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Abstract
Previous studies have shown that sensorimotor processing can often be described by

Bayesian learning, in particular the integration of prior and feedback information depending

on its degree of reliability. Here we test the hypothesis that the integration process itself can

be tuned to the statistical structure of the environment. We exposed human participants to a

reaching task in a three-dimensional virtual reality environment where we could displace

the visual feedback of their hand position in a two dimensional plane. When introducing sta-

tistical structure between the two dimensions of the displacement, we found that over the

course of several days participants adapted their feedback integration process in order to

exploit this structure for performance improvement. In control experiments we found that

this adaptation process critically depended on performance feedback and could not be

induced by verbal instructions. Our results suggest that structural learning is an important

meta-learning component of Bayesian sensorimotor integration.

Author Summary

The human sensorimotor system has to process highly structured information that is
affected by uncertainty and variability at all levels. Previously, it has been shown that sen-
sorimotor processing is very efficient at extracting structure even in variable environments
and it has also been shown how sensorimotor integration takes into account uncertainty
when processing novel information. In particular, the latter integration process has been
shown to be consistent with Bayesian theory. Here we show how the two processes of
structure learning and sensorimotor integration work together in a single experiment. We
find that when human participants learn a novel motor skill they not only successfully
extract structural knowledge from variable data, but they also exploit this structural
knowledge for near-optimal sensorimotor integration.
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Introduction
The sensorimotor system continuously integrates incoming information with previous experi-
ence across different modalities. Previous studies have shown that such integration processes
in environments with uncertainty are consistent with Bayesian learning [1–6], where previous
experience—the prior—and sensory evidence are weighted according to their reliability [7–12].
Several sensory illusions could be modeled and explained by the Bayesian integration of prior
information with sensory feedback [13–18]. The same mathematical formalism also adequately
describes integration of information from different sensory modalities, for example visual and
haptic information [19, 20].

When integrating sensory information, it is important to know the statistics of the environ-
ment. Previous studies have mostly investigated Gaussian statistics factorizing into one-dimen-
sional random variables, but a number of other distributions have been tested as well [8, 11,
19–25]. Here we are interested in the effect of the structure of the distribution given by the
dependencies between multiple hidden variables that can be learnt as higher order invariants.
Structural learning has previously been investigated in sensorimotor learning tasks with ran-
domly changing task parameters [26–37]. In these previous studies it has been suggested that
the sensorimotor system is faced with two concurrent learning problems in such randomly
changing tasks, that is adapting to the current environmental parameters and extracting struc-
tural knowledge that remains invariant over many variations of environmental parameters.

In the current study we investigate the role of structural learning in a Bayesian sensorimotor
integration task with a two-dimensional hidden variable that determined the two-dimensional
displacement of visual feedback of the hand position. As in previous tasks, the value of the hid-
den variable has to be inferred during the integration process in each trial by combining sen-
sory feedback with previous experience. Determining this value can be regarded as an example
of parameter adaptation. However, since the hidden variable has two dimensions, we can also
introduce structural dependencies between the two dimensions that remain invariant across
trials. The question in the current study is whether and how such structural invariants of hid-
den variables influence the sensorimotor integration process of sensory feedback with prior
experience.

Results

Trial setup
Participants performed a reaching task in a 3D virtual reality setup in which their virtual hand
position was represented by a small spherical cursor. The aim of the task was to steer the cursor
into a target sphere that was always at the same position in front of them. Similarly, the starting
position was fixed throughout the experiment. To initiate a trial, participants had to move the
cursor into the starting position. After a beep, the cursor disappeared and participants started
their movement towards the target without visual feedback of their virtual hand position. Each
trial, a two-dimensional translational shift was randomly drawn from a Gaussian, as depicted
in Fig 1 and applied to the virtual hand position such that it was shifted with respect to the
actual hand position. This shift was constant throughout the trial, but changed from trial to
trial. Importantly, the Gaussian distribution over the shift remained constant over the course
of the whole experiment.

