
α-Synuclein pathology spread through the brain connectome is 
modulated by selective vulnerability and predicted by network 
analysis

Michael X. Henderson1,*, Eli J. Cornblath2,4, Adam Darwich1, Bin Zhang1, Hannah Brown1, 
Ronald J. Gathagan1, Raizel M. Sandler1, Danielle S. Bassett2,3,5,6,7, John Q. Trojanowski1, 
Virginia M.Y. Lee1

1Institute on Aging and Center for Neurodegenerative Disease Research, Department of 
Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 
Philadelphia, Pennsylvania, USA

2Department of Bioengineering, School of Engineering and Applied Science, University of 
Pennsylvania, Philadelphia, Pennsylvania, USA

3Department of Electrical & Systems Engineering, School of Engineering and Applied Science, 
University of Pennsylvania, Philadelphia, Pennsylvania, USA

4Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 
Philadelphia, Pennsylvania, USA

5Department of Physics & Astronomy, College of Arts and Sciences, University of Pennsylvania, 
Philadelphia, Pennsylvania, USA

6Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 
Philadelphia, Pennsylvania, USA

7Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 
Philadelphia, Pennsylvania, USA

Abstract

Studies of patients afflicted by neurodegenerative diseases suggest that misfolded proteins spread 

through the brain along anatomically-connected networks, prompting progressive decline. 

Recently, mouse models have recapitulated the cell-to-cell transmission of pathogenic proteins and 

neuron death observed in patients. However, factors regulating spread of pathogenic proteins 

remain a matter of debate due to an incomplete understanding of how vulnerability functions in 
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the context of spread. Here, we use quantitative pathology mapping in the mouse brain combined 

with network modeling to understand the spatiotemporal pattern of spread. α-Synuclein pathology 

patterns are well-described by a network model based on two factors—anatomical connectivity 

and endogenous α-Synuclein expression. The map and model allow assessment of selective 

vulnerability to α-Synuclein pathology development and neuron death. Finally, we use 

quantitative pathology to understand how the G2019S LRRK2 genetic risk factor impacts the 

spread and toxicity of α-Synuclein pathology.

Keywords
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INTRODUCTION

The synaptic protein α-Synuclein misfolds in Parkinson’s disease (PD)1–3 and related 

diseases and aggregates into large intraneuronal inclusions known as Lewy bodies (LBs)4. 

Recent evidence suggests that α-Synuclein not only accumulates in LBs, but can itself act as 

an agent of disease, templating the aggregation of α-Synuclein in anatomically connected 

neurons throughout the brain5. While the cell-to-cell transmission of α-Synuclein explains 

much of the pathology and symptom progression seen in PD and related synucleinopathies, 

certain neuron populations are clearly more vulnerable than others6, resulting in specific 

degeneration of certain neurons while sparing others nearby7. Therefore, the extent to which 

intrinsic cell vulnerability or cell-to-cell spread of α-Synuclein pathology drive of PD 

pathogenesis is still a matter of debate.

Exogenous misfolded α-Synuclein injected into wildtype mice induces misfolding of 

endogenous α-synuclein into phosphorylated, aggregated inclusions resembling human 

LBs8,9. These inclusions are found in many brain regions directly or indirectly connected to 

the injection site, and the inclusions induce a time-dependent degeneration of the inclusion-

bearing neurons8,10,11. Previous work has demonstrated that pathogenic α-Synuclein is 

transmitted extracellularly since spread can be blocked by an anti-α-Synuclein antibody12, 

or by blocking a receptor for misfolded α-Synuclein13. Thus, injection of misfolded α-

Synuclein into mice is an ideal model to understand the spatiotemporal pattern of pathogenic 

protein spread and how network connectivity and neuronal vulnerability affect spreading 

dynamics.

In this study, we used quantitative assessment of α-Synuclein pathology in non-transgenic 

(NTG) mice injected with α-Synuclein pre-formed fibrils (PFFs) to generate a 

spatiotemporal map of pathology spread and neuron death. A network diffusion model based 

on anatomical connectivity explains much of the variation in pathological burden. Further, 

α-Synuclein gene (Snca) expression correlates well with the differential vulnerability 

observed between regions, suggesting that anatomical connectivity and α-synuclein protein 

expression are major contributors to pathogenic protein spread. Finally, we sought to 

determine how genetic risk factors affect network dynamics of pathological α-Synuclein 

spread. We performed quantitative pathology mapping in transgenic mice carrying the 
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Gly2019Ser (G2019S) leucine-rich repeat kinase (LRRK2) risk factor for PD14 and assessed 

how transgene expression affects network properties of α-Synuclein spread, neuron 

vulnerability and neuron toxicity. The quantitative pathology maps and network model 

presented here represent an important framework for understanding and treating progressive 

neurodegenerative diseases.

RESULTS

Brain-wide quantification of α-Synuclein pathology

A model for PD pathogenesis has recently been described in which α-Synuclein pathology 

can be induced in non-transgenic mice following a single injection of α-Synuclein pre-

formed fibrils (PFFs)8 but pathology is not induced by injection of either monomeric α-

Synuclein or PBS8. While the α-Synuclein pathology in these mice has been described 

qualitatively, we sought to understand the spatiotemporal spread of α-Synuclein pathology 

quantitatively and to use this data to develop a network model of spread. To accomplish 

these aims, we injected 3-month-old NTG (C57BL/6J) mice in the dorsal striatum with 5 μg 

α-Synuclein PFFs and allowed them to age 1, 3 or 6 months post-injection (MPI, Fig. 1a). 

Brains embedded in paraffin were sectioned and stained using traditional 

immunohistochemical techniques for pathological misfolded (Syn506) and phosphorylated 

(pS129) α-Synuclein. These sections were then scanned into a digitized format, allowing for 

automated quantitation of α-Synuclein pathology burden. An expert in mouse 

neuroanatomy, but blinded to treatment, manually annotated 172 regions in 5 coronal slices 

for each mouse (Fig. 1b, Supplementary Fig. 1). These anatomical regions were selected to 

encompass all major regions in which α-Synuclein pathology appears. Regions with little α-

Synuclein pathology but a large number of nuclei, such as the thalamus and mesencephalon, 

were grouped so as to minimize error in annotation and to maximize efficiency.

A simple quantitative algorithm identified the percentage of each region occupied with α-

Synuclein pathology above a threshold 0.157 optical density (Fig. 1b). To minimize 

sampling bias, a completely separate set of sections flanking the original sections was 

immunostained, annotated and analyzed in a similar manner. Representative sections for all 

regions can be found in Supplementary Fig. 17. The mean of the two sets is reported in 

Supplementary Table 1 and is used in all subsequent analysis (n, 1 MPI=4, 3 MPI=6, 6 

MPI=6).

