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Bladder cancer is the ninth most frequently diagnosed cancer world-wide and ranks 13th
in cancer-related deaths. Two tremendous breakthroughs in bladder cancer therapy over
the last decades are the approval of immune checkpoint inhibitors(ICIs)and the fibroblast
growth factor receptor tyrosine kinase inhibitor (FGFR-TKI) erdafitinib for treating this
deadly disease. Despite the beneficial effects of these approaches, the low response rate
and the potential resistance of the cancer are major concerns. Hence, novel combination
therapies to overcome these limitations have been investigated. In this context, combining
immunotherapy with targeted drugs is an appealing therapeutic option to improve
response and reduce the emergence of resistance in the management of bladder
cancer. In this review, the rationale of using different therapeutic combinations is
discussed according to the mechanistic differences, emphasizing the efficacy and
safety based on evidence collected from preclinical and clinical studies. Finally, we
highlight the limitations of these combinations and provide suggestions for further
efforts in this challenging field.
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Abbreviations: ADCs, antibody-drug conjugates; AKT, protein kinase B; APIM, AlkB homologue 2 PCNA-interacting motif;
AR, androgen receptor; BCG, bacillus Calmette‑Guerin; CTLA-4, cytotoxic T lymphocyte-associated antigen-4; DC, docetaxel
with cisplatin; DDR, DNA damage repair; DNMT1, DNA methyltransferase1; EV, enfortumab vedotin; FDA, food and drug
administration; FGFR-TKI, fibroblast growth factor receptor tyrosine receptor inhibitor; GC, Gemcitabine plus cisplatin; ICIs,
immune checkpoint inhibitors; ICLs, interstrand crosslinks; IFN g, interferon gamma; IL-15, interleukin-15; IDO, Indoleamine
2,3-dioxygenase; MIBC, muscle invasive bladder cancer; MMC, Mitomycin C; MVAC, methotrexate, vinblastine, doxorubicin
and cisplatin; mTOR, mammalian target of rapamycin; NMIBC, non-muscle invasive bladder cancer; NK, natural killer; ORR,
objective response rate; OS, overall survival; PARP, poly ADP-ribose polymerase; PD-1, programmed death-1; PD-L1,
programmed death-1 ligand 1; PCNA, proliferating cell nuclear antigen; PFS, progression-free survival; PI3K,
phosphatidylinositol 3 kinase; PLUMMB, pembrolizumab in muscle-invasive/metastatic bladder cancer; polyICLC,
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TACC3, transforming acidic coiled-coil containing protein 3; TAMs, tumor-associated macrophages; TCC, transitional cell
carcinoma; Tregs, regulatory T cells; TIL, tumor-infiltrating lymphocytes; TSC, tuberous sclerosis complex; UC,
urothelial carcinoma.
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INTRODUCTION

Bladder cancer is one of the most prevalent cancers worldwide,
with around 430,000 new diagnoses and 150,000 deaths each year
(1). Approximately 75% of newly diagnosed patients have non-
muscle invasive bladder cancer (NMIBC) with standard treatment
of intravesical chemotherapeutic drugs or immune inhibitor after
tumor resection (2). However, around 40-50% of patients will
experience recurrence within five years of diagnosis with up to
80% in the highest-risk groups (2). The remaining 25% of patients
have muscle invasive bladder cancer (MIBC) or metastatic disease
and the gold standard therapeutic method is radical cystectomy
followed with systemic chemotherapy. However, prognosis in this
population of bladder cancer patients is poor and the 5-year
overall survival (OS) rate is 15% (3, 4).

The past decade has witnessed the rapid development of
combination therapy for improved therapeutic outcomes in
bladder cancer. Combination therapy has been a successful
strategy to enhance efficacy, increase response, reverse resistance
and reduce toxicity as well as address tumor heterogeneity upon
using different drugs of different dynamics and molecular targets (5,
6). Previously, the common combination regimens are drugs
composed of different chemotherapeutic anticancer drugs or
combining chemotherapy with radiotherapy. With comprehensive
analysis of bladder cancer cases, molecular characterization is
figured out and this provides rationales for novel therapies.
NMIBC is primarily presented with FGFR3 alterations while
MIBC has a more diverse mutation spectrum (7, 8). High
mutational burden in bladder cancer provides implications for the
use of targeted and immune checkpoint inhibitors (ICIs). Recently,
immunotherapy has become a hot topic since the approval of
programmed death-1 (PD-1)/programmed death-1 ligand 1 (PD-
L1), cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) ICIs by
the U.S. Food and Drug Administration (FDA)with satisfying
efficacy in advanced cancers (9, 10). However, low response rate,
emergence of drug resistance, and tolerability concerns appeared
quickly. The tumor microenvironment significantly influences
therapeutic response and efficacy. Thus, combination therapy via
regulation of immune microenvironment for the purpose of
sensitizing drug activity and decreasing doses has been under
investigation (11). Another breakthrough is the introduction of
erdafitinib, an oral pan-FGFR-targeted tyrosine kinase inhibitor
approved by the US FDA in 2019 for treatment of metastatic
urothelial carcinoma (UC) patients with susceptible FGFR3 or
FGFR2 alterations (12).

In this mini-review, multiple combination regimens including
chemotherapy, radiotherapy, targeted therapy, and immunotherapy
for treating bladder cancer in preclinical or clinical settings are
discussed. This review will provide a comprehensive summary for
readers to understand the present and future potential combination
therapies in bladder cancer.

