes in in X, Y, and Z reflect the
X → Y → Z causal relationships. θXY = θYZ = 1, ω = 0.05, and σ = 2.
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Second, the upcoming experiment will present subjects with four instructional videos.
These will present examples of OU systems with values of ω and σ, and possible values
of θ (−1, 0, or 1), that are the same as those of OU systems they are subsequently asked
to learn. Thus, for simplicity the simulations were derived assuming that learners extract
from the videos those values of ω and σ and the possible values of the θs.

Third, without modification the normative model is powerful enough to almost
perfectly identify the correct hypothesis given the amount of time subjects are allowed to
examine how the OU network evolves over time. We think that such extreme performance is
psychologically unrealistic because human learners presumably experience simple resource
limitations (e.g., lapses of attention). Thus, in presenting the simulation results we will pass
the normative model’s posterior probabilities through a softmax function.

P(g|v, ι) =
P(v|g, ι)−τ

∑k P(v|g, ι)−τ
(5)

Values of τ < 1 yield a posterior distribution over G that is less “sharp”, that is, one
that favors the true hypothesis less decisively than it would otherwise. In the simulations
below τ = 40.

Note that it is straightforward to go from a posterior distribution over G to the posterior
probability of a positive, negative, or zero causal relationship from one variable to another
via Bayesian model averaging. Define Gl as the subset of graphs that includes a particular
causal link l (e.g., a positive X → Y causal relationship). Then, the posterior probability of
l is simply,

P(l|v, ι) = ∑
g∈Gl

P(g|v, ι) (6)

Our simulations focus on the chain network X → Y → Z because it is an example of
a causal system that is susceptible to the local computations error described earlier (i.e.,
incorrectly inferring that X and Z are directly rather than indirectly causally related). The
normative model’s ability to learn X → Y → Z is examined as a function two properties,
properties that turn out to discriminate an optimal learner from the two alternative models
described later. The first is the OU network’s spring rigidity ω. The second is a property of
the variable manipulations that we refer to as intervention duration. Intervention duration
is the amount of time that a variable is manipulated to both extreme values (100 or –100).
Whereas in Figure 2A the manipulation of each variable lasts 32 time steps, in Figure 2B
they last 64 time steps.

Figure 3 presents learning accuracy on the X → Y → Z causal network as a function
of ω and intervention duration. Direct links (left panel of Figure 3) refers to the average
accuracy on the causal links that make up the causal chain, namely, X → Y and Y → Z.
Accuracy on these links consists of correctly identifying the presence of a link between
these pairs of variables. The indirect link (middle panel) refers to a potential X → Z link.
Because there is no such link in the X → Y → Z causal chain, accuracy consists of correctly
identifying the absence of such a causal relationship. Other links (right panel) refers to other
potential causal relations between the variables (i.e., Y → X, Z → Y, Z → X), and again
accuracy consists of correctly identifying the absence of those relations.

Figure 3 confirms that an important factor determining the learnability of an OU
network’s causal relations is its rigidity ω: Causal links are more easily identified when an
effect variable exhibits a larger change in value (due to a larger ω) in response to a change
in value of its cause. This is so because a large change is less likely to be due to system
noise. Of course, this result generalizes findings reviewed above that temporal contiguity
between events promotes the identification of causal relations to continuous variables that
react more quickly to causal interventions.

Figure 3 also reveals that longer interventions also aid learning. This is so for a reason
that is analogous to the effect of rigidity: A longer intervention allows more time for a
change to become apparent against a background of system noise.
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Note that another important factor that influences learning in OU systems (one not
shown in Figure 3) is the range of the intervention, that is, the absolute magnitude of the
change that the manipulated variable undergoes. Whereas in Figure 3 the variables are
manipulated to their extreme values of 100 and−100, less extreme manipulations will result
in degraded learning. In our Supplementary Materials (https://osf.io/rfx2q) we present
simulations that vary intervention range while holding intervention duration constant that
show results analogous to those in Figures 3–5. We will also evaluate the effect of both
intervention duration and range when presenting the results of the upcoming experiment.