Dynamic spread patterns in non-transgenic mice

Regional pathological burden values differed by greater than 1000-fold and revealed 

dynamic patterns of regional α-Synuclein pathology spread over time. Several distinct 

patterns of spread were observed that are consistent with pathological progression and 

neuron death (Fig. 2a): 1) Slow initiation of pathology, but constant progression after 

initiation as seen in the ipsilateral caudoputamen (iCPu) and hippocampus (iHipp-b). 2) 

Delayed initiation, constant progression as seen in the contralateral caudoputamen (cCPu), 

likely due to the trans-synaptic nature of pathology spread. 3) Rapid initiation, slow 

progression as seen in the directly-connected ipsilateral secondary motor cortex (iM2) 

cortex. 4) Rapid initiation, rapid decrease as seen in the vulnerable ipsilateral substantia 
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nigra (iSN)8,15 which has robust cell death by 6 MPI, causing a commensurate reduction in 

pathology. 5) Constant initiation, slow progression as seen in the ipsilateral primary 

somatosensory cortex (iS1). The pathological burden of each region at all three timepoints 

can be displayed as a heat map overlaid onto the brain anatomy (Fig. 2b) or in a region by 

time graph (Supplementary Fig. 2). Whole-brain quantitation of α-Synuclein pathology 

facilitates macroscopic observation of network patterns, including the overall increase in 

pathology over time and most substantial spread to highly connected ipsilateral regions. 

While pathological α-Synuclein load in informative, we also sought to develop a brain-wide 

measure of neuron death.

Estimating neuron death

α-Synuclein pathology can take multiple morphological forms. Soon after injection, the 

majority of pathology is neuritic (Fig. 3a). By 3 MPI, much of the pathology has 

consolidated into large LB-like cell body inclusions. By 6 MPI, some regions have 

diminished pathology possibly due to consolidation of neuritic pathology into cell body 

inclusions and neuron death. Previous work has demonstrated that in the substantia nigra 

(SN)8, cortex10 and accessory olfactory nucleus11 loss of cell body pathology is indicative of 

the death of the inclusion-bearing neurons. Therefore, we proposed to obtain estimates of 

neuron loss in each region by measuring cell body inclusions throughout the brain and using 

the difference between timepoints as an estimate of neuron loss (Fig. 3a).

To exclude neuritic pathology, we developed a second algorithm to measure only cell body 

inclusions based on size (40–400 μm2), shape (round) and texture (thick) (Fig. 3b). After 

optimizing the ability of the algorithm to identify exclusively cell body pathology 

throughout the brain, the algorithm was applied to all annotated sections. The difference 

between the number of cell body inclusions at sequential timepoints was used to give an 

estimate of neuron loss (Fig. 3c). The highest observed neuron loss was in the SN between 3 

and 6 MPI, consistent with the SN’s high vulnerability in PD.

To validate the neuron loss measure, sections from 3 MPI mice between the two sections 

used for pathology quantitation were stained for tyrosine hydroxylase (TH) and the number 

of neurons in the SN were counted (Fig. 3d). The mean estimated neuron loss for this region 

from 3 to 6 MPI was then subtracted from the TH cell counts to give an estimated 35% 

neuron loss on the side ipsilateral to the injection side compared to the contralateral side 

(Fig. 3e). To test the accuracy of this estimate, every 10th section through the midbrain of 6 

MPI mice was stained for TH, and the number of TH cells was counted (Fig. 3f, 3g). The 

actual TH cell loss in the ipsilateral SN of 6 MPI mice was 34% compared to the 

contralateral side. The concordance of the estimated and actual neuron loss suggests that 

loss of cell body inclusions is a valid proxy for neuron loss.

Network model of pathological α-Synuclein spread

Observationally, many of the regions to which α-Synuclein spreads have high direct 

anatomical connectivity to the injected CPu16 (Supplementary Fig. 3). However, this 

connectivity hypothesis has not been tested using quantitative pathology data. Here, we 

experimentally validated a network diffusion model based on anatomical connectivity 
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(Supplementary Fig. 4, see Methods for details). Using this model, we estimated pathology 

as a function of time given the introduction of misfolded protein into the iCPu. The model 

specified that pathological α-Synuclein would propagate retrogradely along synapses at a 

rate proportional to the density of axonal projections, and explained much of the overall 

variability in the mean regional pathology across all mice at 1, 3 and 6 MPI (Fig. 4a). These 

results suggest that linear dynamics imposed on a network of synaptic connections can 

explain pathological α-synuclein spread over time.

To further test the ability of anatomical connectivity to predict the spread of pathology, each 

of the other brain regions was used as the seed region, and the model was propagated 

forward to generate predictions of pathological spread at 1, 3 and 6 MPI. The fit of the 

predicted pathology to the actual pathology displayed a range of accuracies, but an iCPu 

seed produced either the best or second-best fit at all time points (Fig. 4b). The other seed 

regions that showed a high fit to the empirical data had high in-projection similarity to the 

CPu (Supplementary Fig. 5), suggesting that seed regions exhibiting high degrees of 

topological similarity yield similar predictions.

To explore the directionality of spread, retrograde and anterograde connectivity values were 

inserted into the model separately. While retrograde connectivity had r=0.56–0.69 (Fig. 4a), 

anterograde alone gave r=0.32–0.43 (Supplementary Fig. 6), suggesting that α-Synuclein 

spreads primarily in a retrograde manner or that retrograde spread to cell bodies is more 

easily detected than anterograde spread to nerve terminals.

We further tested the specificity of the network diffusion model by evaluating the ability of 

proximity to the injection site and higher-order topological features to explain the observed 

α-Synuclein pathology. A network defined by the Euclidean distance between regions 

poorly explains the observed pathology (Pearson’s r=−0.066–0.1, Supplementary Fig. 7a), 

and disruption of higher-order topological features also abrogates the predictive capabilities 

of the model (Pearson’s r=0.14–0.18, Supplementary Fig. 7b).

Notably, the model requires only a single parameter to be fit, which is a time constant that 

simply scales the location of the observed time points along the trajectory of the model. We 

selected the time constant that produced the best mean fit across all time points with the 

empirical data. To ensure that the time constant we selected was externally valid, we 

performed split reliability tests. Specifically, we fit the time constant on a random sample 

composed of half of the mice, and tested its ability to explain the mean regional α-Synuclein 

pathology values in the remaining half of the mice. This procedure was repeated 100 times, 

and the fits observed when using every mouse (Fig. 4a) did not lie outside of the distribution 

of out-of-sample fits (Supplementary Fig. 8). These results suggest a high reliability of the 

estimated time constants, and low variability between mice in the time course of the spread 

of pathological α-Synuclein.

Differential vulnerability of regions is correlated with α-Synuclein expression

Intrinsic vulnerability is postulated to be a critical factor that impacts the development of 

pathology at any given time6, and the network model provides a framework to understand 

which regions are more or less vulnerable than expected if anatomical connectivity were the 
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sole driver of pathological spread (Supplementary Fig. 9). We therefore define the 

difference, or residual, between the connectivity-based prediction and observed pathology to 

be a measure of relative vulnerability. Regions wherein the a- synuclein pathology is exactly 

predicted by the model have a vulnerability value of 0. Regions that have more pathology 

than predicted have vulnerability values greater than 0; regions that have less pathology than 

predicted have vulnerability values less than 0 (Supplementary Fig. 10a).