IMMUNOTHERAPY

Immune checkpoints refer to inhibitory pathways built into the
immune system which are vital to limit collateral tissue damage
(that is, the prevention of autoimmunity) under the circumstance of
Frontiers in Oncology | www.frontiersin.org 2
physiological immune responses (13). Immune checkpoints are
initiated by ligand-receptor interactions. For example, normal cells
harbor PD-L1 bind to PD-1 receptors on T-cells to suppress excessive
immune response (14). In addition, the activation of the receptor
CTLA-4 located in T cells inhibits the initiation of the immune
response by T cells, resulting in the reduction of activated T cells and
preventing the formation of memory T cells (15). However, Tumor
cells can up-regulate PD-L1 or activate CTLA-4 and this ligand-
receptor binding causes inactivation of T cells and tumors escaping
the immune response (16). Therefore, the FDA approved ICIs that
block the interaction between CTLA-4 and its ligand or block the
interaction between PD-1 and PD-L1, thereby restoring cytotoxic T
cell immune response in recognizing and destroying cancer cells thus
preventing growth of tumors (9, 10). Immunotherapy is approved as
a second-line treatment for metastatic urothelial cancer (17). Their
use as a first-line agent is only limited to patients who are ineligible for
cisplatin-based treatments (17). There is a biological and clinical
rationale for using immunotherapy in NMIBC patients. First, the
historic use of bacillus Calmette−Guerin(BCG)in NMIBC attests to
the effectiveness of immunotherapy for these patients and supports
evaluation of other immunotherapy strategies to overcome resistance
to BCG. Second, it is well known that genomic and epigenomic
alterations drive the pathogenesis of bladder cancer (18), with many
alterations thought to provide neoantigens that may elicit potent
antitumor immune responses (8, 18). High-grade NMIBC harbors
many of the same genomic alterations as muscle invasive and
metastatic bladder cancer (8). Tumors with a higher mutational
load produce many neoantigens that are recognized as foreign by the
immune system, thereby triggering a T-cell mediated antitumor
immune response (19). High mutational burden has also been
associated with increased efficacy of ICIs (20, 21). From a
preclinical perspective, evidence from bladder cancer models in
immunocompetent mice supports the use of ICIs alone or in
combination with other treatment modalities in bladder cancer
(22). From a clinical context, the approval of five inhibitors of the
PD-1/PD-L1 axis (atezolizumab, pembrolizumab, nivolumab,
durvalumab, and avelumab) for the treatment of advanced or
metastatic UC provides a compelling and logical rationale for
testing checkpoint blockades in the earlier stage, BCG-unresponsive
NMIBC. Although immunotherapy is better tolerated than
chemotherapy, autoimmune side effects are be particularly
concerning. Simultaneously, based on results from clinical trials,
the overall response rate of immunotherapy is ranging from 17%
to 23% and indicating that immunotherapy is only effective for a
minority of patients. Thus, there is an urgent need to find new
therapeutic approaches to improve response rates. Combinations of
immunotherapy with conventional agents are being investigated in
several preclinical and clinical studies in urothelial cancer. Table 1
summarizes ongoing clinical trials for ICIs and other novel
combination therapies for the management of bladder and
urothelial cancers.

Combination of PD-1 With CTLA-4
Inhibitors
It is well established that tumors use PD-1 and CTLA-4 pathways to
silence the immune system (16). The CTLA-4 antibody promotes
the entry of anti-cancer immune cells into the surrounding tumor
January 2021 | Volume 10 | Article 539527
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tissue and eliminates the immunosuppressive cells that promote
cancer growth (23). At the same time, the role of PD-1 antibody is to
activate these immune cells to prevent tumor cell immune escape
(16). Recent data have shown that combination therapy with an anti-
PD-1 and anti-CTLA-4 antibodies demonstrated significant
preclinical and clinical responses in bladder cancer (24).
Duraiswamy et al. provided evidence that reversal of T-cell
dysfunction could be achieved by simultaneously targeting effector
T cells and regulatory T cells (Tregs). The study showed that co-
expression of both PD-1 and CTLA-4 was associated with marked
dysfunction of antigen-specific T cells so blockade of PD-1 and
CTLA-4 pathways reversed T-cell dysfunction. It proved that
adoptive transfer tumor-infiltrating lymphocytes (TIL) that had
been pretreated in vitro with anti-PD-1 and anti-CTLA-4
antibodies eliminated tumors in vivo (25). Furthermore,
immunohistochemistry staining for CD3+ T cells in the MC38
tumor model revealed the highest CD3+ T-cell tumor infiltration in
the anti-CTLA-4/PD-1 monoclonal antibodies combination setting
(26). Higher tumor infiltration likely accounts for CTLA-4/PD
synergy. Shi et al. elucidated the underlying tumor rejection
mechanisms for the combination therapy of PD-1 with CTLA-4
inhibitors by performing a detailed analysis of human bladder tumor
samples together with murine MB49 bladder tumor model (27). The
results showed that combination therapy improved tumor rejection
by promoting T-cell infiltration into tumors, encouraging the
proliferation and polyfunctionality of TILs, and endogenous
memory T cells expansion. The interactions among these immune
cells are mediated by the interdependent loop between interleukin-7
(IL-7) and interferon gamma (IFN- g) signaling (27). These provided
direct evidence that additional blockade of PD-1 hindered tumor
from breaking away from an anti-CTLA-4 inhibitor monotherapy
and additional blockade of PD-1 handicapped tumor from getting
rid of a-CTLA-4 monotherapy via protecting immunity by both T-
cell-dependent, and natural killer (NK)/natural killer T (NKT) cell-
independent fashions (27). In clinical trials, current PD and CTLA-4
combinations are paired as durvalumab/tremilimumab and
nivolumab/ipilimumab. CheckMate-032 assessed nivolumab
monotherapy and two combinations of nivolumab and
Frontiers in Oncology | www.frontiersin.org 3
ipilimumab in participants with platinum-refractory advanced
bladder cancer. The dosage was variant in the combination
groups, with nivolumab 1 mg/kg + ipilimumab 3 mg/kg (n = 26)
in one cohort and nivolumab 3 mg/kg + ipilimumab 1 mg/kg (n =
104) in the other. From preliminary data, OS and objective response
rate (ORR) were stronger in the cohort receiving a greater
ipilimumab dose (10.2 months and 39%) compared to nivolumab
monotherapy or the other combination (7.3 months and 26%) (28)
(NCT01928394). Optimal sequencing is being tested in TITAN-
TCC, in which subjects begin with nivolumab monotherapy
induction and, should no response occur, receive boost cycles of
nivolumab/ipilimumab (NCT03219775). Potential utility in the first
line is being tested in CheckMate-901, previously discussed for its
gemcitabine + cisplatin (GC)+ nivolumab arm, is also testing
nivolumab/ipilimumab. This combination will be assessed against
standard of care (SoC) chemotherapy, and the study aims for an
enrollment of 897 (NCT03036098). Multiple umbrella trials are
investigating durvalumab/tremelimumab together in advanced
cancers. STRONG (NCT03084471) compares a fixed dose
regimen of durvalumab 1500 mg + tremelimumab 75 mg to
durvalumab 1500 mg monotherapy in advanced cancers including
bladder cancer. Subjects will have progressed on prior
chemotherapy. Durvalumab/tremelimumab is being compared to
SOC chemotherapy in a phase III trial dubbed DANUBE
(NCT02516241). Stage IV bladder cancer patients formed the
study’s population (est. n = 1200) and were randomized 1:1:1
to durvalumab monotherapy, durvalumab with tremelimumab,
or chemotherapy (29). This combination was assessed in a
phase I/II study of advanced cancers including bladder cancer with
the addition of intra-tumoral polyinosinic-polycytidylic acid-poly-l-
lysine carboxymethylcellulose, which is a toll-like receptor 3 agonist
and a modulator of the tumor microenvironment (NCT02643303).

