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Abstract
Tertiary lymphoid organs (TLOs) are collections of immune cells resembling secondary lymphoid organs (SLOs) that form 
in peripheral, non-lymphoid tissues in response to local chronic inflammation. While their formation mimics embryologic 
lymphoid organogenesis, TLOs form after birth at ectopic sites in response to local inflammation resulting in their ability to 
mount diverse immune responses. The structure of TLOs can vary from clusters of B and T lymphocytes to highly organ-
ized structures with B and T lymphocyte compartments, germinal centers, and lymphatic vessels (LVs) and high endothelial 
venules (HEVs), allowing them to generate robust immune responses at sites of tissue injury. Although our understanding of 
the formation and function of these structures has improved greatly over the last 30 years, their role as mediators of protective 
or pathologic immune responses in certain chronic inflammatory diseases remains enigmatic and may differ based on the 
local tissue microenvironment in which they form. In this review, we highlight the role of TLOs in the regulation of immune 
responses in chronic infection, chronic inflammatory and autoimmune diseases, cancer, and solid organ transplantation.

Keywords Tertiary lymphoid structures · Inflammation · Autoimmune diseases · Transplantation immunology · Tumor 
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Introduction

Lymphoid organs can broadly be classified into three cat-
egories. Primary lymphoid organs develop during embry-
ogenesis and include the bone marrow and thymus which 
are responsible for the production of lymphoid cells [1, 2]. 
Secondary lymphoid organs (SLOs) regulate antigen-driven 
lymphocyte expansion resulting in production of memory T 
cells, effector B cells, and plasma cells and include lymph 
nodes, spleen, tonsils, Peyer’s patches of the gut, and certain 

mucosal lymphoid tissues that develop independent of anti-
gen [1, 2]. While lymphoid organogenesis (SLO formation) 
generally occurs during embryogenesis, certain mucosal 
lymphoid tissues, including mucosa-associated lymphoid 
tissue (MALT), nose-associated lymphoid tissue (NALT), 
and tear duct-associated lymphoid tissue (TALT), develop 
after birth [2–4]. TLOs, also known as tertiary lymphoid 
tissues, tertiary lymphoid structures, or ectopic lymphoid 
structures, are collections of immune cells that resemble sec-
ondary lymphoid organs organized into a follicular structure, 
often with germinal centers, that form in peripheral, non-
lymphoid tissues in response to chronic inflammation or tis-
sue injury [2, 5, 6]. While the signaling pathways involved 
in the formation and maintenance of TLOs generally mimic 
SLO formation, TLOs regulate immune responses in a 
disease- and tissue-specific manner, and thus can lead to 
protective or pathologic responses depending on the tissue 
microenvironment in which they form [2, 7, 8]. These struc-
tures have proven to be critical for the regulation of immune 
responses in the periphery in several chronic inflammatory 
conditions. In this review, we highlight the role of TLOs in 
the regulation of immune responses in chronic infection, 
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chronic inflammatory and autoimmune diseases, cancer, and 
solid organ transplantation.

Formation of TLOs

TLOs are formed at sites of chronic inflammation or tissue 
injury in a process known as lymphoid neogenesis (Fig. 1) 
[2, 6, 9, 10]. The structure of TLOs can vary depending on 
inflammatory stimulus and tissue type from clusters of B and 
T lymphocytes to structures organized in a manner similar 
to SLOs with B cell follicles and germinal centers, T cell 
compartments, LVs, and HEVs, but generally lack a defined 
capsule [2, 6, 11, 12]. Unlike lymphoid organogenesis which 
is programmed, lymphoid neogenesis is inducible and occurs 
in response to local inflammation [2, 4, 6, 13]. However, 
while lymphoid neogenesis has largely been shown to fol-
low similar signaling pathways as lymphoid organogenesis, 
the events precipitating TLO formation have not been fully 
elucidated and may differ by disease process and tissue of 
origin [2, 5, 14].

Local inflammatory responses to tissue injury trigger 
secretion of cytokines, such as IL-13, IL-17, and IL-22, by 
infiltrating immune cells and resident fibroblasts resulting in 
priming of local stromal cells, including fibroblasts, myofi-
broblasts, and endothelial cells [9, 15, 16]. The immune cells 
that produce this signal can differ based on the inflammatory 
stimulus and the tissue in which the inflammation occurs [9, 
17, 18]. These signals result in local fibroblast proliferation 
and expression of lymphoid stromal chemokines, such as 
CXCL13, CCL19, and CCL21 [9]. CXCL13 is a chemokine 
that binds to the CXCR5 receptor on B cells and subsets 
of T cells and is critical for the homing of these cells and 
structural organization of lymphoid organs [19]. CCL19 and 
CCL21 are chemokines that bind the CCR7 receptor on B 
and T lymphocytes as well as dendritic cells (DCs) and are 
critical for the trafficking of these cells into lymphoid organs 
[20]. Expression of these chemokines by local fibroblasts 
results in recruitment of immune cells and further expression 
of chemokines (CXCL13, CCL19, CCL21) and cytokines 
(IL-17, IL-22). In addition, infiltrating immune cells and 
lymphoid tissue inducer (LTi) cells can express cytokines 
from the TNF superfamily such as TNF-α, lymphotoxins 
[LTα (also known as TNF-β), LTα1β2, LTα2β1)], and lym-
photoxin-like inducible protein that competes with glyco-
protein D for herpesvirus entry on T cells (LIGHT) [21, 22]. 
LTα1β2 and LIGHT can bind and activate the lymphotoxin β 
receptor (LTβR) on stromal cells. LTβR signaling mediates 
the differentiation of fibroblastic reticular cells (FRCs) and 
follicular dendritic cells (FDCs), formation of HEVs, and 
organization of B and T lymphocyte compartments [23]. In 
addition, production of TNF-α by M1 macrophages has been 
shown to induce aortic TLOs in a LTβR-independent fash-
ion in a murine model of atherosclerosis. These signaling 