In order to account for noise in the estimation of intrinsic neuron vulnerability, we computed 

a summary measure of vulnerability based on two principles that can be enforced on the 

residuals between the model and the empirical data: 1) Intrinsic vulnerability should not 

change over time and 2) intrinsic vulnerability should not be different on the ipsilateral and 

contralateral sides. Accordingly, we averaged the residuals for each region across all 

timepoints (Supplementary Fig. 10b) and both hemispheres (Fig. 4C). We posit that these 

two assumptions bring us closer to an estimation of the true regional vulnerability to 

pathological α-Synuclein spread. It is interesting to note that the basolateral amygdala, 

rostral cortical regions and piriform cortex are the most vulnerable, while thalamic and 

mesencephalic nuclei are largely resilient to α-Synuclein pathology (Supplementary Fig. 

11a, 11b).

While incorporating relative vulnerability values into the network model would improve the 

predictive ability of the model for a CPu injection, we sought to identify a factor which 

would explain the regional vulnerability without any reliance on the empirical data set. We 

hypothesized that one factor which should influence the development of α-Synuclein 

pathology is α-Synuclein expression. We used α-synuclein gene (Snca) expression energy 

values17 from the Allen Brain Atlas (Fig. 4d, Supplementary Fig. 11a, 11c, brain-map.org) 

to examine the relationship of Snca expression to regional vulnerability. In support of our 

hypothesis, Snca expression is highly correlated with vulnerability values (Fig. 4e, 

Supplementary Fig. 11a, 11d).

While Snca expression explained variance in vulnerability (Supplementary Fig. 12), we also 

sought to explicitly incorporate Snca expression levels into our network diffusion model. We 

accomplished this aim by weighting the outgoing connections of every node by its respective 

Snca expression value, based on the notion that retrograde propagation of misfolded α-

Synuclein will lead to greater pathological accumulation in regions with greater endogenous 

Snca expression. Indeed, incorporation of Snca expression into the model in this fashion 

improved the ability of the model to accurately predict the burden of α-Synuclein pathology 

(Fig. 4f). Together, these data suggest that Snca expression is an important factor in 

determining the vulnerability of regions to developing α-Synuclein pathology. Importantly, 

our network diffusion model is based only on factors intrinsic to the brain, i.e. anatomical 

connectivity and Snca expression, and can therefore be used as a powerful tool to model 

spread from other sites and investigate the role of network topology in pathological protein 

spread.

Model Applications

To demonstrate the generalizability of our model, we placed seeds in alternate sites and 

propagated the model forward in time to observe pathological α-Synuclein spread in silico. 
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One of the most comprehensive assessments of α-Synuclein pathology spread to date used 

injections of α-Synuclein PFFs into the olfactory bulb of wildtype mice followed by semi-

quantitative pathology grading through the mouse brain at 1, 3, 6 and 12 months post-

injection18. To replicate this injection in silico, we seeded pathology in the piriform cortex 

and propagated the model 1, 3 and 6 MPI (Fig. 5a). The model shows a remarkable visual 

correspondence to the scoring previously reported18, suggesting our model is generalizable 

to different injection sites.

LB staging from human PD and preclinical patients has led to a hypothesized 

neuroanatomical pathway by which pathology spreads from the brainstem or olfactory bulb 

up through the midbrain and limbic structures to cortical regions19–21. Portions of this 

hypothesis can be tested by placing a seed in midbrain regions, including the SN (Fig. 5b). 

The seeding of α-Synuclein pathology in the SN results in slow propagation through the 

CPu to cortical regions, analogous to what has been observed in the staging of human cases. 

Seeding other regions including the hippocampus and secondary motor cortex (M2) 

(Supplementary Fig. 13) shows very distinct patterns of spread. Intriguingly, injections into 

M2 result in rapid decreases in pathology in frontal cortical structures in conjunction with 

progressive increases in pathology in subcortical structures (Supplementary Fig. 13b). In 
silico injection into the caudoputamen demonstrates the ability of the network model to 

recapitulate the empirical spread pattern, but also highlights regions in which spread is not 

fully recapitulated by the model (Supplementary Fig. 13c). Future in vivo injections at other 

sites will be important to quantitatively validate this model and determine other factors 

influencing pathological protein spread.

Understanding changes in network parameters due to G2019S LRRK2 expression

While theoretical manipulations of the network model can provide a powerful means of 

hypothesis testing, we sought to directly assay how a genetic risk factor for PD alters the 

spread of pathogenic a- synuclein and to use network modeling to understand properties 

underlying these alterations. While most cases of PD are idiopathic, autosomal dominant 

mutations in LRRK2 are responsible for 1–2% of all PD cases22. PD patients with LRRK2 

mutations have a similar onset and somewhat slower progression of disease than idiopathic 

patients23 and a similar incidence of pathological α-Synuclein inclusions22. The most 

common mutation Gly2019Ser (G2019S) leads to elevated kinase activity24–26, and a recent 

report has suggested that LRRK2 kinase activity is elevated even in idiopathic PD patients27. 

Despite the strong evidence implicating LRRK2 in PD pathogenesis, only 25–42.5% of 

G2019S carriers will get disease28, suggesting that mutations in LRRK2 modulate 

pathogenesis of PD. We therefore hypothesized that while G2019S LRRK2 expression may 

not initiate α-Synuclein pathogenesis in mice, it may alter the vulnerability of neurons, alter 

the toxicity of α-Synuclein pathology and/or change the rate of pathology progression. 

Using the approach described thus far for NTG mice, we quantitatively measured and 

modeled α-Synuclein pathology spread in the brains of G2019S LRRK2 mice to understand 

the contribution of this genetic risk factor to disease.

The BAC transgenic G2019S LRRK2 mice used for this study have similar expression of α-

Synuclein as wildtype (NTG) mice (Supplementary Fig. 14a, 14b) and show no 
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accumulation of pathogenic α-synuclein without α-Synuclein PFF injection up to at least 12 

months of age (Supplementary Fig. 14c, 14d). Interestingly, G2019S mice weigh less than 

NTG (Supplementary Fig. 14e) but show similar grip strength (Supplementary Fig. 14f) and 

enhanced motor performance on rotarod at early ages (Supplementary Fig. 14g), consistent 

with previous reports29.

G2019S LRRK2 mice were injected with the same α-Synuclein PFFs in the dorsal striatum 

at the same time as C57BL/6J mice, so the two groups of mice could be directly compared. 

α-Synuclein PFF injection causes reduced grip strength in both NTG and G2019S mice 

compared to uninjected controls, but no difference between the genotypes (Supplementary 

Fig. 14f). α-Synuclein PFF injection did not cause a change in the latency to fall in the 

rotarod assay for NTG mice, but abrogated the enhanced performance seen in G2019S mice 

(Supplementary Fig. 14g).