Direct Links Indirect Link Other Links
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Figure 3. Accuracy for an optimal learner learning the causal graph X → Y → Z as a function of ω

and intervention duration. The first panel presents accuracy at correctly identifying the presence
of the X → Y and Y → Z causal relationships. The second panel presents accuracy at correctly
identifying the absence of an X → Z causal relationship. The third panel presents accuracy at
correctly identifying the absence of the remaining potential causal relationships (Y → X, Z → Y,
Z → X). θXY = θYZ = 1, σ = 5 and τ = 40. Results are averaged over 1000 simulations of each
parameter combination.

Direct Links Indirect Link Other Links

16 32 48 64 80 16 32 48 64 80 16 32 48 64 80

0.00

0.25

0.50

0.75

1.00

Intervention Duration

A
cc

ur
ac

y

omega

0.025
0.05
0.075
0.1
0.125

Figure 4. Accuracy of the Local Computations (LC) model under the same parameterization as
Figure 3. Results are averaged over 1000 simulations of each parameter combination.
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Figure 5. Accuracy of the Causal Event Abstraction (CEA) model under the same parameterization
as Figures 3 and 4. CEA’s threshold parameter was 50 and its guessing parameter was 0.10. Results
are averaged over 1000 simulations of each parameter combination.

https://osf.io/rfx2q
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1.3. The Local Computations Model

We compare an optimal learner to the Local Computations (LC) model. As mentioned,
LC has been advocated as a general-purpose account of causal learning behavior [13,18].
Applied to an OU network, the LC model entails deciding, for each potential causal
relationship considered in isolation, whether the observed values of those two variables
implies a positive, inverted (negative), or zero causal relation.

LC can be formalized by rewriting Equation (3) in the case that ιti is false with,

P(∆vt
i |vt, ω, σ, θ•i) =

N

∑
j,j 6=i

N(ω(θjivt
j − vt

i), σ) (7)

Whereas Equation (3) computes the probability of observing ∆vt
i by considering the

simultaneous influences of all of vi’s causal parents, Equation (7) does so by considering
each parent in isolation, failing to control for the fact that ∆vt

i might partly be due to one of
the other causal parents. For example, given an OU network with three variables X, Y, and
Z, the likelihood of a change in, say, Z, ∆vt

Z, is computed by computing the likelihood of
the ∆vt

Z given X ignoring Y, the likelihood of the ∆vt
Z given Y ignoring X, and summing

the two. LC-based models have been proposed as accounts of how people build causal
models in a resource-efficient way [13,19].

Simulations of an LC Learner

Figure 4 shows the performance of the LC model on the causal graph X → Y → Z as a
function of the same parameters as in Figure 3. Like the normative model, LC’s performance
generally improves as the rigidity ω and intervention duration increase. However, the
middle panel reveals that these same factors result in LC becomes increasingly vulnerable
to committing local computation errors (i.e., incorrectly inferring X → Z). Indeed, a rigid
OU system with ω = 0.125 and interventions of length 80 will almost certainly be perceived
as including a X → Z causal relationship in addition to X → Y and Y → Z. This is so
because a long intervention on X combined with a large ω results in a large and rapid
change to Z, which is easily mistaken as evidence for X → Z.

1.4. The Causal Event Abstraction Model

Whereas the normative learning model and the LC model both compute likelihoods
associated with the observed data, the Causal Event Abstraction (CEA) model posits that
people use a simple heuristic to identify causal relations. In particular, it assumes that, while
one variable of an OU system is being manipulated, people track the changes that occur
to the system’s other variables. Should a change to a variable during that intervention
be sufficiently large, it is recorded as a change ‘event’ providing evidence for a causal
relationship from the manipulated variable to the changed one.

CEA’s main parameter is the threshold value that the absolute value of the purported
effect variable must exceed during an intervention to be classified as undergoing a change.
In the simulations below, the threshold is 50 and so a change event is recorded if the variable
goes above 50 or below −50. For example, Figure 6 shows variable Z changing in response
to a manipulation on X. Because Z exceeds the threshold (dashed line in Figure 6) a change
event would be recorded as evidence for a causal relation between X and Z (To only register
events when a threshold is crossed, CEA excludes all cases where a potential end variable is
above threshold before the intervention begins). For all timepoints during the intervention
that the variable exceeds the threshold, CEA compares the signs of it and the manipulated
variable and records evidence for a regular (positive) causal link if on average the signs
match and an inverse (negative) one otherwise. For example, after Z exceeds the threshold
in Figure 6, the sign of both it and X are positive so the change event would be recorded
as evidence for a positive X → Z relationship. For variables that did not change during
the intervention, no evidence of a causal link between it and the manipulated variable
is recorded.
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Figure 6. Illustration of the CEA model. During the learner’s manipulation of X, which takes place
during seconds 1–3, Z crosses threshold (here shown as 50).