cascades result in a positive feedback loop wherein more 
immune cells are recruited and chemokine and cytokine 
production increase. As more immune cells are recruited, 
localization of CXCL13 and CCL21 expression can result 
in separate B and T cell compartments [24, 25]. LVs and 
HEVs form and express CCL21 which may allow naïve B 
and T lymphocytes to enter the TLO [11]. While lymphangi-
ogenesis in TLOs remains poorly understood, studies have 
implicated LTβR signaling, differentiation of peri-venular 
and preexisting LV endothelial cells, and even transdiffer-
entiation of macrophages in this process [11]. FDCs pro-
duce CXCL13 in B cell compartments and recruit follicular 
helper T  (TFH) cells to form functional germinal centers [26]. 
 TFH cells secrete IL-21, a B cell stimulatory cytokine, and 
express costimulatory signals including inducible T cell co-
stimulator (ICOS) and CD40L which together result in B cell 
activation, proliferation, and differentiation into antibody-
producing plasma cells [27–29]. Sustained signaling by 
 CD11c+ DCs appears to be critical to the maintenance and 
function of these structures as selective depletion of these 
cells in murine models of TLO formation results in dissolu-
tion of TLOs [30, 31].

One of the major unresolved issues in TLO biology is 
whether TLO formation always occurs due to an antigen-
dependent immune response. Antigen-dependent immune 
responses have been implicated in the formation of TLOs 
in human and animal models of certain conditions, includ-
ing microbial antigens in infection and vaccination [32], the 
nicotinic acetylcholine receptor in myasthenia gravis [33], 
multiple thyroid antigens in autoimmune thyroiditis [34], 
tumor-associated antigens in malignancy [35], and alloan-
tigens after transplantation [36]. However, TLOs have been 
observed to form in conditions in which the driving antigen 
is not readily apparent, including chronic obstructive pul-
monary disease (COPD) [37] and atherosclerosis [38]. In 
addition, Fleig and colleagues recently showed in a mouse 
model that loss of endothelial Notch signaling alone can 
induce perivascular TLO formation indicating that these 
structures can form in an antigen-independent fashion [39]. 
These observations have led to the development of the 
inflammation-driven TLO hypothesis (as coined by Yin and 
colleagues) in which TLO formation occurs due to signaling 
cascades induced by chronic, un-resolving inflammation in 
an antigen-independent manner [40].

Role in infection and chronic inflammation

TLOs can form as a protective immune response during 
infection with certain bacterial, fungal, and viral pathogens. 
Infection with Mycobacterium tuberculosis (MTb) results 
in granuloma formation followed by infiltration of immune 
cells and their organization into TLOs known as induc-
ible bronchus-associated lymphoid tissue (iBALT) in both 



Role of tertiary lymphoid organs in the regulation of immune responses in the periphery  

1 3

Page 3 of 18 359

Fig. 1  Schematic illustrating mechanisms of lymphoid neogenesis
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humans and animal models [41–43]. Formation of iBALT 
is associated with IL-17, IL-22, IL-23, CXCL13, CCL19/
CCL21, and CCR5 signaling in animal models of MTb 
infection [42, 44–47]. iBALT may play an important role in 
the control of MTb infection given its presence in patients 
with latent TB and absence in patients with reactivated TB 
[48]. In addition to bacteria, iBALT has shown similar pro-
tective immune responses to fungal and viral pathogens. In 
a mouse model of Pneumocystis jirovecii infection, iBALT 
formation was dependent on CXCL13 and resulted in a 
reduced fungal burden [49]. In animal models of influenza 
virus infection, iBALT formation results in improved viral 
clearance and reduced mortality [8, 50–52]. Also, induc-
tion of BALT with virus-like particles results in improved 
viral clearance in influenza-naïve mice [53]. Vaccine strate-
gies that induce BALT have been shown to elicit effective 
immune responses to bacterial and viral pulmonary patho-
gens in animal models [54–56]. These studies illustrate that 
TLOs can play a protective role during infection with certain 
bacterial, fungal, and viral pathogens.