Combination of Radiation Therapy
With Immunotherapy
Radiation therapy (RT) has evolved over the past several decades as
a powerful way to treat cancer (30). However, it has some
limitations as it alone cannot generate a systemic effect.
TABLE 1 | Ongoing clinical trials of novel combination therapies in bladder cancer and urothelial cancer.

Study number Eligibility Phase Intervention

NCT01928394 Advanced or metastatic bladder cancer Phase I/II Nivolumab and Ipilimumab
NCT03084471 Advanced bladder cancer Phase III Durvalumab and Tremelimumab
NCT03219775 Metastatic or advanced transitional cell carcinoma Phase II Nivolumab and Ipilimumab
NCT03036098 Unresectable or metastatic UC Phase III Nivolumab, Ipilimumab, Gemcitabine/Cisplatin/Carboplatin
NCT02516241 Unresectable stage IV UC Phase III Durvalumab and Tremelimumab
NCT04223856 Advanced or metastatic UC Phase III EV and Pembrolizumab
NCT03519256 BCG unresponsive high-risk NMIBC Phase II Nivolumab, BMS-986205 and BCG
NCT02560636 Advanced bladder cancer Phase I Pembrolizumab and radiotherapy
NCT02643303 Bladder cancer Phase I/II Tremelimumab, Durvalumab and polyICLC
NCT03473743 Metastatic or advanced UC Phase Ib-II Erdafitinib, Cetrelimab and Platinum
NCT03473756 UC Phase Ib/II Rogaratinib and Atezolizumba
NCT04172675 High-risk NMIBC Phase II Erdafitinib, Gemcitabine/Mitomycin C
NCT03745911 Metastatic UC Phase II Paclitaxel and TAK-228
NCT02546661 MIBC Phase I Durvalumab, Olaparib, AZD1775 and Vistusertib
NCT03022825 BCG unresponsive high grade NMIBC Phase II ALT-803 and BCG
BCG, bacillus Calmette-guerin vaccine; EV, enfortumab vedotin; MIBC, muscle-invasive bladder cancer; NMIBC, non-muscle-invasive bladder cancer; polyICLC, polyinosinic-polycytidylic
acid-poly-l-lysine carboxymethylcellulose; UC, urothelial carcinoma.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Peng et al. Combination Treatment on Bladder Cancer
Integration of RT with the immunotherapies has been a subject of
intense research recently. The rationale behind the combination was
initially derived from abscopal effect observations. It is a
phenomenon whereby radiation at one site leads to the regression
of metastatic cancer at a distant site that has not been exposed to any
radiation (31). Advances in immunology have progressed our
understanding of the phenomena, and while the mechanism is
still not entirely elaborated, the explanation for combining
immunotherapy and radiation to increase the frequency of
the abscopal effect is irradiation activated cytotoxic T cells
to target tumor-associated antigens (TAAs) within human
bodies, thereby overcoming the immunosuppressive tumor
microenvironment. Furthermore, radiotherapy might increase the
response rate of combination by stimulating the accumulation and
activation of CD8 + T cells (32) to create a more permissive
tumor microenvironment.