The probability of a causal relationship (say, a positive X → Z relationship) is then
computed by CEA by dividing the number of positive changes to Z induced by the ma-
nipulation of X divided by the number of times that X was manipulated. This calculation
is also moderated by a guessing parameter (0.10 in the simulations) that corresponded to
the probability of responding counter to the predictions of the events model. Note that the
CEA model is insensitive to temporal delays in that it only depends on whether a variable
exceeds the threshold, not how quickly. It only infers a causal relationship from a variable
if that variable has been manipulated at least once.

Simulations of a CEA Learner

Figure 5 show the performance of the CEA model on the causal graph X → Y → Z as
a function of both spring rigidity (ω) and intervention duration. As in the previous models,
CEA’s success at identifying the X → Y and Y → Z causal relations (left side of Figure 5)
generally increases as ω increases. Unlike the previous models however, accuracy on the
relations also increases sharply as the duration of the interventions increase. This is so
because short interventions will not allow sufficient time for the effect variables to cross
the threshold.

In addition, the middle panel of Figure 5 reveals that CEA is also vulnerable to
committing local computation errors (incorrectly inferring X → Z), just as LC is. This panel
reveals that both increasing ω and intervention duration result greater local computation
errors. This is so because both of these factors increase the probability that Z will cross the
threshold in response to a manipulation of X.

1.5. Summary of Learning Models

The following experiment tests these model predictions by explicitly manipulating the
rigidity parameter ω, varying it between the values of 0.05, representing a more flexible
system that responds more slowly to changes in inputs, and 0.10, representing a more rigid
system that responds more quickly. We also analyze how learning success varies with the
duration and range of the interventions that learners choose to make.

Figure 7 summarizes the predictions shown in Figures 3–5 for ω values of 0.05 and 0.10
and an intervention duration of 64. Figure 7 reveals that the LC and CEA models capture
what we have referred to as the paradox of time in learning causal systems. Generally, these
models predict that the correct identification of both the presence and absence of causal
relationships is promoted when a learner’s interventions result in a system undergoing
more rapid changes due to a larger ω. However, more rapid changes also makes it more
likely that these models will incorrectly conclude that two variables that are indirectly
causally related (X and Z in X → Y → Z) have a direct causal relation between them.
We ask whether human learners also exhibit this pattern. We also predict that longer and
more extreme interventions will have an effect that is analogous to rigidity, namely, better
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performance overall but more local computation errors. Finally, we fit all three models to
the learning results to determine which model provides the best quantitative account of
the data.

Norm LC CEA

Direct Indirect Other Direct Indirect Other Direct Indirect Other

0.00

0.25

0.50

0.75

1.00

Link Type

A
cc

ur
ac

y

Duration

32
64

Figure 7. Predictions of the three models for three causal link types for intervention duration of 64.

2. Materials and Methods
2.1. Participants

107 participants were recruited from Amazon Mechanical Turk using psiTurk [20].
They were paid a base payment of $3 plus performance related bonuses (M = $0.97,
SD = $0.46) and the task took 32.6 minutes (SD = 18.3). Participants were randomly as-
signed to either the rigid or the flexible condition. Those who made a causal judgment
before intervening on any slider on over 90% of trials were excluded, leaving 87 participants
(29 female, 58 male; age M = 37.6, SD = 11.8). The results presented below are based on
42 and 45 participants in the flexible and rigid conditions, respectively.

2.2. Materials

Participants interacted with a number of causal devices represented by three vertical
sliders that moved on their own according to the hidden causal structure and OU process,
but could also be intervened on, by clicking and dragging to set their levels, overriding
their normal causes (see Figure 8A) (See zach-davis.github.io for a demo). The sliders
were constrained to be between −100 and 100, and the buttons on the slider presented a
rounded integer value in addition to moving up and down. A timer at the top of the page
counted down from 45 s at 1 s increments, and at the bottom of the page were six additional
sliders (one for each potential causal relation). Responses could be one of three options:
‘Inverted’, ‘None’, or ‘Regular’, corresponding to θ < 0, no relationship (θ = 0), and θ > 0,
respectively. Participants were pretrained on these terms in the instructions.