TLOs have also been implicated in facilitating pathologic 
immune responses to certain infectious pathogens. iBALT 
has been shown to induce hypersecretion of mucus, exac-
erbate inflammation, and induce asthma exacerbation in 
mouse models of respiratory syncytial virus infection [57, 
58]. iBALT has also been found in humans and animal mod-
els of cystic fibrosis and bronchiectasis where chronic infec-
tion with bacterial pathogens is common, though their role 
as protective or pathologic structures is poorly understood 
[59, 60]. Animal models of chronic Pseudomonas aerugi-
nosa infection show iBALT formation is dependent on IL-17 
production and results in production of anti-Pseudomonal 
IgM and IgA antibodies, but can also result in narrowing of 
small airways potentially contributing to obstructive lung 
diseases in which chronic Pseudomonas aeruginosa infec-
tion is common [61–63]. Human peptic Helicobacter pylori 
infection results in development of ectopic MALT in the 
gastric mucosa and is associated with gastritis and develop-
ment of MALT lymphoma [64–66]. TLOs have further been 
associated with pathologic immune responses to infectious 
pathogens in the liver (Propriobacterium acnes, Helicobac-
ter hepaticus, hepatitis C virus), kidney (Leptospira inter-
rogans serovar Pomona), synovium (Borrelia burgdorferi), 
and central nervous system (Borrelia burgdorferi) in humans 
and animal models [67–75].

TLOs can also propagate pathologic immune responses 
in chronic inflammatory diseases. Formation of iBALT is 
associated with vascular inflammation in humans and ani-
mal models of pulmonary hypertension [76, 77] and airway 
inflammation associated with asthma and COPD [78–83]. 
TLO formation results in mucosal inflammation and nasal 
polyp formation in human chronic rhinosinusitis [84–87]. 
CXCL13 and CCL21 have also been implicated in bowel 

mucosal TLOs and mesenteric fat inflammation in humans 
and animal models of inflammatory bowel disease [88–93]. 
Interestingly, TLOs have been shown to promote vascular 
inflammation in some human studies and animal models of 
aortic atherosclerosis but prevent atherosclerosis and plaque 
rupture in others [23, 94–97]. Collectively, these studies 
point to disease- and tissue-specific roles of TLOs in medi-
ating protective or pathologic responses in chronic inflam-
matory diseases (Fig. 2, Table 1).

Role in autoimmune disease

TLOs have been observed in the target tissues of several 
autoimmune diseases including rheumatoid arthritis [98], 
Sjögren’s syndrome [99], systemic lupus erythematosus 
[100], myasthenia gravis [33], type I diabetes mellitus [101], 
autoimmune thyroiditis [34, 102], and multiple sclerosis 
[18]. While TLOs have been observed in the majority of 
autoimmune diseases, their prevalence varies widely in pub-
lished reports, both among diseases and even within popula-
tions having a particular autoimmune disease [98, 103–111].

Autoimmune disease-associated TLOs are theorized to 
develop in response to disease-specific autoantigens in the 
target tissues and result in local autoantibody production 
[112]. The events that trigger the release of autoantigens in 
the formation of TLOs remain elusive. Prior studies have 
implicated viral infections, stromal cell antigen release, and 
cell death pathways, with a particular focus on the produc-
tion of neutrophil extracellular traps (NETs), or NETosis 
[112–115]. Regardless of the source of autoantigens, auto-
immune disease-associated TLOs can develop functional 
germinal centers that express activation-induced cytidine 
deaminase (the enzyme implicated in immunoglobulin gene 
affinity maturation by somatic hypermutation and isotype 
class switch recombination) resulting in proliferation of B 
cell clones and their differentiation into plasma cells that 
produce autoantibodies against local autoantigens [98, 113, 
116]. Furthermore, autoimmune disease-associated TLOs 
allow germinal center entry of autoreactive B cells whereas 
they are excluded from entry into germinal centers in SLOs 
[117, 118].

The development of TLOs in autoimmune disease can 
result in sustained immune activation and production of 
autoantibodies. Transplantation of TLO-containing tis-
sues from patients with rheumatoid arthritis or Sjögren’s 
syndrome into severe combined immunodeficiency (SCID) 
mice resulted in production of human anti-citrullinated pep-
tide antibody or human anti-SSA (anti-Ro) and anti-SSB 
(anti-La) antibodies, respectively [98, 115]. In addition, 
transplantation of thymic tissue fragments, but not disso-
ciated thymic cells, from patients with myasthenia gravis 
into SCID mice resulted in sustained production of human 
anti-acetylcholine receptor antibodies [119]. These studies 



Role of tertiary lymphoid organs in the regulation of immune responses in the periphery  

1 3

Page 5 of 18 359

illustrate the importance of the structural organization of 
autoimmune disease-associated TLOs to the maintenance 
of autoantigen-directed responses.

The presence of TLOs has been associated with variable 
disease severity and clinical outcomes in autoimmune dis-
eases [5, 12]. While some reports in rheumatoid arthritis 
patients show no effect on disease severity [104, 120], 

others have shown an association between TLO formation 
and increased autoantibody and inflammatory cytokine 
production along with more erosive disease [121–124]. In 
patients with Sjögren’s syndrome, the presence of TLOs is 
associated with increased autoantibody and pro-inflamma-
tory cytokine production, clinical disease severity, and risk 
of development of lymphoma [125–127]. TLOs can also 

Fig. 2  Schematic showing tissue- and disease-specific roles of TLOs in regulating pathogenic or protective immune responses
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Table 1  Summary of the tissue- and disease-specific roles of TLOs in regulating peripheral immune responses