Preclinical and clinical trials showed that the combination of
the immunotherapy and RT had the potential to provide a
synergistic effect in treating cancer, including NMIBC (33).
Interestingly, T-cell activity was important for radiation
efficacy in tumor control. Wu et al. found that radiation
transiently increased PD-L1 expression, and PD-1 or PD-L1
blockade not only led to tumor control, but also enhanced the
efficacy of RT, and the combination had increased efficacy
compared with either modality alone (34). In addition to
improving local control of treated tumors, several recent cases
of the abscopal effect with RT published in the literature were in
the setting of ICI therapy, suggesting that the combination of
ICIs and RT may be the scenario where the abscopal effect may
occur with a higher frequency (35, 36). Finally, the combination
of immunomodulating agents and RT may result in protective
immunologic memory, preventing subsequent recurrences of
disease. However, there are many unanswered questions
regarding the practical and logistic combination of RT and
immunotherapy. For example, the optimal consequence of
immunotherapy and RT, the optimal immunotherapy dose,
and the duration of radiotherapy need to be clarified.
Additionally, details regarding the RT, such as the optimal
dose/fractionation, target volume, and site to irradiate are not
known (37). Since an inappropriate combination can increase
the patient ’s therapeutic toxicity, the PLUMMB trial
(Pembrolizumab in Muscle-invasive/Metastatic Bladder cancer)
(NCT02560636) is in a phase I study to test the tolerability of a
combination of weekly RT with pembrolizumab in patients with
metastatic or locally advanced urothelial cancer of the bladder. In
the first dose-cohort, patients received pembrolizumab 100 mg
3-weekly, starting 2 weeks before commencing weekly adaptive
bladder RT to a dose of 36 Gy in 6 fractions. The first dose-
cohort was stopped after 5 patients, having met the predefined
definition of dose-limiting toxicity. Three patients experienced
grade 3 urinary toxicities, 2 of which were attributable to therapy.
One patient experienced a grade 4 rectal perforation. In view of
these findings, the trial had been paused and the protocol would
be amended to reduce RT dose per fraction (38). As a result,
clinical trials are underway on the optimal combination of
radiation and immunotherapy to treat various cancers,
Frontiers in Oncology | www.frontiersin.org 4
including bladder cancer (37). In conclusion, the combination
of radiotherapy and immunotherapy has a great prospect
(Figure 1A).

Combination of IDO1 With Immunotherapy
Indoleamine 2,3-dioxygenase 1(IDO1) enzyme is involved in the
catabolism of the essential amino acid tryptophan and plays an
important role in immune evasion and tumor growth through
production of kynurenine. The IDO1 enzyme is activated in
many human cancers including NMIBC (40, 41). Recent data
indicate that IDO1 gene expression characterizes a poorly
differentiated, more aggressive NMIBC, with IDO1 gene
expression in tumor tissues directly correlating with tumor size
(R (correlation coefficient) =0.24, p=0.04) and stage (R=0.25,
p=0.03) (41). Moreover, there was a trend toward longer OS in
patients with tumors that did not express IDO1. IDO inhibitors
such as BMS-986205, epacadostat, indoximod, navoximod, and
HTl-1090 are in various stages of clinical development in several
cancers. There is evidence supporting an interrelationship
between the PD-1/PD-L1 and IDO1 axes, with IDO functional
activity linked with increased PD-L1 positive cytotoxic T-cells
and increased CTLA4 expression by regulatory T cells (42).
Therefore, it has been proposed that parallel inhibition of these
pathways may lead to a more effective activation of T cell
mediated antitumor immune response.

Indeed, in an advanced bladder cancer cohort (n=29) of an
ongoingmulti-arm, phase I/IIa dose-escalation and expansion study
(CA017-003), treatment with oral BMS-986205 (100 or 200 mg
once daily) in combination with nivolumab (2 schedules) resulted in
an ORR of 34% and disease control rate of 48%. The ORR was 38%
in patients with no prior immunotherapy (n=26), 47% in patients
with tumor PD-L1 1% (n=15), and 27% in those with tumor PD-L1
<1% (n=11). The authors reported that the combination of BMS-
986205 plus nivolumab was well tolerated (43). Preliminary phase I/
II results of the ECHO-202/KEYNOTE-037 trial also demonstrated
that oral epacadostat plus pembrolizumab was well tolerated and
yielded an ORR of 35% in patients with advanced UC (43).
Preliminary antitumor signals in the advanced UC cohort of the
CA017-003 study and the ECHO-202/KEYNOTE-037 study are
suggestive of potential activity in bladder cancer (44). Based on these
data, the aforementioned CheckMate 9UT trial has been designed to
investigate four different treatment regimens (nivolumab alone,
nivolumab plus BCG, nivolumab plus BMS-986205, or nivolumab
plus BMS-986205 and BCG) in BCG-unresponsive, high-risk
NMIBC (NCT03519256)

Combination of PARP Inhibitors
With Immunotherapy
Poly ADP-ribose polymerase (PARP) inhibitors (PARPi), such
as Olaparib, amplifies the DNA damage, augments the
mutational burden and promotes the immune priming of the
tumor by increasing the neoantigen exposure and increasing
tumor-infiltrate T lymphocytes (45). Studies also reported that
defects in DNA damage repair (DDR) genes could be potential
predictive biomarkers of clinical response to ICIs in metastatic
urothelial bladder cancer (46, 47). However, the use of PARPi
January 2021 | Volume 10 | Article 539527

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Peng et al. Combination Treatment on Bladder Cancer
can also lead to upregulation of PD-L1 in tumor cells, leading to
tumor immune escape. Therefore, the combination of PARPi
and immunosuppressants will benefit patients including those
with bladder cancer. Interestingly, a more recent study, in 60
patients with advanced UC, had indicated that defects in DDR
pathways may enrich for antitumor responses to anti–PD-1/L1
(48). In this study, patients with a deleterious alteration in at least
one of 34 DDR genes showed a response rate of 80% versus only
18.8% in patients lacking these alterations. Thus, the
combination of PARPi and the anti-PD/PD-L1 targeting may
represent a promising strategy for bladder cancer treatment (39)
(NCT02546661). Ross et al. summarized available data and
found that combinations of PARPi and anti–PD-1/L1 agents
were well tolerated and demonstrated antitumor activity in a
range of tumor types (49). An open-label randomized multidrug
biomarker-directed phase Ib study, the BISCAY trial, was
designed to evaluate the effects of the treatments with the
Frontiers in Oncology | www.frontiersin.org 5
PARPi Olaparib as a single agent therapy, or in association
with the ICI durvalumab (anti-PD-L1 antibody), for treatment of
urothelial bladder cancer patients who had progressed from prior
treatment and also presented defects in DNA-repair genes
(NCT02546661) (Figure 1B).