The overall pattern of pathological spread in NTG and G2019S is similar (Fig. 6, N, 1 MPI-

NTG=4, 1 MPI-G2019S=6, 3 MPI-NTG=6, 3 MPI-G2019S=6, 6 MPI-NTG=6, 6 MPI-

G2019S=7). In fact, the spread pattern in many regions is nearly identical (Fig. 6a, iCPu, 

cCPu, iM2) validating the replicability of this quantitative pathology method. However, 

there are large regional differences in the degree and rate of α-Synuclein pathology 

accumulation (iHipp-b, iSN, iS1). These regional differences lead to an overall alteration in 

the dynamics of pathological α-Synuclein spread (Fig. 6b) which is best understood at the 

network level.

We first fit the G2019S pathology data with the same network model as we had done 

previously for NTG mice. Specifically, we used a network based on anatomical connectivity 

weighted by Snca expression and fit a time constant to the G2019S pathology data. The 

model showed similar predictive power for the G2019S mice as we have already established 

for the NTG mice (Fig. 7a), suggesting that anatomical connectivity and Snca expression are 

powerful predictors of pathological spread. The model including Snca expression also had 

similarly elevated fit over a model only incorporating anatomical connectivity 

(Supplementary Fig. 15). However, the mean of the bootstrapped time constants was lower 

for G2019S than for NTG mice. This finding suggests that the rate of connectivity-based 

spread of α-Synuclein pathology is globally reduced in G2019S mice.

To test the hypothesis that the G2019S mutation would systematically affect vulnerability to 

connectivity-based spread, we visually compared the difference in α-Synuclein pathology 

between the NTG and G2019S plotted out on anatomical coordinates (Fig. 7b) to 

vulnerability values in NTG mice (Fig. 4c). It appeared that many of the regions with 

elevated pathology in G2019S are those that were resilient in NTG mice. Further, many of 

these regions also undergo enhanced neuron loss in the G2019S mice (Fig. 7c), including the 

ipsilateral SN, a phenomenon which was confirmed by TH cell counts (Supplementary Fig. 

16). To further explore the relationship between the vulnerability of regions to α-synuclein 

pathology as established in NTG mice and the pathology observed in G2019S mice, we 

plotted vulnerability values against the difference in log(pathology), i.e. log(G2019S/NTG 

pathology) (Fig. 7d) for each timepoint. There was a negative correlation at all timepoints, 
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suggesting that G2019S expression selectively enhances α-Synuclein pathology in otherwise 

resilient populations of neurons.

DISCUSSION

With limited neuropathology data, there appear to be islands of vulnerable neurons that are 

susceptible to developing pathogenic protein inclusions. However, meticulous 

neuropathological examination throughout the brain at different stages of disease has 

revealed patterns that suggest pathology spreads between anatomically-connected regions 

over time19–21. Mouse models have further indicated that exogenous misfolded proteins can 

be taken up by neurons and induce the misfolding of endogenous protein, eventually leading 

to neuron death. Here, we employed absolute quantification paired with network diffusion 

modeling to explore the factors that dictate the rate and severity of pathogenic α-synuclein 

spread.

The current study takes advantage of several features of pathological protein spread in mice. 

First, the disease factor (pathological α-Synuclein) can be directly imaged in tissue. Second, 

the origin and timing of the disease factor is known since α-Synuclein PFFs were injected in 

the dorsal striatum at 3 months of age and allowed to age a further 1, 3, or 6 months. Third, 

anatomical connectivity of the mouse brain has been extensively characterized at a similar 

scale16, providing accurate antero- and retrograde connectivity measures for the model. 

Comparison of the network diffusion model developed in this study to the empirical data set 

found that anatomical connectivity is a major pathway of pathogenic protein spread. Studies 

using human imaging datasets have demonstrated the utility of similar network diffusion 

models to explain the degree of atrophy seen in human patients and even to extrapolate an 

initiation site for the observed atrophy30–32. Future development of ligands which bind 

misfolded proteins in the human brain will allow longitudinal in vivo imaging of pathogenic 

protein and direct comparison between mouse and human neuropathology.

We were particularly interested in regions that showed higher or lower pathology than would 

be expected given the anatomical connectivity-based prediction, which may represent 

vulnerable and resilient populations of neurons, respectively. We found that Snca gene 

expression showed a remarkably similar pattern to inferred vulnerability, suggesting that 

resilient regions are those with very low α-Synuclein expression and vulnerable regions 

have relatively higher α-Synuclein expression. This finding is consistent with work from 

human brains showing that regions with low α-Synuclein expression are resilient to LB 

pathology33. While other factors such as neurotransmitter type, spike rate, reactive oxygen 

species production and hyperbranching axons may shape the susceptibility of neurons to cell 

death6, much of the variance in α-Synuclein spread was explained purely by anatomical 

connectivity and α-Synuclein expression. It should be noted that Snca mRNA expression 

was utilized due to the public availability of this data and the correspondence of in situ 
hybridization data to neuronal cell bodies. Future studies should confirm whether other 

pathogenic proteins, such as tau, may spread based on anatomical connectivity and 

endogenous protein expression and whether incorporating other factors such as neuron type 

into the network model can explain even more of the variance in pathological protein spread.
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The current study also found a high correspondence between clearing of LB-like inclusions 

and neuron death in the substantia nigra, confirming previous studies which found that 

neurons bearing LB-like inclusions eventually die8,10. This observation allows us to use LB-

like inclusion loss as a proxy for neuron loss. Measurement of LB-like inclusion number 

through the brain of mice at different timepoints indicates that neuron loss mostly occurs 

after long time periods and is related to the pathological burden in that region.

Though the data presented here are based on a single injection site, the factors dictating the 

network diffusion model are independent of the pathology data set. As intrinsic components 

of the network, these factors can be applied similarly to any injection site. Future empirical 

data is necessary to fully assess the generalizability of the model. In the interim, we believe 

that modulation of the factors controlling pathogenic protein spread will allow the 

assessment of the likely efficacy of therapeutic treatments and will aid understanding of the 

impact of genetic risk factors. This method can be merged with tools from network control 

theory34,35 to analytically identify the optimal approach to effect a targeted change in the 

progression of pathology, either by modifying network nodes34 (therapies targeted to 

regions) or edges36 (therapies targeted to connections).

The current study found that G2019S mice exhibit higher pathology in some regions, yet 

lower pathology at other regions relative to NTG mice, perhaps explaining some of the 

conflicting data suggesting that either increases37–39 or decreases40,41 in LRRK2 activity 

can lead to α-Synuclein aggregation and dopaminergic neuron death. The increase in α-

Synuclein pathology in the SN at 3 MPI and increased neuron death at 6 MPI in G2019S 

mice are consistent with what has been observed in G2019S BAC mice injected with PFFs42 

or G2019S knock-in mice overexpressing A53T α-Synuclein via AAV43. However, our work 

reveals that broader network dynamics of pathogenic protein spread are changed. The global 

rate of pathogenic α-Synuclein spread is reduced in G2019S mice, and resilient populations 

of neurons show enhanced α-Synuclein pathology and toxicity. It will be interesting to 

integrate these novel findings relating G2019S LRRK2 to pathological α-Synuclein network 

spread with the known involvement of LRRK2 in vesicle trafficking and network 

physiology44.