Condition Location Species Role References

Autoimmune disease
 Autoimmune thyroiditis Thyroid Human, mouse Pathologic [34, 102, 111]
 Diabetes mellitus, type I Pancreas Human, mouse Pathologic [21, 22, 101]
 Multiple sclerosis Meninges Human, mouse Pathologic [15, 16, 18]
 Myasthenia gravis Thymus Human Pathologic [33, 119]
 Myositis Muscle Human Pathologic [109, 110]
 Rheumatoid arthritis Synovium, lung Human, mouse Pathologic [24, 90, 91, 98, 103, 104, 

112–114, 116, 120–124, 128, 
131–134, 136–139]

 Sjogren syndrome Salivary gland Human Pathologic [25, 29, 99, 105, 106, 115, 118, 
125–127, 129, 130, 135, 140, 
141]

 Systemic lupus erythematosus Kidney Human, mouse Pathologic [100, 107, 108]
Chronic inflammatory disease
 Asthma Lung Human, mouse Pathologic [78, 79]
 Atherosclerosis Artery Human, mouse Both [23, 38, 39, 94–97]
 Bronchiectasis Lung Human, mouse Unknown [59]
 Chronic obstructive pulmonary 

disease
Lung Human, mouse Pathologic [37, 80–83]

 Chronic rhinosinusitis Nasal mucosa Human Pathologic [84–87]
 Cystic fibrosis Lung Human, mouse Unknown [59, 60]
 Inflammatory bowel disease Intestinal mucosa Human Pathologic [88–93]
 Pulmonary arterial hypertension Lung Human, rat Pathologic [76, 77]

Infection
 Borrelia burgdorferi Synovium, central nervous 

system
Human, Rhesus macaque Pathologic [73–75]

 Francisella tularensis Lung Mouse Protective [32]
 Helicobacter hepaticus Liver Mouse Pathologic [68]
 Helicobacter pylori Gastric/duodenal mucosa Human Pathologic [64–66]
 Hepatitis C virus Liver Human Pathologic [69–71]
 Influenza virus Lung Mouse Protective [30, 50–53, 56]
 Leptospira interrogans serovar 

Pomona
Kidney Pig Pathologic [72]

 Modified Vaccinia virus Ankara Lung Mouse Protective [61]
 Mouse-adapted SARS corona-

virus
Lung Mouse Protective [56]

 Mycobacterium tuberculosis Lung Human, mouse Protective [41–48, 54, 55]
 Pneumocystis jirovecii Lung Mouse Protective [49]
 Pneumovirus of the mouse Lung Mouse Protective [56]
 Propionibacterium acnes Liver Mouse Pathologic [67]
 Pseudomonas aeruginosa Lung Mouse, rat Unknown [62, 63]
 Respiratory syncytial virus Lung Mouse Protective [57, 58]

Malignancy
 Bladder cancer Intratumoral Human Protective [176, 177]
 Breast cancer Intratumoral, peritumoral Human Both [27, 35, 144, 146, 147, 151, 159, 

165, 173, 174]
 Colorectal cancer Intratumoral, peritumoral Human Both [142, 158, 167, 168]
 Hepatocellular carcinoma Intratumoral, peritumoral Human, mouse Both [148, 152, 153, 170]
 Intrahepatic cholangiocarci-

noma
Intratumoral, peritumoral Human Both [163]

 Lung cancer Intratumoral Human, mouse Both [145, 154, 157, 178]
 Melanoma Intratumoral, peritumoral Human, mouse Both [143, 155, 156, 160, 166, 175]
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be found in the lungs (BALT) of patients with pulmonary 
involvement of rheumatoid arthritis and Sjögren’s syn-
drome [128]. These TLOs are associated with increased 
expression of CXCL13, CCL21, ICOSL, and lymphotoxin 
and correlate with tissue damage and fibrosis in the lungs 
of patients with rheumatoid arthritis-associated intersti-
tial lung disease [128]. The role of TLOs in clinical dis-
ease severity is less well established in other autoimmune 
diseases. Thus, autoimmune disease-associated TLO for-
mation affects clinical severity in a disease- and tissue-
specific manner.

The sustained immune activation associated with TLO 
formation may have implications for the treatment of auto-
immune diseases. Studies in patients with rheumatoid 
arthritis or Sjögren’s syndrome have shown conflicting 
results regarding the role of TLOs in clinical responses to 
disease-modifying anti-rheumatic drugs (DMARDs) includ-
ing rituximab (monoclonal anti-CD20 antibody), abatacept 
(CTLA4-Ig fusion protein, co-stimulatory signal inhibitor), 
and anti-TNF therapies [129–135]. Studies in patients with 
rheumatoid arthritis show that treatment with rituximab is 
associated with elimination of circulating B cells and reduc-
tion in circulating anti-rheumatoid factor and anti-cyclic cit-
rullinated peptide antibodies [136–138]. However, rituximab 
treatment has been shown to deplete but not eliminate syno-
vial B cells, especially those found in lymphoid aggregates, 
and does not affect synovial autoantibody production sug-
gesting that TLOs in rheumatoid arthritis may serve as a pro-
tective niche for autoreactive B cells [132, 136, 137, 139]. 
Furthermore, non-responders to rituximab treatment were 
more likely to have residual synovial plasma cells along with 
higher levels of CXCL13 and B cell repopulation [131, 136, 
138]. Similarly, studies have shown that rituximab signifi-
cantly reduces systemic B cell biomarkers but does not affect 
clonal expansion of autoantibody-producing cells in salivary 
glands of patients with Sjögren’s syndrome, and does not 
affect parotid enlargement or tissue expression of B cell-acti-
vating factor (BAFF) in patients with Sjögren’s syndrome-
associated MALT lymphoma [140, 141]. These findings 
have led to a focus on therapies that target signals critical 
to TLO formation and maintenance including IL-17, IL-21, 
lymphotoxin, ICOS-ICOSL, CD40-CD40L, and BAFF [5, 