Epigenetics is defined as a heritable modification to DNA
without alteration in the nucleotide sequence, resulting in altered
gene transcription and chromatin structure. Epigenetic
modifications include DNA methylation and post-translational
histone modifications involving methylation or acetylation are
common in bladder tumors. Growing evidence showed that
epigenetic drugs, such as DNA methyltransferase inhibitors can
upregulate immune signaling through demethylation of
endogenous retroviruses and cancer testis antigens. It provides a
strong rationale for the combination of epigenetic drugs with ICIs
(50, 51). Interestingly, RRx-001, not only a new DNA damage
inducer, but also an epigenetic and immunomodulatory drug, has
A

B

FIGURE 1 | (A) The combined use of CTLA-4 and PD-1 inhibitors promotes anti-cancer immune cells to enter the surrounding of the tumor tissue and activates
immune response. (B) The treatment of PARP inhibitors leads to PD-L1 upregulation in tumor cells. Combining PARP inhibitors with immunosuppressants blocks
tumor immune escape (39).
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been recently investigated as single chemotherapeutic agent to re-
sensitize tumor to prior therapy (52–54). The low toxicity
profile of RRx-001 differentiates this agent from conventional
anticancer drugs, such as chemotherapeutics, and epigenetic
agents (54, 55). Indeed, RRx-001 is able to trigger DNA
damage response in urothelial bladder cancer cells, reducing the
DNA methyltransferase1(DNMT1) levels and increasing the
transcriptional levels of the interferon type III and the interferon
stimulated genes (56). Thus, it enhances the sensitivity to ICIs.
Criscuolo D et al. investigated the effects of combining three classes
of drugs together with epigenetic agents and immune-checkpoint
inhibitors in bladder cancer for the purpose of reducing toxicity and
doses of monotherapy alone (39).

Combination of Antibody-Drug Conjugates
(ADSs) With Immunotherapy
The response of immunotherapy is a big concern in clinic. The
combination of ADCs with immunotherapy attempts to increase
patients’ overall response rate. ADCs are monoclonal antibodies
conjugated to cytotoxic agents through a chemical linker, which can
achieve selective targeting of cancer cells (57). In December 2019,
the United States Food and Drug Administration (FDA) approved
the first ADCs, enfortumab vedotin (EV), for the treatment of
platinum-refractory and immune checkpoint blockade-refractory
locally advanced or metastatic UC. A phase I study of EV in 112
patients with immunotherapy and platinum refractory metastatic
UC treated at the 1.25mg/kg dose level indicate a 43% confirmed
ORR, including five complete responses (50).

A phase 1b study (58) investigating combination of EV (1.25
mg/kg) plus pembrolizumab (200mg) for cisplatin-ineligible
patients with metastatic UC. The preliminary data showed that
patients tolerated it well and achieved a response rate of 73.3%
Frontiers in Oncology | www.frontiersin.org 6
(59). Based on the efficacy observed in the trial, a randomized
phase III study (NCT04223856) of EV and pembrolizumab with
or without platinum-based chemotherapy for the first-line
treatment of locally advanced or metastatic urothelial cancer
was initiated (60).
TARGETED THERAPY

Targeted therapy is a revolutionary treatment which can prevent
the growth, progression, and metastasis of cancer by interfering
with specific molecules. This therapy has achieved satisfactory
results in the treatment of various cancers, such as breast cancer
and colon cancer (61). However, the contribution of targeted
drugs in UC is very limited due to the lack of efficacy or
treatment-related toxicity.