2.3. Stimuli and Design

Participants were tested on 25 causal graphs (see Figure 8B) that were roughly bal-
anced across a number of factors, such as the number of inverted and regular links and
the number of links between each variable. The graphs were presented in random order
for a total of 25 trials. The OU parameters used during training and the test were σ = 5
and θ = [1, 0,−1] for regular, none, or inverse connections, respectively. The sliders were
updated with the OU system’s next set of variable values every 100 ms.

zach-davis.github.io
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Figure 8. Stimuli. (A) Task environment. Sliders turn blue when intervened on. (B) All tested causal
graphs, presented in random order. Black arrowheads denote regular connections, white arrowheads
denote inverse connections.

Participants were randomly assigned to one of two conditions in which the rigidity ω
parameter was either 0.05 (“flexible”) or 0.10 (“rigid” condition). Recall that ω sets the rate
at which the process asymptotes: When ω = 0.05 (0.10) a variables move 5% (10%) of the
way toward its current basin (see Figure 9).
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Figure 9. An OU variable’s rate of change toward a basin of 100 for two values of ω. Stimuli were
generated with a small amount of noise (σ = 2).

2.4. Procedure

Participants first completed an interactive instruction section that used a sequence of
videos to explain the nature and goals of the task, how to intervene, as well as the trial
duration. They were instructed that, for a randomly selected trial, they would receive a
bonus of $0.25 for each correct causal link judgment (out of ‘no link’, ‘regular’ and ‘inverse’
for each of the 6 directed links). Importantly, this bonus scheme was demonstrated with a
hypothetical participant who observed a chain network and correctly identified the two
existing causal links but incorrectly added an additional direct link between the indirect
effects. Participants were told that this participant received a reward of $1.25 for the correct
responses but missed out on an additional $0.25 for marking the direct connection between
indirect effects. Participants could not proceed to the task until they correctly answered
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five comprehension check questions probing if they knew the duration of each trial, the
difference between a regular and inverted connection, that there can be more than one
connection per network, and that they would have to provide a response for all six possible
connections on each trial.

In the main task, participants completed 25 trials lasting 45 s each. A trial was initiated
by pressing the “Start” button at the top of the page, whereupon the sliders began updating
according to the OU process every 100 ms. Participants were free to click, drag, or hold any
slider to any value for any amount of time, overriding its normal causal input, if any. After
releasing a slider, it continued to move according to the OU process.

Participants could make (and revise) their causal judgments at any point during the
trial, but could not proceed to the next trial until they had entered a judgment for all
six potential causal relations. No feedback was provided. After completing the 25 trials,
participants were informed of their bonus and completed a brief post-test questionnaire.

3. Results

Across all conditions, participants were above chance (0.33) in identifying causal links
(M = 0.763, SD = 0.203), t(86) = 19.80, p < 0.0001. They were slightly more likely to
correctly identify regular (0.869) than inverse (0.837) causal links, t(86) = 3.14, p = 0.002.
Participants were also more likely to correctly classify causal links as the experiment pro-
gressed, as confirmed by a regression with subject-level intercept and slope for trial number
(mean β = 0.004), t(86) = 5.24, p < 0.001. Accuracy was 0.789, 0.788, 0.753, and 0.642 for
OU networks with 1, 2, 3, and 4 causal links, respectively, F(3, 258) = 23.3, p < 0.0001,
indicating that learning difficulty increased with the complexity of the network.

3.1. Effect of Rigidity on Accuracy

Consistent with the theoretical analyses presented earlier, overall accuracy increased
as the rigidity of the system increased, from 0.731 in the flexible (ω = 0.05) to 0.800 in the
rigid (ω = 0.10) condition, an effect that was marginally significant t(86) = 1.50, p = 0.137.
However, the key theoretical question is how accuracy varied with type of causal link
across rigidity conditions, as shown in Figure 10. In the rigid condition, accuracy was
generally good, except for the very poor (indeed, below chance) performance on the indirect
links. This result reflects learners’ tendency to mistakenly infer a direct causal relationship
between two variables that are only indirectly related (e.g., X and Z in X → Y → Z) and
replicates past findings [1]. The important result is that this pattern of errors interacted
with the manipulation of ω: When the system was more flexible, accuracy decreased on the
direct and other links but, paradoxically, improved on the indirect links.