12]. Thus, autoimmune disease-associated TLOs play a role 
in the maintenance of peripheral immune responses.

Role in cancer

The microenvironment of tumorigenesis shares similarities 
to that of chronic inflammation due to the constant infil-
tration of immune cells, providing an inflammatory milieu 
for tumor progression and metastasis. Active recruitment of 
lymphocytes to tumor-associated TLOs (TA-TLOs) has been 
demonstrated in humans and preclinical mouse models of 
colorectal cancer [142]. Additionally, TA-TLOs have been 
shown to drive oligo-clonal B cell responses as well as T cell 
priming and expansion in animal models of breast cancer 
and melanoma [35, 143]. However, the precise mechanisms 
regulating TA-TLO formation remain unknown. Many of 
the cytokines and lymphoid chemokines associated with 
TA-TLOs (e.g., CCL21, CXCL13, TNF-α) are shared with 
other non-neoplastic inflammatory processes. Similar to 
chronic infections and inflammatory diseases, the presence 
of TLOs in solid, non-lymphoid tumors has been associated 
with variable outcomes [142, 144–149]. The role of TA-
TLOs in promoting pro- or anti-tumoral immune responses 
is disease-specific and likely depends on a variety of factors 
including cellular composition and location (intra-tumoral 
vs peri-tumoral).

TA-TLOs can be enriched in regulatory T cells (Tregs) 
that can inhibit anti-tumor responses and promote tumor 
growth. Tumor infiltration by Tregs has been associated with 
worse prognosis in various types of cancer [146, 150–153]. 
In patients with ovarian carcinoma, tumor-associated Tregs 
suppressed tumor-specific T cell immunity to promote the 
growth of human tumors in vivo [150]. Similarly, a study 
utilizing a genetically engineered mouse lung adenocarci-
noma model showed that tumor bearing mice have a sig-
nificant increase in tissue-infiltrating Tregs accumulating in 
TA-TLOs compared with controls [154]. These Tregs can 
suppress anti-tumor responses by modulating interactions 
between T cells and DCs [154]. Notably, depletion of Tregs 
enhanced DC costimulatory ligand expression and resulted 
in the increased proliferation of T cells, stimulating tumor 
destruction. Related findings have been demonstrated in 

Table 1  (continued)

Condition Location Species Role References

 Ovarian cancer Intratumoral Human Protective [150, 161, 162]
 Pancreatic cancer Intratumoral, peritumoral Human Both [164, 169]

Transplantation
 Heart transplantation Heart Human, mouse Both [36, 181–183, 185, 186, 199]
 Kidney transplantation Kidney Human, mouse Both [36, 199, 202–205]
 Lung transplantation Lung Human, mouse, rat Both [36, 194–198, 200, 201]
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studies of patients with breast cancer, which showed that 
high numbers of Tregs within TA-TLOs, rather than in the 
tumor bed, are predictive of relapse and death [146]. In con-
trast to other T cells, Tregs were found to be selectively 
activated locally with proliferation in situ, resulting in sup-
pression of effector T cell activation, immune escape, and 
tumor progression. While the complex regulatory mecha-
nisms and function of tumor-associated Tregs remain to 
be elucidated, inhibition of these responses may serve as a 
potential therapeutic target to promote adaptive anti-tumor 
immune responses.

While Tregs inhibit anti-tumoral responses in TA-TLOs, 
other T cell subsets, along with DCs and B cells, promote 
anti-tumoral immune responses. Previous studies utilizing 
mouse models which lack lymph nodes demonstrated that 
effective T cell priming can occur locally at the tumor site 
[143, 155]. TLO induction within the tumor in a murine 
model of metastatic melanoma has been shown to provoke 
naïve T cell infiltration and differentiation, which is asso-
ciated with the generation of tumor-specific T cells [156]. 
Additionally, the density of mature DCs in TA-TLOs is 
highly associated with a strong and coordinated Th1 and 
cytotoxic T cell response in patients with non-small cell lung 
cancer [157]. TA-TLOs enriched in DCs and  CD8+ T cells 
are associated with improved survival in patients with non-
small cell lung cancer and rectal cancer [157, 158]. Higher 
density of DC and  CD4+  TFH cell infiltration in TA-TLOs 
in breast cancer patients was associated with higher rates 
of metastasis- and disease-free survival [27, 159]. In addi-
tion, B cells in TA-TLOs have been implicated in anti-tumor 
responses in patients with melanoma and ovarian cancer 
[160, 161]. B cell follicles within TA-TLOs may serve as 
a site for the local generation of humoral immunity against 
tumor antigens. In a study of human non-small cell lung 
cancer, germinal centers within tumors exhibited activated 
somatic hypermutation and class switch recombination, 
which was associated with antibody reactivity against tumor 
antigens [145]. In addition, a high density of follicular B 
cells within TA-TLOs correlated with long-term survival 
[145]. In a study of patients with serous ovarian cancer, 
tumor-associated B cells produced polyclonal IgA that was 
able to bind receptors universally expressed on ovarian 
cancer cells, sensitizing tumor cells to cytolytic killing by 
T cells and hindering malignant progression [162]. Taken 
together, these findings suggest that specific immune cells 
in TA-TLOs can be key regulators of local adaptive immune 
responses at the tumor site.