One limitation of the data and model presented here is the mesoscale of analysis, which was 

chosen to allow comparison to anatomical connectivity data. Pathology in cortical regions 

shows a clear laminar distribution and the closer investigation of the layer and neuron types 

affected in the future will provide additional information about pathology spread. Another 

limitation is the sparseness of the regions sampled. Given current technological limitations, 

it was not possible to map quantitative pathology in the whole brain. However, the sparse 

data provides sufficient constraints of the network model to allow remarkably accurate 

reconstruction of pathological α-Synuclein spread. The further ability of in silico injection 

in an independent brain region to capture the spread pattern suggest that the data captured is 

sufficient to develop highly informative predictions. Possible differences in anatomical 

connectivity between strains of mice is also an important caveat to keep in mind in future 

modeling studies. Future work will also focus on improving performance of the model by 

incorporating factors such as regional protein turnover rate, neuron type and functional 

connectivity.
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The network model presented here is informed by quantitative empirical data, but it is 

simple and uses only intrinsic network properties including anatomical connectivity and 

gene expression for its predictions. Therefore, the model is also easily manipulated by 

seeding in different regions, predicting the effects of known genetic risk factors and 

modeling therapeutic intervention by changing parameters of the model (e.g. reducing 

diffusivity to mimic α-Synuclein immunotherapy).

METHODS

Animals

All housing, breeding, and procedures were performed according to the NIH Guide for the 

Care and Use of Experimental Animals and approved by the University of Pennsylvania 

Institutional Animal Care and Use Committee. C57BL/6J (NTG, JAX 000664, RRID: 

IMSR_JAX:000664) and B6.Cg-Tg(Lrrk2*G2019S)2Yue/J (G2019S, JAX 012467, RRID: 

IMSR_JAX:012467) mice have been previously described14. The current G2019S BAC line 

was backcrossed to C57BL/6J mice for >10 generations and bred to homozygosity at loci as 

determined by quantitative PCR and outbreeding. The expression level of G2019S LRRK2 

was thereby stabilized in this line of mice. All experiments shown use homozygous G2019S 

mice. Both male and female mice were used for this study.

Behavior

Mouse all-limb grip strength was measured using the animal grip strength test (IITC 2200). 

For this test a grid mesh is attached to a digital force transducer. Mice are moved to a quiet 

behavioral testing suite and allowed to acclimate for 1 hour. Each mouse was held by the 

base of the tail and allowed to grasp the grid mesh. Once the mouse clasps the grid, the 

mouse is slowly moved backwards, in line with the force transducer until the mouse released 

the grid. The maximum grip force was recorded. The mouse was allowed to rest for several 

seconds, and then was placed on the grid again. The maximum grip strength of 5 tests was 

recorded. No fatigue was observed during the test period, so the average of all 5 measures is 

reported.

An accelerating rotarod (MED-Associates) was used to assess motor coordination. Mice 

received two training sessions and two tests sessions. During the training sessions, mice 

were placed on a still rod. The rod then began to accelerate from 4 rotations per minute 

(rpm) to 40 rpm over 5 minutes. Mice were allowed to rest at least one hour between 

training and testing sessions. During the testing sessions, mice were treated as before, and 

the latency to fall was recorded. Time was also stopped if a mouse gripped the rod and 

rotated with it instead of walking. Mice were allowed a maximum of 10 minutes on the rod.

α-Synuclein PFF Stereotaxic Injections

Purification of recombinant α-Synuclein and generation of α-Synuclein pre-formed fibrils 

(PFFs) was conducted as described elsewhere 45–47. All of the surgery or experiments were 

performed in accordance with protocols approved by the Institutional Animal Care and Use 

Committee (IACUC) of the University of Pennsylvania. Mouse α-Synuclein PFFs, which 

were generated at a concentration of 5 mg/mL were vortexed and diluted with Dulbecco’s 
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phosphate-buffered saline (DPBS) to 2 mg/mL. They were then sonicated on high for 10 

cycles of 30 seconds on, 30 seconds off (Diagenode Biorupter UCD-300 bath sonicator).

Mice were injected when 3–4 months old. Mice were evenly assigned to one of two 

surgeons at random. Even groups of NTG and G2019S mice were injected concurrently to 

minimize any differences due to surgery date or α-Synuclein PFF preparation. Mice were 

injected unilaterally by insertion of a single needle into the right forebrain (coordinates: +0.2 

mm relative to Bregma, +2.0 mm from midline) targeting the dorsal striatum (2.6 mm 

beneath the dura) with 5 μg α-Synuclein PFFs (2.5 μL). Injections were performed using a 

10 μL syringe (Hamilton, NV) at a rate of 0.4 μL/minute. After 1, 3 or 6 months, mice were 

perfused transcardially with PBS, brains were removed and underwent overnight fixation in 

70% ethanol in 150 mM NaCl, pH 7.4.

Immunohistochemistry

After perfusion and fixation, brains were embedded in paraffin blocks, cut into 6 μm 

sections and mounted on glass slides. Slides were then stained using standard 

immunohistochemistry as described below. Slides were de-paraffinized with 2 sequential 5-

minute washes in xylenes, followed by 1-minute washes in a descending series of ethanols: 

100%, 100%, 95%, 80%, 70%. Slides were then incubated in deionized water for one minute 

prior to antigen retrieval as noted. After antigen retrieval, slides were incubated in 5% 

hydrogen peroxide in methanol to quench endogenous peroxidase activity. Slides were 

washed for 10 minutes in running tap water, 5 minutes in 0.1 M tris, then blocked in 0.1 M 

tris/2% fetal bovine serum (FBS). Slides were incubated in primary antibodies overnight. 

The following primary antibodies were used. For misfolded α-Synuclein, Syn50648 was 

used at 0.4 ug/mL final concentration with microwave antigen retrieval (95°C for 15 minutes 

with citric acid based antigen unmasking solution (Vector H-3300). For pathologically-

phosphorylated α-Synuclein, pS129 α-Synuclein (EP1536Y; Abcam ab51253) was used at 

1:20,000 with microwave antigen retrieval. To stain midbrain dopaminergic neurons, 

Tyrosine hydroxylase (TH-16; Sigma-Aldrich T2928) was used at 1:5,000 with formic acid 

antigen retrieval.

Primary antibody was rinsed off with 0.1 M tris for 5 minutes, then incubated with goat anti-

rabbit (Vector BA1000) or horse anti-mouse (Vector BA2000) biotinylated IgG in 0.1 M 

tris/2% FBS 1:1000 for 1 hour. Biotinylated antibody was rinsed off with 0.1 M tris for 5 

minutes, then incubated with avidin-biotin solution (Vector PK-6100) for 1 hour. Slides were 

then rinsed for 5 minutes with 0.1 M tris, then developed with ImmPACT DAB peroxidase 

substrate (Vector SK-4105) and counterstained briefly with hematoxylin. Slides were 

washed in running tap water for 5 minutes, dehydrated in ascending ethanol for 1 minute 

each: 70%, 80%, 95%, 100%, 100%, then washed twice in xylenes for 5 minutes and 

coversliped in Cytoseal Mounting Media (Fisher 23–244-256).