These findings were supported by statistical analysis. A two-way mixed ANOVA with
repeated measures on the link type factor revealed a main effect of link type F(2, 170) = 204.1,
p < 0.0001, no main effect of rigidity F < 1, but an interaction, F(2, 170) = 12.7, p < 0.0001.
Accuracy on indirect links decreased as system rigidity increased, t(85) = 3.17, p = 0.002.
In contrast, accuracy on other links increased, t(85) = 2.20, p = 0.030. Accuracy on the
direct links also increased, although not significantly so, t < 1. Note that the total number
of causal links inferred per causal network in the flexible (3.51) and rigid (3.19) conditions
were not significantly different, t(85) = 1.50, p = 0.137.
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Figure 10. Accuracy identifying causal links by rigidity condition (ω = 0.05 or 0.10) and type of causal
link. Causal links are categorized in the same manner as Figures 3–6, namely, as direct, indirect, and
other. For example, in a X → Y → Z network the direct links are X → Y and Y → Z, the indirect link
is X → Z, and the other links are Y → X, Z → Y, Z → X. Accuracy on direct links means correctly
identifying the presence of a causal link (and its sign) and accuracy on the remaining links means
correctly identifying their absence. Error bars are standard errors of the mean.

3.2. Effect of Interventions on Accuracy

As mentioned, successful learning relies on effective interventions, that is, ones that
are extended in time and involve large swings of each variable’s value. The average
intervention duration did not differ between the flexible (3.86 s) and rigid (3.79 s) con-
ditions, t < 1. To assess how the duration of participants’ intervention affected their
learning, we repeated the 2 × 3 analysis corresponding to Figure 10 with intervention
duration added as a per-participant covariate. This analysis yielded an effect of inter-
vention duration, F(1, 83) = 8.08, p = 0.006, indicating that longer interventions were
associated with greater accuracy, but also an interaction between duration and causal link
type, F(2, 166) = 20.18, p < 0.0001. This interaction is depicted in Figure 11A in which
interventions have been dichotimized via a median split into those that are short and long.
Although overall accuracy improved as the duration of interventions increased, accuracy on
the indirect links was lower when interventions were longer. The explanation for this result
is straightforward. For example, in the network X → Y → Z, longer interventions allow
time for the value of variable Z to change in response to an intervention on X, allowing the
learner to incorrectly infer the existence of a direct X → Z relationship. Separate analyses
of each link type revealed that longer interventions resulted in significantly higher accuracy
on direct and other links (both ps < 0.0001) and marginally lower accuracy on the indirect
links, t(85) = 1.59, p = 0.121. Note that the two-way interaction depicted in Figure 11A
did not itself significantly interact with rigidity condition, F(2, 166) = 2.01, p = 0.138.
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Figure 11. (A) Accuracy identifying causal links by intervention duration and type of causal link.
(B) Accuracy identifying causal links by intervention range and type of causal link. Error bars are
standard errors of the mean.

The average range of interventions—defined as the minimum slider value subtracted
from the maximum value during an intervention bout—was 141.4 in the rigid condition as
compared to 126.5 in the flexible condition, a difference that arose because rigid condition
participants were more likely to swing the variable between extremes (e.g., from 100 to
−100). This difference did not reach statistical significance however, t(85) = 1.59, p = 0.115.
To assess how intervention range affected learning, we again repeated the 2 (rigidity condi-
tion) × 3 (link type) analysis now with intervention range as a per-participant covariate.
This analysis yielded an effect of range, F(1, 83) = 28.1, p < 0.0001, indicating that interven-
tions of a larger magnitude were associated with greater accuracy, but also an interaction
between range and causal link type, F(2, 166) = 5.19, p = 0.007. This interaction is depicted
in Figure 11B in which intervention range has been dichotimized via a median split into
smaller and larger. The interaction reflects the fact that the increase in accuracy brought
about by increased range was lower for indirect links than the other link types. Again, this
result is explicable under the assumption that larger interventions increase the likelihood
that indirect causal links will be mistaken for direct ones. Separate analyses of each link
type revealed that more extreme interventions resulted in significantly higher accuracy on
direct and other links (both ps < 0.0001). In contrast, accuracy on the indirect links did not
vary with range, t(85) = 1.09, p = 0.279. The two way interaction in Figure 11B between
range and link type did not itself interact with rigidity condition, F < 1.