TA-TLOs can be found within the tumor (intra-tumoral) 
or outside the tumor margin (peri-tumoral) and their spe-
cific location may be predictive of immune responses to the 
tumor. While the presence of intra-tumoral TLOs has been 
associated with anti-tumoral responses, peri-tumoral TLOs 
have been associated with pro-tumoral responses and worse 

clinical outcomes in certain solid tumors. Peri-tumoral TLOs 
were associated with worse overall survival compared with 
intra-tumoral TLOs in patients with intrahepatic cholangio-
carcinoma and pancreatic ductal carcinoma [163, 164]. In 
breast cancer patients, peri-tumoral TLOs were associated 
with higher-grade tumors and reduced disease-free and over-
all survival [165]. Melanoma metastases were more likely 
to have peritumoral TLOs than primary melanoma tumors 
[166], and in colorectal cancer patients, peritumoral TLOs 
were associated with advanced disease, tumor progression, 
and worse prognosis [167]. However, introduction of Heli-
cobacter hepaticus into the intestinal tract in a mouse model 
of colorectal cancer resulted in development of peritumoral 
TLOs and increased immune infiltration and tumor control 
[168]. The presence of peritumoral TLOs was also associ-
ated with a favorable prognosis in pancreatic neuroendocrine 
tumors [169], and with improved overall and relapse-free 
survival in patients with hepatocellular carcinoma [170]. 
While the precise mechanisms by which peritumoral TLOs 
promote pro-tumoral responses remain unknown, animal 
models have suggested that TLOs may provide a supportive 
niche for tumor progenitors and could provide a route for 
cancer dissemination through HEVs [148, 171, 172]. These 
findings suggest that the location of TA-TLOs may influence 
the type of immune responses generated and affect clinical 
outcomes in a disease-specific fashion.

The presence of TA-TLOs may also impact response to 
various forms of antineoplastic treatment. Studies in patients 
with breast cancer have shown that TA-TLOs predict a 
favorable response to chemotherapy alone and in combina-
tion with the HER2-targeting monoclonal antibody, trastu-
zumab [27, 173, 174]. In addition, TA-TLOs were shown to 
predict long-term survival in patients with non-small cell 
lung cancer treated with chemotherapy [145]. Furthermore, 
TA-TLOs have been implicated in responses to cancer immu-
notherapies such as immune checkpoint inhibitor therapy. 
The presence of TA-TLOs in biopsy specimens from patients 
with melanoma was associated with increased survival after 
treatment with immune checkpoint blockade [175], and the 
presence of TA-TLOs and expression of CXCL13 were asso-
ciated with response to immune checkpoint inhibitor therapy 
in patients with muscle-invasive bladder cancer [176]. More-
over, immunotherapy may induce tumor regression by induc-
tion of TA-TLOs. As an example, a study of immunotherapy 
for loco-regionally advanced urothelial carcinoma found no 
association between the presence of TA-TLOs at baseline 
and treatment response; however, complete response was 
associated with a significant increase in TA-TLOs [177]. 
Additionally, a post hoc analysis of a clinical trial of neo-
adjuvant immune checkpoint inhibitor therapy showed that 
responders were significantly more likely to develop TLOs 
in the tumor regression bed [178]. While these studies sug-
gest a correlation between the development of TA-TLOs and 
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response to immunotherapy, the mechanisms underlying 
this phenomenon remain elusive. In a study of melanoma 
treatment with immune checkpoint inhibition, patients who 
responded to treatment demonstrated significantly different 
B cell marker expression compared to non-responders in 
a single-cell and bulk RNA analysis [179]. Corroborating 
these findings using a computational method to estimate the 
immune composition in patients with melanoma and renal 
cell carcinoma who were treated with immune checkpoint 
blockade, clonal B cells were found to be localized within 
TA-TLOs, and switched memory B cells were enriched in 
tumors of responders. These findings have sparked interest 
in therapies that can induce TLO formation in immunother-
apy-resistant neoplasms. As an example, LIGHT-VTP fusion 
protein (targets LIGHT to angiogenic tumor vessels using a 
vascular targeting peptide) therapy triggers TA-TLO forma-
tion and improves survival when combined with immuno-
therapy in a mouse model of immunotherapy-resistant tumor 
formation [180]. While these data suggest induction of TA-
TLOs may improve responsiveness to immunotherapy in 
resistant tumors, mechanisms underlying these phenomena 
remain unclear. It is evident that TA-TLOs have a signifi-
cant impact on the neoplastic microenvironment and clinical 
outcomes, and understanding these molecular determinants 
will help provide key insights into the dynamic interac-
tions between the immune system, tumor progression, and 
response to treatment.