All mice were initially stained with Syn506 for quantification of pathology. It was noted that 

several mice had perfusion artifacts which were recognized by secondary antibody staining 

of Syn506 due to the fact that Syn506 is a mouse antibody. Since absolute quantification 

relies on no background staining these mice were excluded from analysis. The recently 

developed pS129 α-Synuclein antibody (EP1536Y) is a rabbit monoclonal antibody, and 
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using anti-rabbit secondary antibody prevents recognition of endogenous mouse antibodies 

present in perfusion artifacts. After direct comparison of EP1536Y staining to Syn506 

staining revealed a high correspondence of the two stains, the remaining mice were stained 

with EP1536Y. The fact that analyzing mice in iterative groups finds good correspondence 

of time constant fitting (Supplementary Fig. 8) also supports the high congruence of the two 

stains.

Slides were scanned into digital format on a Lamina scanner (Perkin Elmer) at 20× 

magnification. Digitized slides were then used for quantitative pathology.

Quantitative pathology

All section selection, annotation and quantification was done blinded to genotype. For 

quantification of α-Synuclein pathology, coronal sections were selected to closely match the 

following coordinates, relative to bregma: 2.10 mm, 0.98 mm, −1.22 mm, −2.92 mm and 

−4.48 mm. The digitized images were imported into HALO software to allow annotation 

and quantification of the percentage area occupied by α-Synuclein pathology and the 

number of cell body inclusions. Standardized annotations were drawn to allow independent 

quantification of 172 regions throughout the brain. Each set of annotations was imported 

onto the desired section and modified by hand to match the designated brain regions. After 

annotation, the analysis scripts were applied to the brain to make sure that no non-pathology 

signal was detected. After annotation of all brains, analysis algorithms were applied to all 

stained sections and data analysis measures for each region were recorded.

Two analysis algorithms were applied to the tissue. The first detects total signal above a 

minimum threshold. Specifically, the analysis included all DAB signal that was above a 

0.157 optical density threshold, which was empirically determined to not include any 

background signal. This signal was then normalized to the total tissue area. A minimal tissue 

optical density of 0.02 was used to exclude any areas where tissue was split, and a tissue 

edge thickness of 25.2 μm was applied to exclude any edge effect staining. The second 

analysis was designed to detect only cell body inclusions. This analysis first classified 

staining into two broad classes: thin versus thick pathology based on size and texture inputs. 

The analysis used only the class of thick pathology and excluded objects smaller than 40 

μm2 and greater than 400 μm2 to remove small inclusions and to separate multiple inclusions 

from each other.

Every 10th slide through the midbrain was stained with tyrosine hydroxylase (TH). TH-

stained sections were used to annotate the substantia nigra, and cell counting was performed 

manually in a blinded manner for all sections. The sum of all sections was multiplied by 10 

to estimate the total count that would be obtained by counting every section.

Computational Model

To generate a computational model of pathological spread, we required anatomical 

connectivity, gene expression and α-Synuclein pathology measures that were in the same 

anatomical space. We used the previously-generated data set16 for synaptic connectivity and 

Snca gene expression17 (brain-map.org). Snca gene expression values were recorded as 200 

μm2 pixel expression energy values (Snca-RP_071218_03_E03 (coronal)). The mean value 
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for all pixels in a given region was taken as the expression energy for that region. α-

Synuclein pathology measures generated for this study were calculated as described above 

and reported in Supplementary Table 1. The anatomical regions largely corresponded 

between the three data sets, but in cases where they did not, the average for the regions in the 

corresponding atlas was taken to create an accumulated score for that region. For example, 

the thalamus was broken into several large regions for α-Synuclein pathology analysis due 

to the fact that there is little pathology there and the several nuclei that encompass it are 

difficult to manually demarcate. Therefore, the ventromedial thalamus (VMThal) in the 

pathology data actually encompasses the following nuclei from the connectivity data: 

Ventral anterior-lateral (VAL), ventral posteromedial (VPM), ventral medial (VM), ventral 

posterolateral (VPL) and reticular (RT) nuclei of the thalamus. In the other direction, the 

piriform area, while only having one connectivity value, actually spans several of the 

sections in which pathology was quantified. Therefore, the mean of all piriform α-Synuclein 

pathology values was used to compare to the connectivity of the piriform area.

Linear diffusion model of pathological spread—Previous studies have used linear 

diffusion models to predict patterns of atrophy observed in various neurodegenerative 

diseases30,31, supporting a mechanism of prion-like spread of misfolded proteins along large 

white matter fibers. In the present work, we aimed to validate the ability of these linear 

diffusion models to predict the spread of misfolded α-Synuclein throughout the mouse brain 

from an injection site in the right caudate-putamen (iCPu).

We model pathological spread of α-Synuclein as a diffusion process on a directed structural 

brain network G = {V, E} whose nodes V are N cortical and subcortical grey matter regions 

and whose edges eij ∈ E represent an axonal projection initiating in Vi and terminating in Vj, 

where eij ≥ 0 for all E. Edge strength was quantified by the Allen Brain Institute using 

measures of fluorescence intensity from retrograde viral tract tracing16. We define the 

weighted adjacency matrix of G as A = [Aij]. Rows and columns of A were averaged to 

generate a final parcellation of 116 regions, in accordance with our quantitative 

measurements of regional synuclein pathology at time t, which were obtained at t = [1 3 6] 

months.

We represent the magnitude of observed α-Synuclein pathology of all N nodes at time t as 

the vector x(t). We compute the predicted regional α-synuclein pathology x(t) as a function 

of A and seed region s ∈ V:

x(t) = e−cLtxo,

where Li j =
−Ai j for i ≠ j

∑ j = 1
N Ai j for i = j

, xoi
= 0 for i ≠ s

1 for i = s
, and c is a constant to tune the time scale of 

the system. We selected the time constant c which maximized the model fit f, defined as 

Pearson correlation between log10 x(t) and log10 x(t) for all non-zero values of x(t), averaged 

over t = [1 3 6]. Note that L is the out-degree Laplacian, a version of the well-characterized 

graph Laplacian designed for directed graphs49. This model posits that the rate of change of 
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in pathology at region i is proportional to a weighted sum of the pathology at all other 

regions and the strength of outgoing projections arriving at those regions from region i, 
minus the sum of outgoing connections from region i times the amount of pathology at 

region i. Notably, as a property of all Laplacian matrices, L has a single eigenmode with an 

eigenvalue equal to 0, describing the steady state behavior of the system as t approaches ∞ 
49. Asymmetric graphs also have eigenmodes with complex eigenvalues, such that xi(t)

oscillates, or in the case of our particular matrix A, exhibits a single, damped oscillation over 

time. Thus, the time constant c identifies where along the damped oscillation curve of the 

system x(t) provides the best fit to the observed data, with large values of c indicating the 

best fit lies closer to the static end behavior. All computations were performed in R (R Core 

Team (2017). R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.) and MATLAB.