3.3. Modeling

To better understand participants’ judgments, we compared them to the causal struc-
ture learning models presented above. For each participant and model, the model received
as input the slider values and the participant’s interventions and yielded a posterior dis-
tribution over the 729 causal graphs. As mentioned, the normative model inverts the
generative model to optimally infer the structure most likely to have produced the evi-
dence. We assumed a uniform prior over the hypothesis space. We also assumed priors
over the parameters ω, θ, and σ. Because they observed four instructional videos of OU
networks with those parameter values, we assume that subjects induced the true values
of those parameters albeit with some uncertainty. (See our Supplementary Materials at
https://osf.io/rfx2q for details). A softmax function was applied to the posterior over
graphs, with a separate temperature parameter τ fit for each participant.

The Local Computations (LC) model focuses on pairs of variables rather than evaluat-
ing the evidence with respect to the full space of possible causal models (Equation (7)). In
other respects the LC model is identical to the normative model. Note that [1] showed that
the LC model best fit participants in a very similar task to this study’s rigid condition. Here
we test the extent to which these results generalize to different time characteristics.

The Causal Event Abstraction (CEA) model describes people as abstracting continuous
variables into events and using those events as cues for causality. To account for uncertainty

https://osf.io/rfx2q
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in participant judgments, we fit not only a per participant threshold parameter but also
a guessing parameter that corresponded to the probability of responding counter to the
predictions of the events model.

Finally, we compare the models above to a baseline model that assumes participants
have an equal probability of responding for any graph. It has no fitted parameters.

3.4. Modeling Results

For the normative model, the median fitted values of the softmax τ parameter was
6.15 and 6.35 in the flexible and rigid conditions, respectively, whereas for the LC model
they were 5.98 and 6.81. For the CEA model, the median fitted values of the threshold and
guessing parameter were 53.1 and 0.284, respectively, in the flexible condition and 64.3 and
0.107 in the rigid condition.

The left panel of Figure 12 shows the relative performance of the models as mea-
sured by mean Bayesian Information Criterion (BIC) per participant. Overall, CEA is the
best-fitting model. This greater performance of CEA is also reflected in the number of
participants best fit by each model (right panel of Figure 12). Although the CEA model fits
the majority of participants in both conditions, its advantage over the other models was
slightly greater in the rigid as compared to the flexible condition.

Note that the CEA models also explains one way that learners’ interventions varied
across experimental conditions. For example, a good intervention for the CEA model
involves holding an intervened-on variable at or near a particular value for an extended
period (providing the time needed for an effect variable to cross its threshold so that
an event is recorded). Although the duration and range of interventions did not vary
significantly with rigidity, our Supplementary Materials (https://osf.io/rfx2q) presents
the proportion of interventions that are held at one value over time in each experimental
condition. In fact, as the time increased for a variable to cross some threshold because of
lower rigidity, learners were more likely to hold the intervened-on variable at one value, a
behavior consistent with a CEA learner.

Bayesian Information Criterion Number of Participants Best Fit

Flexible Rigid Flexible Rigid

0

10

20

30

0

100

200

300

Condition

Model
Baseline
CEA
LC
Norm

Figure 12. Evaluation measures for the theoretical models. Left panel: Mean BIC per participant.
Right panel: Number of participants best fit by each model as measured by BIC. The normative and
LC models were fit with a softmax temperature parameter per participant. The CEA model was fit
with a threshold and guessing parameter per participant.

3.5. Replication Experiment

We augment these results by reporting in our Supplementary Materials (https://osf.
io/rfx2q) the results of a replication experiment that was identical except that the rate at
which the computer screen was updated to include the next OU system state (100 ms in
the current experiment) was set to 300 ms instead. The results were qualitatively identical,
including the interactions shown in Figures 10 and 11 and the general superiority of the
CEA model.

https://osf.io/rfx2q
https://osf.io/rfx2q
https://osf.io/rfx2q
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4. Discussion

This paper investigated the impact of timing on causal learning in continuous dynamic
systems. Specifically, by manipulating an OU system’s rigidity we varied the rate at which
causes influence their effects. We hypothesized doing so would moderate a particular
type of error previously captured by the Local Computations model—given X → Y → Z,
incorrectly inferring a direct relationship between X and Z—because in a less rigid system
learners would be more likely to note that the influence of X on Z was time delayed,
making the possibility that this relationship was mediated by Y more salient. Yet, we also
noted that people are generally less likely to infer a causal relationship the greater the time
delay between cause and effect. In fact, we found just this paradoxical effect of time on
learning: While slowing the dynamics resulted in increased accuracy for indirect effects, it
also resulted in reduced accuracy on other types of causal links. That is, rather than having
a uniformly positive or negative effect, changes in system timing led to a trade-off between
different types of errors.