Targeted therapies have not been added to the crucial
backbone of the treatment in bladder cancer so far.
Comprehensive analyses of MIBC samples, expanding from
131 to 412, identified significantly mutated genes, including
FGFR3, phosphatidylinositol 3 kinase (PI3K)/protein kinase B
(AKT) pathway, Peroxisome proliferator-activated receptors
(PPAR) g mutations, DNA repair, p53 and cell cycle (7, 62).
The good news is that, in April of 2019, the US FDA approved
erdafitinib as an oral pan-FGFR-targeted agent indicated for
metastatic urothelial cancer (UC) patients with susceptible
FGFR3 or FGFR2 alterations (12). Despite genomic instability,
molecular heterogeneity, and pathway redundancy still
presenting challenges to targeted therapies in bladder cancer,
researchers are making strategies to improve efficacy. Here, we
present the combination effects of targeted therapies with other
drugs in preclinical settings (Figure 2).
FIGURE 2 | Combination of targeted therapy with immunotherapy or chemotherapy in bladder cancer. FGFR and PI3K/AKT/mTOR signing pathways are potential
targets in bladder cancer. Blocking FGFR or PI3K/AKT/mTOR pathway decreased PD-L1 levels and increased immunotherapy response. On the other hand, these
targeted drugs increased the pro-apoptotic effect and cytotoxic effect of chemotherapy drugs.
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Combination of FGFR Inhibitors
With Immunotherapy
Erdafitinib, as the first TKI approved in UC therapy, has been
demonstrated to be beneficial in clinical trials. Similar to other
targeted drugs, toxicity and drug responses become concerns.
Research has suggested that the presence of an antitumor T-cell
response is fundamental for the activity of immunotherapy (63).
Recently, Sweis et al. showed that UC can be divided into T-cell-
inflamed and non-T-cell-inflamed subtypes. The latter phenotype
correlated with a resistance to ICIs, but was also linked to FGFR3
mutation, providing a rationale for combining FGFR inhibitors and
anti-PD-1/PD-L1 (64). Preliminary data in the FIERCE-22 study
showed that the ORR was 36% in the overall population, and a
response was observed in both wild type (ORR33%) and mutated
(ORR 43%) FGFR3 patients receiving vofatamab (FGFR3 inhibitor)
and pembrolizumab (anti-PD-1) (65). Powles et al. conducted a
phase I study (NCT02546661) enrolled with platinum-resistant and
ICI naïve patients with A/M UC harboring FGFR mutations (66).
However, the results showed that AZD4547 (FGFR1-3 inhibitor)
plus durvalumab increased response modestly compared to
AZD4547 alone (n=21, ORR 29% versus n=15, ORR 20%,
respectively), suggesting that the tumor mutations burden might
contribute rather small differences to ICI response. A phase Ib/II
study of rogaratinib combined with atezolizumab in patients with
untreated FGFR-positive UC is currently in progress
(NCT03473756). Likewise, the safety and efficacy of erdafitinib
plus JNJ-63723283 (an anti-PD-1 monoclonal antibody) are
investigated by a phase Ib/II study (NCT03473743) in advanced
UC patients with FGFR gene alterations.

FGFR inhibitors may induce tumor environment changes and
sensitize ICIs. However, FGFR alterations in UC contribute to
intrinsic resistance to FGFR inhibitors. Thus, some patients with
FGFR point mutations or fusions did not respond to erdafitinib
or other FGFR inhibitors. Lima et al. observed activating FGFR3
mutants and FGFR3-TACC3 (transforming acidic coiled-coil
containing protein 3) fusion constitutively elevated Src levels
(67). Low dose dasatinib sensitized UC to FGFR TKIs, implying
that the combination of FGFR with Src inhibitors may overcome
intrinsic resistance compared with FGFR TKI monotherapy.

Combination of PI3K/AKT/mTOR Inhibitors
With Immunotherapy or Chemotherapy
The PI3K/AKT/mammalian target of rapamycin (mTOR)
pathway is an important signal pathway closely related to
protein synthesis, cell growth, survival and tumorigenesis (68).
The deregulation of this signaling pathway is present in 42% of
UC, including mutations, copy number alterations, or RNA
expression changes (62). Despite the frequent deregulation,
clinical trials using PI3K/mTOR inhibitors have not shown
prominent success. The PIK3CA gene is an oncogene that
implicates the overactivation of the PI3K/AKT/mTOR
pathway. Recurrent somatic mutations of PIK3CA increase the
activity of PI3Ks and the loss of phosphatase and tension
homolog (PTEN, a tumor suppressor that inhibits PI3K) also
can result in the overactivation of the PI3K/AKT/mTOR
pathway (69).
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A study in human glioma suggested that the loss of PTEN and
the consequent upregulation of the PI3K-AKT pathway increased
the expression of PD-L1 post-transcriptionally, thus promoting
immune resistance (70). Additionally, other reports validated this
resistance in melanoma, prostate and breast cancers, making the
inhibition of PI3K-AKT pathway a potential strategy to overcome
immunotherapy-resistance (71, 72).

Recently, a study showed that the PIK3CA mutation
correlated with immune cell infiltration. In human urothelial
bladder cancer samples, the expression of the immune gene
signature which represents the immune cell infiltration in
PIK3CA-mutated tumors was significantly lower than that of
wild type counterparts. It means PIK3CA-mutated tumors may
show lower response to ICIs therapy. In a humanized mouse
model of bladder cancer with PIK3CA mutation, the treatment
of BKM120(a pan-PI3K inhibitor) increases the expression of
chemokines and immune genes. Notably, compared to the single
treatment, BKM120 combined with Nivolumab (an anti-PD-
1antibody) significantly inhibited the growth of PIK3CA-
mutated tumors (73). And a clinical trial is now investigating
the therapeutic promise of durvalumab (an antibody that blocks
PD-L1) in combination with vistusertib (AZD2014) in MIBC
patients with rapamycin-insensitive companion of mTOR
(RICTOR) amplification, or tuberous sclerosis complex (TSC)
1/1 mutation. (NCT02546661 module E)

Chemotherapy drugs kill tumor cells primarily through the
induction of apoptosis. The activation of PI3K/AKT/mTOR
pathway in tumor cells reduces the pro-apoptotic effect and the
cytotoxic effect of chemotherapy drugs, leading to resistance
(74). Therefore, inhibition of this signaling pathway may
enhance the sensitivity of chemotherapy drugs.

Zeng et al. reported that in the patient-derived xenograft
models with a PI3K mutation or amplification, the combination
groups (pictilisib with cisplatin and/or gemcitabine) achieved
significant delay of tumor growth and increased survival
compared with any single drug (pictilisib/cisplatin/
gemcitabine) (75). When combining TAK-228 (an oral
mTORC1/2 inhibitor) with TAK-117 (PI3Ka inhibitor) or
with paclitaxel, strong synergistic effect was also observed in
preclinical bladder cancer models (76). These results facilitate a
clinical trial to investigate efficacy of TAK-228 plus paclitaxel in
patients with metastatic bladder cancer (NCT03745911). Similar
results were obtained through combining the PI3K/mTOR dual
inhibitor NVP-BEZ235 with cisplatin in osteosarcoma, triple
negative breast cancer and bladder cancer (77, 78). Moon et al.
demonstrated that when NVP-BEZ235 was used in combination
to treat cisplatin-resistant T24R2 cells, the IC50 of cisplatin and
NVP-BEZ235 could be reduced by 3.6- and 5.6-fold,
respectively (79).