Role in solid organ transplantation

Transplantation remains the only therapeutic option for 
many patients who develop end-stage organ failure. The 
clinical practice of organ transplantation consists of surgi-
cally transferring an organ from a donor of the same species 
who is genetically different from the recipient. Both innate 
and adaptive immune responses are mounted in response 
to the allograft, as well as to other injurious events which 
may accompany the transplantation procedure (e.g., release 
of endogenous ligands during inflammation associated with 
ischemia–reperfusion injury). These immunologic processes 
provide an environment of chronic inflammation which may 
facilitate the ectopic organization of lymphoid cells within 
the graft tissue.

Evidence of TLO formation in transplanted solid organs 
was first reported in cardiac allografts in 1985 as aggregates 
of structured lymphoid cells located within the endocardium 
of allografts, which were termed “Quilty lesions” [181]. 
These lesions, composed of B lymphocytes, T lymphocytes, 
macrophages, FDCs, and HEVs were initially attributed to 
viral infections or cyclosporine therapy as triggers for their 
formation [182]. However, these associations were subse-
quently called into question by studies which demonstrated 
an absence of endocardial lesions in other patients treated 

with cyclosporine, as well as lesion formation in myocar-
dial biopsies with negative viral genomic testing [183, 
184]. Thus, it was suggested that Quilty lesion formation 
was potentially linked to rejection. Conversely, recent find-
ings have suggested that Quilty lesions may play a protec-
tive role in cardiac allografts [185]. To this end, 42 human 
cardiac allograft biopsies were evaluated for the presence 
of Quilty lesions and histologic findings of rejection, and 
results showed that the presence of Tregs and TGF-β+ cells 
within Quilty lesions was associated with higher rates of 
cardiac allograft acceptance [185]. In a study conducted by 
Baddoura in 2005, examination of 319 murine cardiac trans-
plants revealed lymphoid neogenesis in 25% of allografts 
and the presence of these structures was generally associ-
ated with acute or chronic rejection [186]. While it remains 
unclear how TLO formation in cardiac allografts may impact 
alloimmunity and graft acceptance, understanding the local 
immune interactions within a transplanted heart will clarify 
potential avenues for developing novel therapeutic strategies 
to prolong graft survival.

Lung allografts have been considered one of the most 
highly immunogenic solid organ transplants due to their 
major role in host defense and prominent intrinsic lymphoid 
network with constant exposure to aerogenous antigens. 
BALT has been detected in healthy lungs of rabbits, rats, 
and guinea pigs, but its presence in human lungs appears 
to vary according to age [187, 188]. While BALT can be 
demonstrated in 50% of healthy infants and young children, 
the frequency of BALT in normal lungs of healthy human 
adults remains controversial with estimates ranging from 0 
to 64% [189–193]. BALT was initially targeted as a possible 
explanation for the relatively high rate of rejection among 
lung allografts compared to other solid organ transplants. 
To further delineate to what extent rejection of lungs differs 
from that of other organs, Prop studied functional rejection 
of rat lung allografts and found that lymphocytes that resided 
in the BALT of donor lungs were associated with an acceler-
ated rate of lung allograft rejection [194]. Interestingly, this 
was abrogated by donor irradiation prior to transplantation 
or by re-transplantation from a cyclosporine-treated inter-
mediate host, suggesting that BALT that is present in donor 
lungs may serve as a trigger for rejection. A study of 77 
trans-bronchial biopsies in human lung transplant recipients 
by Hasegawa’s group found that BALT was induced after 
transplantation and found no association of BALT with high-
grade acute cellular rejection or development of bronchiolitis 
obliterans [195]. We have made the surprising observation 
that BALT is induced in tolerant lung allografts, a process 
that is dependent on IL-22 production by graft-infiltrating 
γδ T cells and type 3 innate lymphoid cells; interestingly, 
the iBALT is enriched in Tregs [196, 197]. Subsequent stud-
ies have shown that potentially deleterious humoral immune 
responses are regulated through Tregs that are present in the 
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BALT of tolerant lungs [198]. In addition to chronic stimula-
tion by alloantigen, lymphatic disruption may contribute to 
BALT formation [13, 199]. In a study utilizing a mouse lung 
transplant model, Reed demonstrated that transplantation of 
lungs with obstructed forward flow of pulmonary lymphatics 
(via C-type lectin domain family 2 (CLEC2) deficiency or 
ablation of lymphatic endothelial cells) resulted in spon-
taneous formation of lymphoid aggregates within the lung 
grafts [200]. Interestingly, although lymphatic function was 
globally impaired in CLEC2-deficient mice, TLOs were 
observed specifically within the lungs and were absent in 
other tissues with a similar magnitude of lymphatic loss as 
that of the lung, such as the mesentery and intestine, and this 
effect was independent of transplantation. These findings 
suggest that lymphatic disruption may play a major role in 
the induction of TLOs in lung allografts following trans-
plantation. Moreover, we have recently demonstrated that 
lymphatic egress of Tregs from TLOs within tolerant lung 
allografts can downregulate immune responses systemically 
[201]. Thus, intra-graft TLOs appear to serve both benefi-
cial and deleterious roles in lung transplantation and may 
regulate immune responses within and outside of the graft.