Although we could not manipulate the interventions that learners chose to make,
we also predicted that both the duration and range of those interventions would have
effects that were analogous to those of rigidity. In fact, we found that longer interventions
were associated with better learning performance overall but at the cost of increasing the
prevalence of local computation errors. Interventions of a greater range (i.e., achieved
by setting intervened-on variables to more extreme values) were also associated with
better overall performance. Although greater range did not numerically increase local
computation errors, it did not improve performance on the indirect links as it did on
the other link types. Note that the interactions between the pattern of errors and system
rigidity, intervention duration, and intervention range were not predicted by the optimal
learning model.

To make sense of this pattern of results, we drew on a foundational principle in cogni-
tive psychology: that a major part of what brains do is abstract and discretize continuous
inputs into quantities and concepts amenable to structured symbolic processing [21,22].
Along these lines, we explored the idea that people form a greatly simplified representation
of the causal dynamics they are observing, viewing them as constituted by causal events
triggered by interventions, and using this representation to drive their structure inferences.

We introduced this principle in the form of the Causal Event Abstraction (CEA)
model, finding that it better captured the majority of our participants. The success of
this model fits nicely with work suggesting that people naturally abstract continuous
streams of information into discrete events (for review, see, [22]). That said, the CEA
model in its current form is highly exploratory with plenty of room for improvement
and further testing. First, CES’s current notion of a threshold is absolute in that it is
defined relative to 0. This was perhaps a reasonable simplifying assumption for the OU
networks tested here in which variables tended to revert to a basin of 0 in the absence
of interventions. In other setting, a more realistic model would consider the change in a
variable relative to its starting value. Second, CEA’s threshold is also binary: An effect
variable either crosses it or not. In reality, evidence for a causal relation in human learners
may be more graded in that it depends on the distance from the threshold. (We thank an
anonymous reviewer for mentioning this possibility). Third, in its current form CEA only
infers a direct connection between an intervened-on root variable and end variable that
registers an effect, whereas people have been shown to infer structure by linking sequences
of events [10]. Fourth, future studies could apply the event abstraction principle as an
account of observational causal inference as well as interventional learning. Fifth, given
the importance of interventions to produce events for the CEA to learn from, a future
direction would be modeling the CEA’s prescriptions for how one should intervene to
maximize learning. It seems probable that the a goal of producing causally-indicative event
sequences would predict markedly different behaviours than the goal of generating the
most normatively “invertable” continuous dynamics. Finally, the real-time setting explored
here also has rich implications for issues of bounded rationality in active learning. For
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instance, given the potentially overwhelming complexity of real time dynamics, learners
might choose interventions that generate evidence that is informative but not so complex
that it cannot be used (cf. [23–25]).

While we manipulated the “speed” of the system dynamics here, even our supposedly
slow (i.e., flexible) condition reflects what we believe is the fast end of the spectrum
of the dynamics people reckon with in daily life. From economic conditions to climate
patterns, many decision-relevant causal dynamics unfold orders of magnitude slower
that those we probed in this experiment. It is an open question what relationship such
radical clock-time shift has on the interactions between human cognition, intervention
choice, event abstraction and causal learning. Recent work examining causal inference
from observations spanning hours [26] and days [27] suggests people have at least as much
difficulty identifying relationships and dealing with confounds and dependencies. In such
settings it seems likely that processing bottlenecks are caused as much by the structure and
limits of long term memory and retrieval as by limited online processing bandwidth.

Learning the relationships between continually shifting variables in real-time is as
challenging as it is common. In this paper, we identified factors that modulate performance
in continuous dynamic environments, and proposed a new model for causal learning
inspired by people’s ability to abstract and discretize their experiences. We find support for
the idea that, in these informationally rich settings, people use events triggered by their
actions to infer causal structure.

Supplementary Materials: The following supporting information can be downloaded at: https:
//osf.io/rfx2q, accessed on 2 April 2022.
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