Model incorporating α-Synuclein expression—In addition to the spread of the 

misfolded protein along anatomical connections, we also hypothesized that the pathogenicity 

of misfolded synuclein would be dependent on the presence of endogenous α-synuclein at 

each brain region. We observed that the residuals of x(t) as a linear predictor of x(t) were 

correlated with R, a vector of length N containing the estimated levels of α-Synuclein 

mRNA at each brain region (brain-map.org). Thus, we sought a way to explicitly incorporate 

R into our linear diffusion model as a measure of the intrinsic vulnerability of each region. 

To accomplish this, we modify A such that A = SA, where S is the diagonal matrix of R such 

that S =
Ri for i = j

0 otherwise
. This step weights the outgoing connections of each region in A by its 

level of synuclein expression, and can be viewed as an “update rate” in the context of linear 

systems theory49. All subsequent steps, including generation of the Laplacian, fitting of the 

time constant c, and propagation of the model as a continuous linear system, were performed 

according to the procedures described above.

Code availability—All code is available at https://github.com/ejcorn/

connectome_diffusion.

Statistical Analysis

Quantification of model specificity—After identifying that our connectome-based 

linear diffusion model could explain substantial variance in the spread of misfolded α-

Synuclein from the iCPu over time, we next sought to test the specificity of this model to the 

use of iCPu as the seed site s, which defines the vector x0. To test the model specificity, we 

fit the time constant c to the observed data as described above using every region as s except 

for iCPu, generating a distribution of non-specific fits for each time points. We assessed the 

specificity of iCPu as the seed region s by computing the number alternate seed regions 

yielding better fist than the fit obtained using iCPu as a seed.

While iCPu seed produced nearly the best possible fit at all time points, we observed that 

several models utilizing alternate seed regions still fit the observed data relatively well. We 

hypothesized that seed regions with similar connectivity profiles to that of iCPu would 

perform similarly in explaining the observed data. We computed the similarity of incoming 
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connectivity to iCPu as the Pearson correlations between the column of Aij where j is the 

iCPu, and the columns of Aij where j is all other regions except iCPu. Conversely, we 

computed the similarity of outgoing connectivity to iCPu as the Pearson correlations 

between the row of Aij where i is the iCPu, and the rows of Aij where i is all other regions 

except iCPu.

Because the relationship between alternate seed model fit and similarity of incoming 

connectivity to iCPu appeared to have a non-linear form, we used a general additive model 

(GAM) to fit the relationship using the gam function from the mgcv package in R50. A 

GAM is a generalized linear model in which the linear predictor is defined by unknown 

smooth functions of predictor variables51,52. We fit the following non-linear model to predict 

the fit of the alternate seed model from a smooth function of the connection similarity:

y = s(C) + ε,

where y is the fit of the alternate seed model, C is the connection similarity of the respective 

seed region to iCPU (described above), and ε is an error term.

Evaluating split-reliability and generalizability of model fit—The data presented in 

the body of the paper utilize values for the time constant c derived from data from all mice at 

every time point (xfull(t)). To ensure that this approach did not result in overfitting, we 

randomly sampled without replacement the available mice at each time point to generate 

xtrain (t) and xtest(t) for each time point. The time constant c was determined on xtrain(t), and 

the model was evaluated based on its fit with xtest(t). This process was repeated 100 times, 

generating a distribution of out-of-sample fits for each time point. We computed a non-

parametric p-value for the generalizability of the model as the number of times the fit 

generated using xfull(t) exceeded the fit generated by xtest(t), quantifying the difference 

between in-sample and out-of-sample performance.

Network null models—To ensure that our results were specific to the retrograde spread of 

misfolded synuclein along neuronal processes, we repeated our analyses using several 

network null models. To demonstrate a general specificity of the model for the topology of 

the synaptic connectome represented by A, we carried out a procedure that rewires the edges 

of G while exactly preserving the out-degree and in-degree sequence, i.e. ∑ j = 1
N Bi j and 

∑i = 1
N Bi j, where Bi j =

1 for Ai j > 0
0 otherwise

. This rewiring approach tests whether the model fit is 

due to a relatively basic structural property of the graph, i.e. degree, as opposed to unique, 

higher order topological features of the synaptic connectome.

Next, we tested whether a model based on anterograde propagation of misfolded protein 

along axons might explain the observed spread of pathology. To test this model, we simply 

replaced A with its transpose AT and repeated all subsequent steps as described above. 

Finally, we tested the null model that spread of misfolded protein occurs simply due to 

diffusion through tissue based on closeness in Euclidean space. To test this model, we 
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reconstructed A = [Aij] such that the edges represented the Euclidean distance between 

region i and region j. All subsequent steps were performed as described above.

Empirical Data—For α-Synuclein pathology data, a two-way ANOVA was run on each 

region, and the months were compared to each other using Tukey’s multiple comparison 

test, while the genotypes were compared to each other using Sidak’s multiple comparison 

test. For TH cell counts in the midbrain, the side ipsilateral to the injection was compared to 

the side contralateral to the injection and the genotypes were compared to each other using a 

two-way ANOVA with Sidak’s multiple comparison test. All behavioral data compared both 

non-injected mice to α-Synuclein PFF injection and NTG to G2019S cohorts using two-way 

ANOVA with Sidak’s multiple comparison test. Data distribution was assumed to be normal, 

but this was not formally tested. No statistical methods were used to pre-determine sample 

sizes but our sample sizes are similar to those reported in previous publications8,15.

Reporting Summary

Further information on research design is available in the Life Sciences Reporting Summary 

linked to this article.

Data Availability

All primary pathology data are available in Supplementary Table 1 and on GitHub (https://

github.com/eicorn/connectome_diffusion). Any other data used to generate the figures in this 

study are available from the corresponding authors upon reasonable request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Quantitation of α-Synuclein pathology allows for brain-wide analysis of pathology spread.
a, Experiment schematic: mice were injected in the dorsal striatum with α-Synuclein at 3 

months of age. The mice were then aged 1, 3 or 6 months post-injection and assessed for 

motor behaviors during that time period. The brains of mice were used for quantitative 

pathology analysis. b, Representative images of brain sections (similar for 16 wildtype mice) 

with manual annotation of 172 regions displayed (scale bar=1mm). The ipsilateral SN of this 

brain is shown below with and without an analysis mask overlaid (scale bar=100 μm).
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Fig. 2. α-Synuclein spreads in a dynamic spatiotemporal pattern throughout the mouse brain.
a, Representative quantitative pS129 α-Synuclein pathology plots and images are shown for 