Organized lymphoid structures in renal allografts were 
reported in 2004 when 35 human renal transplant biopsies 
and explants from acutely rejecting grafts were evaluated 
for lymphatic vessel distribution in relation to immune infil-
trates [202]. Such grafts were found to have perilymphovas-
cular nodular infiltrates which contained highly prolifera-
tive T and B lymphocytes and were densely associated with 
newly formed lymphatic vessels. The authors speculated 
that lymphangiogenesis could contribute to the transport of 
infiltrating immune cells and alloreactive responses. A study 
by Thaunat reported an association between the presence of 
TLOs in renal grafts and chronic rejection [199]. A delete-
rious role for TLOs in renal allografts was the prevailing 
view until 2011 when the induction of TLO formation was 
reported in tolerant mouse kidney allografts [203]. In this 
study, Brown demonstrated that TLOs formed in tolerant 
renal allografts and the presence of intra-graft TLOs was 
associated with superior graft function. This was further 
supported by a study by Miyajima utilizing a mouse kidney 
transplant model with identification of nodular infiltrates 
rich in Tregs that were present in spontaneously accepting 
allografts [204]. Rosales subsequently demonstrated that 
systemic depletion of Tregs prompted dissolution of these 
renal lymphoid infiltrates and abolition of tolerance, raising 
the possibility that Treg-rich structures within grafts may 
contribute to kidney allograft acceptance [205]. These find-
ings correlate with our findings that graft-resident Tregs 
residing in the BALT of tolerant lung allografts downregu-
late local alloimmune responses. In summary, TLO forma-
tion within donor organ grafts has been associated with both 
rejection and tolerance. While traditional dogma suggested 

that intra-graft TLOs propagate deleterious immune 
responses, recent data have shown that TLO formation may 
also play an essential role in modulating graft acceptance.

Future directions

Despite major advancements in understanding the path-
ways that govern the formation of TLOs, major gaps remain 
regarding the role they play in regulating peripheral immune 
responses. Given the reported diversity of both their struc-
ture and composition, the establishment of criteria to stand-
ardize the staging of TLOs in various disease processes is 
necessary. While classification systems have been proposed 
in individual disease processes and model systems, stand-
ardized criteria for TLOs in human disease are lacking [10, 
36, 206–208]. Establishment of such criteria is important to 
identify the cell types and signaling pathways required for 
TLO formation in each disease state and tissue. In addition, 
such criteria may help reveal structures or cellular compo-
nents associated with protective or pathologic responses. 
Indeed, understanding the components making TLOs pro-
tective or pathologic in a particular disease process is critical 
to the identification of targets for pharmacologic interven-
tion. Pharmacologic disruption of pathologic TLOs is an 
active area of investigation in autoimmune disease, as TLOs 
have largely been associated with the propagation of auto-
immunity and worse clinical outcomes in this realm [5, 12, 
208]. Pharmacologic disruption of pathologic TLOs may 
prove useful in other chronic inflammatory diseases, some 
forms of solid organ transplant rejection, and as an adjunct 
to chemo- and immunotherapies in certain malignancies. 
Furthermore, the identification of signaling pathways lead-
ing to the development of protective TLOs is paramount for 
the development of antineoplastic therapies for some cancers 
and the development of tolerance after solid organ trans-
plantation. To this end, understanding signaling pathways 
inducing protective responses may allow the modification 
of donor organs with ex vivo organ perfusion to set the stage 
for tolerogenic TLOs. One major challenge in the develop-
ment of pharmacologic therapies to induce or disrupt TLOs 
will be route of administration, as systemic therapies could 
result in unwanted effects in SLOs and other tissues. Thus, 
the utilization of strategies to localize pharmacologic agents, 
such as with aerosolized delivery for lungs or nanoparticle 
delivery targeted at specific tissues, may be necessary. Delin-
eating the requirements for immune cell trafficking entering 
and exiting TLOs, for example via HEVs, interstitial tissue 
migration, or lymphatics, may aid with the development of 
targeted therapeutic approaches for specific disease pro-
cesses. Finally, future studies should focus on whether the 
formation of TLOs in a particular disease process is depend-
ent on antigen-driven immune responses or can occur in an 
antigen-independent fashion, as understanding the factors 
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driving TLO formation could improve strategies to develop 
targeted therapies to manipulate TLOs in disease.

Conclusion

TLOs have been identified as critical mediators of local 
disease- and tissue-specific immune responses in chronic 
inflammatory diseases and organ transplantation. While 
our understanding of the development and function of these 
structures has improved significantly over the last 30 years, 
their role in mediating protective or pathologic immune 
responses in certain disease processes remains elusive. 
Future studies should further delineate the role of TLOs 
in regulating immune responses in infection with certain 
pathogens, chronic inflammatory diseases, autoimmune 
diseases, cancer, and solid organ transplantation. Investi-
gation in these areas may provide valuable insight into the 
mechanisms of disease progression, reveal novel therapeutic 
targets, and possibly identify biomarkers that predict pro-
gression of disease and response to treatment.
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