However, the results of clinical trials seem to be inconsistent.
A phase II trial of BEZ235 evaluated in 20 advanced bladder
cancer patients after failure of platinum-based therapy conveyed
a modest activity but a hostile toxicity with 50% grade 3-4
adverse effects (80). Single-agent mTOR inhibitor temsirolimus
and everolimus also showed limited efficacy (81, 82), whereas
one patient carrying a TSC 1-inactivating mutation treated with
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everolimus had notable tumor shrinkage and durable response,
suggesting the blockade of the PI3K/mTOR axis could improve
outcome in some specific patients (83). The role of paclitaxel/
everolimus combination in metastatic UC was investigated in the
phase II AUO AB 35/09 trial, and the results were modest (PFS
was 2.9 months, 3 months and ORR 13%) (84). Thus, better
understanding of the molecular landscape of these tumors and
more precise patient selection might be helpful for a more
rational design of combination therapy.
CHEMOTHERAPY

Chemotherapy is a routine treatment in cancer. There are two
different chemotherapeutic routes in bladder cancer, including
intravesical BCG/MMC for NMIBC and systemic chemotherapies
for MIBC. Although it has brought benefits to patients in the past
decades, intolerant toxicity needs to be improved. Novel
combinations of chemotherapeutic drugs with others are studied.

Combination of Interleukin-15 Super-
Agonist With BCG
Interleukin-15 (IL-15) is implicated in the development,
proliferation, and activation of effector NK cells and CD8+
memory T cells. However, its short half-life, high dose
requirement for clinical activity, and prohibitive toxicity
represent barriers for successful clinical trial development (85).
To overcome these shortcomings, ALT-803 was developed as a
novel fusion complex. Recombinant IL-15, a super-agonist due
to an activating N72D mutation, is bound to the soluble receptor
IL-15RaSushi-Fc. This complex has improved bioavailability,
increased serum half-life, longer retention in lymphoid organs,
and in vivo biological activity up to 25 times that of native IL-15.
ALT-803 has demonstrated potent immunostimulatory effects in
terms of triggering a local cytokine response as well as activating
NK and CD8+ T cells in animal models (85). In a carcinogen-
induced rodent NMIBC tumor model, intravesical ALT-803 plus
BCG treatment reduced tumor burden by 46% vs ALT-803
(35%) or BCG (15%) alone (86). An ongoing multicenter,
open-label, single-arm phase II trial (QUILT-3.032) is
evaluating ALT-803 in combination with BCG administered
via intravesical instillation in patients with BCG-unresponsive
NMIBC (NCT03022825). Recently presented preliminary results
indicate that six of the seven evaluable patients with BCG-
unresponsive carcinoma in situ achieved a CR at the 12-week
response assessment (87).

Combination of Chemotherapeutic Drug
MMC With BCG/Gemcitabine
BCG and Mitomycin C (MMC) are representatives of clinical
intravesical immunotherapy and chemotherapy drugs
for NMIBC.

A randomized prospective trial involved 407 patients with
intermediate- to high-risk NMIBC found that sequential
combination of MMC plus BCG is more effective but more
toxic than BCG alone. Thus, it was recommended to patients
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with a high likelihood of recurrence, such as those with recurrent
T1 tumors (88). Another study including 151 patients with high-
risk NMIBC demonstrated outstanding efficacy for sequential
BCG and EMDA-MMC (Electro Motive drug administration of
MMC). The complete-response rate was 87%, with 86% and 93%
remaining disease-free at one and two years respectively which is
better than any previously published outcomes in this
disease (89).

Gemcitabine is a pyrimidine analogue that incorporates into
actively replicating DNA and thereby prevents further synthesis,
whereas MMC cross-links DNA moieties to prevent synthesis
(90). In addition, MMC is a vesicant to the urothelium, which
could increase permeability to subsequent gemcitabine
administration through its irritating action. So, it is available to
combine MMC with gemcitabine as a possibly effective way to
enhance mutual absorption and control tumor progression (91).
Sequential intravesical gemcitabine and MMC in NMIBC
patients appeared to be well tolerated and yielded a response
in a good proportion of patients with recurrent BCG refractory
bladder cancer or who are not surgical candidates (92).

Furthermore, combination of MMC with other novel
methods also suggests improved treatment effect. Proliferating
cell nuclear antigen (PCNA) is an essential scaffold protein in
multiple cellular processes including DNA replication and repair
(93). More than 200 proteins, many involved in stress responses,
interact with PCNA through the AlkB homologue 2 PCNA-
interacting motif (APIM), including several proteins directly or
indirectly involved in repair of DNA interstrand crosslinks
(ICLs) (94). Gederaas et al. targeted PCNA with a novel
peptide drug containing the APIM sequence, ATX-101, to
inhibit repair of the DNA damage introduced by the
chemotherapeutics. Results showed that ATX-101 increased
the anticancer efficacy of the ICL-inducing drug MMC and
ATX-101 given intravesically in combination with MMC
penetrating the bladder wall and further reducing the tumor
growth in both the slow growing endogenously induced and the
rapidly growing transplanted tumors (95). Survivin inhibits
apoptosis and enables tumor cells to escape from therapy-
induced senescence. High expression of survivin is associated
with bladder cancer aggressiveness and recurrence. Cui et al.
demonstrated that silencing survivin enhanced activity of MMC
in human bladder RT4 xenografts, representing a potentially
useful chemo-gene therapy for bladder cancer (96). These data
indicate that combination of MMC can be a useful approach to
improve the effect of chemotherapy.