1-, 3- and 6-month timepoints (scale bar=50 μm). Plots display mean +/− standard error. b, 
Heat map of regions affected with α-Synuclein pathology. The names of the associated areas 

are plotted onto identical maps in the supplementary material. The color scale represents 

log-transformed mean percentage area occupied with α-Synuclein pathology. n (number of 

mice), 1 MPI=4, 3 MPI=6, 6 MPI=6.
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Fig. 3. Select quantification of cell body pathology allows for assessment of neuron loss.
a, Theoretical framework for assessing neuron loss. Pathology appears at 1 month as 

primarily neuritic pathology, which consolidates over time into large LB-like inclusions. If 

these large inclusions can be measured as sequential timepoints, it would allow an 

approximation of the number of neurons that are lost during that time period. b, An example 

of a region that has both high neuritic and cell body pathology burden. The total pathology 

mask identifies both forms of pathology, while the cell body pathology mask excludes 

neuritic pathology and identifies only cell body pathology (scale bar = 100 μm). c, Heat map 

of the estimated number of neurons lost in each anatomical region. The color scale 

represents log- transformed mean number of neurons lost between 1 and 3 (1–3 MPI) and 

between 3 and 6 (3–6 MPI) months post-injection. d, One section in between the two 

sections used for pathology quantitation was stained with an anti-TH antibody and used for 

quantification of substantia nigra neurons in each 3 month post-injection mouse (two-tailed 

paired t-test, p=0.0026). e, The mean estimated neuron loss between 3 and 6 months from 

the SN was subtracted from the TH cell counts in 3 MPI mice (two-tailed paired t-test, 

p=0.0075). f, Every 10th section through the SN was stained with an anti-TH antibody and 

SN neurons were counted to estimate the total number of neurons present in NTG mice 6 

months after injection (two-tailed paired t-test, p=0.0003). g, Representative images of the 

contralateral and ipsilateral substantia nigra from NTG mice 6 months post-injection (scale 

bar = 500 μm). (Plots display mean +/− standard error with individual values plotted) n 

(number of mice), 1 MPI=4, 3 MPI=6, 6 MPI=6.
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Fig. 4. Network diffusion model based on anatomical connectivity explains pathological α-
Synuclein spread.
a, Scatterplots and Pearson correlation coefficients (r) of log predicted pathology based on 

anatomical connectivity versus actual pathology values for each region are shown for 1 (df = 

95, pcorr = 9.85×10−9), 3 (df = 111, pcorr = 1.66×10−16) and 6 (df = 111, pcorr = 2.64×10−14) 

MPI (two-tailed t-tests). p-values were Bonferroni-corrected over the 3 time points. The 

green line represents the line of best fit, and the shaded ribbon represents the 95% prediction 

interval. b, Each different brain region was seeded and pathology propagation was modeled 

from each site. The fit of each of these sites is plotted for 1, 3, and 6 MPI (purple dots). The 

CPu seed (black diamond) produced either the best fit (3 and 6 MPI, 100th percentile of fits) 

or second best fit (1 MPI, 99th percentile of fits). c, Heat map of the residuals between the 

log(predicted) and log(pathology) are plotted on an anatomical mouse brain as a measure of 

the relative vulnerability of regions. d, Heat map of the Snca mean expression energy values 

from the Allen Brain Atlas in situ hybridization data for each of the designated regions. e, 
Scatterplots and Pearson correlation coefficients (r) of Snca expression energy and 

vulnerability estimates for each region. The two values show a positive Pearson correlation 

of r = 0.53 (two-tailed t-test, df = 114, p = 1.08×10−9). The purple line represents the line of 

best fit, and the shaded ribbon represents the 95% prediction interval. f, Scatterplots and 

Pearson correlation coefficients (r) of log predicted pathology based on anatomical 

connectivity and Snca expression vs. log actual pathology values for each region are shown 

for 1 (df = 95, Pcorr = 1.85×10−9), 3 (df = 111, pcorr = 5.84×10−19) and 6 (df = 111, pcorr = 

1.34×10−20) MPI (two-tailed t-tests). p-values were Bonferroni-corrected over the 3 time 
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points. The green line represents the line of best fit, and the shaded ribbon represents the 

95% prediction interval. n (number of mice): 1 MPI=4, 3 MPI=6, 6 MPI=6).
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Fig. 5. In silico seeding of alternate regions in mouse brain.
Heat map of regions affected with α-synuclein pathology with in silico propagation of α-

Synuclein pathology after seeding in either a, the piriform cortex or b, the substantia nigra. 

The color scale represents log-transformed mean percentage area occupied with α-Synuclein 

pathology.
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Fig. 6. Quantitative α-Synuclein pathology mapping allows a direct comparison between NTG 
and G2019S LRRK2 mice.
a, Representative quantitative pS129 α-Synuclein pathology plots and images are shown for 

1-, 3- and 6-month timepoints for both NTG and G2019S mice (scale bar = 100 μm). Plots 

display mean +/− standard error. b, Heat map of regions affected with α-Synuclein 

pathology. The names of the associated areas are plotted onto identical maps in the 

supplementary material. The color scale represents log-transformed mean percentage area 

occupied with α-Synuclein pathology. n (number of mice), 1 MPI-NTG=4, 1 MPI-

G2019S=6, 3 MPI-NTG=6, 3 MPI-G2019S=6, 6 MPI-NTG=6, 6 MPI-G2019S=7.
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Fig. 7. α-Synuclein pathology shows enhanced spread and toxicity in resilient regions in G2019S 
LRRK2 mice.
a, Scatterplots and Pearson correlation coefficients (r) of log predicted pathology based on 

anatomical connectivity and Snca expression versus actual pathology values for each region 

are shown for 1 (df = 104, pcorr = 2.00×10−9), 3 (df = 112, pcorr = 2.39×10−10) and 6 (df = 

113, pcorr = 9.07×10−19) MPI (two-tailed t-tests). p-values were Bonferroni-corrected over 

the 3 time points. The green line represents the line of best fit, and the shaded ribbon 

represents the 95% prediction interval. b, Heat map of regional ratios of pathology in 

G2019S/NTG mice. Warm colors represent areas with more pathology in G2019S mice, 
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while cooler colors represent regions with less pathology in G2019S mice. c, Heat map of 

the estimated number of neurons lost in each anatomical region in NTG and G2019S mice. 

The color scale represents log-transformed mean number of neurons lost between 3 and 6 

(3–6 MPI) months post-injection. d, Scatterplots and Pearson correlation coefficients (r) of 

timepoint-specific NTG regional vulnerability measures versus log G2019S/NTG pathology, 

showing a negative correlation between the two variables at 1 (df = 89, pcorr = 2.88×10−6), 3 

(df = 109, pcorr = 0.0027) and 6 (df = 110, pcorr = 0.00035) MPI (two-tailed t-tests). p-values 

were Bonferroni-corrected over the 3 time points. The purple line represents the line of best 

fit, and the shaded ribbon represents the 95% prediction interval. n (number of mice), 1 

MPI=6, 3 MPI=6, 6 MPI=7.
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