Platinum-Based Combination Treatment
Chemotherapy with MVAC (methotrexate, vinblastine,
doxorubicin, and cisplatin) or GC (Gemcitabine plus cisplatin)
are considered the gold standard of care for MIBC. To improve
efficacy and reduce toxicity, clinical researchers are still trying to
develop new combinations. Taxanes, including paclitaxel,
docetaxel and derivatives with taxane structure, are well-
known antitumor drugs. Combination of platinum with
taxanes has emerged as an alternative option for MIBC
patients (97).
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Apart from combination of clinically available chemotherapeutic
agents, several preclinical trials focusing on novel mechanisms that
can improve efficacy and sensitize chemoresistance of cisplatin have
been studied. Obatoclax, a BH3mimetic which inhibits pro-survival
Bcl-2 family members, can inhibit cell proliferation, promote
apoptosis, and significantly enhance the effectiveness of cisplatin
in MIBC cells via inhibiting Bcl-2 and Bcl-xL and decreasing cyclin
D1 and Cdk4/6 expression levels (98). This finding can help validate
Obatoclax as a cell cycle inhibitor and increase the attractiveness of
Obatoclax as an anti-cancer drug. Enzalutamide, a synthetic
androgen receptor (AR) signaling inhibitor, synergistically
inhibited growth of bladder cancer cells more efficiently when
combined with cisplatin. This supports the feasibility for future
investigation of AR antagonists in combination with standard
chemotherapy in MIBC (99). Besides, obtained data via an
epigenomic approach suggested that Homeobox A9 promoter
methylation could serve as a potential predictive biomarker and
decitabine might sensitize resistant tumors in patients receiving
cisplatin-based chemotherapy, but clinical trials are needed to
confirm this conclusion (100).
DISCUSSION

As we stated above, due to the efforts of the scientific community,
the management of bladder cancer, especially for advanced patients,
has made great progress recently despite the slow rate of
development (101). Two milestones, the application of ICIs and
approval of oral FGFR-TKI erdafitinib have made tremendous
progress (12, 17). ICIs bring a revolutionary impact on patients
with durable outcomes in a subset of individuals with tolerable
adverse event profiles (12). More importantly, marked advances to
understand the molecular interplay within the immune
environment have been generated in the past decades (63, 64).
Thus, combination of immunotherapy with other therapies has
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been designed to improve efficacy, increase responses and reduce
toxicity. Simultaneously, antibody-drug conjugates represent a new
therapeutic modality in urothelial cancer. Enfortumab vedotin (EV),
is the first antibody-drug conjugate, which gained approval in
December, 2019 in advanced UC. Clinical trials seek to improve
its efficacy via novel combinations such as combining EV with
immunotherapy drugs. There are also new ADCs under
investigation and showing promise. Although the results show
that combination therapies produce encouraging outcomes, there
are still several unsolved issues. First, the detailed mechanisms of
each ICIs need to be investigated. Second, biomarkers are required
to analyze through molecular diagnosis helping in understanding
patient-specific immune-suppression. Third, toxicity should be
tolerable with proper drug doses and irradiation duration time.

The approval of FGFR-TKI erdafitinib made a breakthrough
for metastatic bladder cancer targeted therapy. Combination of
FGFR-TKI with ICIs has the potential to overcome drug-
resistance barriers as well as augment immunogenicity of the
tumor – even in patients who lack response to ICIs monotherapy
(65). As pointed out in the previous section, PI3K/AKT/mTOR
pathway plays an important role in bladder tumorigenesis,
conferring PI3K/AKT/mTOR potential targets in bladder
cancer. Unfortunately, clinical results of these targeted
inhibitors, alone or in combination, are not very encouraging
so far (80–82). The possible reason is that the molecular
landscape and pathophysiology of patients were not fully and
deeply understood. Thus, assays such as genome sequencing and
immunohistochemical analyses could be employed to select
appropriate patients.

Intravesical drugs including BCG and MMC, the clinical
guidelines recommended for NMIBC after tumor resection
have been clinically used for a long time (102, 103). The past
decades witnessed their benefits to patients. However, recurrence
has been a big challenge all the time for these administration
strategies. New multiagent intravesical chemotherapy regimens
FIGURE 3 | The overview of various novel combinations in bladder cancer.
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for instance, either interleukin-15 super-agonist or MMC with
BCG have been developed in recent years, dramatically
enhancing antitumor activity of BCG (2). Either GC or MVAC
is well-accepted neoadjuvant chemotherapies for MIBC (104). As
stated above, pathologic information of patients largely helps
medical doctors to make the decision to choose either GC or
MVAC to treat bladder cancer patients, depending on molecular
characteristics of individuals (105).

In addition, intravesical administration route is a particular
way for bladder cancer treatment due to the unique physiological
features of urinary bladders. The strategy increases the local
concentrations within the bladder and avoids the systemic
toxicity of drugs. Due to the possible interactions among
drugs, the physical and chemical profiles of drugs should be
carefully considered when combining.
CONCLUSIONS

In conclusion, combination therapy is a classic and proven
strategy to improve patients’ survival. Many combination
therapies as shown in Figure 3 such as dual immunotherapies
Frontiers in Oncology | www.frontiersin.org 10
and alternate ICIs with targeted therapies are understudied,
holding considerable promise for treating bladder cancer. The
revolution of bladder cancer treatment will keep moving forward
with a good understanding the biology of bladder cancer based
on rapid drug development.
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