Halfway through participants’movement towards the target, feedback of the virtual hand
position was briefly displayed for 150ms. This feedback was the only information participants
could use to correct their shifted movement trajectory towards the target. There were four dif-
ferent feedback conditions that were chosen randomly in each trial with the following
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proportions: full feedback (1/2 of trials), partial sh-feedback (1/6 of trials), partial sv-feedback
(1/6 of trials), and no-feedback (1/6 of trials). In the full feedback condition (Fig 1A) feedback
was given by a small spherical cursor, which gave participants very precise information about
the shift and allowed them to hit the target accurately. In the partial sh-feedback condition (Fig
1B) feedback was given by an elongated Gaussian cloud of points with width 0.6cm in the hori-
zontal direction and full workspace width in the vertical direction. The cloud consisted of 50
small circles (radius 0.1cm) and their exact position was re-sampled several times during the
display of the feedback, thus creating the visual effect of a flickering vertical bar, very similar to
the depiction in Fig 1B. This sensory feedback gave relatively precise information about the
horizontal shift sh, but no information about the vertical shift sv. In the partial sv-feedback con-
dition this was reversed. The Gaussian cloud of points was elongated over the full workspace
width in the horizontal direction and had a narrow vertical expansion of 0.6cm. Therefore, the
sensory feedback provided relatively precise information about the vertical shift sv, but no
information about the horizontal shift sh. In the no-feedback condition (Fig 1C) no feedback
was provided, such that participants could only rely on their prior experience of the statistics in
these trials. The critical feedback conditions are the partial feedback conditions. If the correla-
tion structure between the two shifts is unknown, the feedback only provides information for
one dimension. If, however, the correlation structure has been learnt over many trials, the par-
tial feedback provides information for both dimensions of the shift.

Sessions and groups
Participants were recorded in this experiment over four different days—compare Fig 2A. The
first six participants were assigned to the correlated group and the second six participants were
assigned to the uncorrelated group. The correlated group was trained on shifts drawn from a

Fig 1. Bayesian integration for two-dimensional Gaussian priors under different feedback conditions A–C. The uncorrelated case is shown in the top
row and the correlated case is shown in the bottom row. Prior and posterior are represented through iso-probability contours, the visual feedback is depicted
in red and the true shift is marked as a black X. The black dotted lines indicate the prior mean.A Due to the very reliable feedback in the full feedback
condition, the posterior is peaked very sharply—regardless of the correlation in the prior. B The partial sh-feedback is reliable in the sh dimension but provides
no information about the shift in the sv dimension. This leads to an important difference in the posterior between the correlated and uncorrelated group:
knowing the correlation structure reduces uncertainty about the sv dimension of the shift, leading to a more concentrated posterior.C In no-feedback trials,
participants can only rely on their prior experience. This feedback condition allows to test for the prior beliefs directly.

doi:10.1371/journal.pcbi.1004369.g001
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correlated Gaussian (ρ = −0.999), while the uncorrelated group was trained on shifts drawn
from an uncorrelated Gaussian (ρ = 0)—see Fig 2B. This training was given in full feedback tri-
als, that not only provided most information during the movement compared to other feed-
back conditions, but also gave terminal feedback of the cursor position at the end of the trial.
In contrast, all other feedback conditions served as test trials without terminal visuomotor
feedback. However, to keep participants motivated they were informed in all feedback condi-
tions whether they had hit the target or not through auditory feedback. To test whether partici-
pants of the correlated group were able to extract the structural invariant of the correlation in
the hidden variable during training, in test trials (that is partial- and no-feedback trials) we
exposed both groups to correlated shifts (ρ = −0.999) under partial- or no-feedback. In particu-
lar, we would expect the correlated group to differ from the uncorrelated group in the process-
ing of the uninformative feedback dimension in partial feedback trials, as knowing the
correlation structure allows transferring feedback information from the informative to the
uninformative feedback dimension. In principle, the uncorrelated group could have also learnt
the correlation in test trials by exploiting the hit-or-miss feedback provided in these trials.
However, we would expect such reinforcement-learning to be much slower since the

Fig 2. Schematic of the experimental design. A Participants were recorded over four sessions spread across four days. The first session included an
additional training phase (first 200 trials) to allow participants to get used to the experimental setup. After this initial training phase, the different trial types
were presented randomly according to the specified proportions. B Experimental conditions for the correlated and uncorrelated group.

doi:10.1371/journal.pcbi.1004369.g002
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information of the reward feedback signal is poorer than the two-dimensional error signal
observed by participants of the correlated group during training trials.

Typical participant
Fig 3 shows results of a typical participant from the correlated group performing in the task.
The learning of the correlation structure can be seen when comparing the two panels on the
left column showing performance in the first session to the two panels on the right column
showing the last session. The plots show the deviation of the participant’s shifted terminal
hand position from the target as a function of the true shift. The top row shows the horizontal
deviation depending on the horizontal shift component sh, the bottom row shows the vertical
deviation depending on the vertical shift sv. The different colors indicate the different feedback
conditions. Each dot shows a single trial and the lines were robustly fitted through the corre-
sponding dots (using MATLAB’s robustfit function with the default tuning constant of 4.685—

Fig 3. Data of a typical participant (no. 6, correlated group). The plots show the deviation of the final virtual hand position from the target as a function of
the true shift. Dots represent individual trials and the lines show robust fits through the corresponding dots. Different colors indicate different feedback
conditions. The crossing of the black dashed lines indicates the optimal pivot-point. Top row A,B: horizontal deviation as a function of the horizontal shift sh.
Bottom rowC,D: vertical deviation as a function of the vertical shift sv. The left column A,C shows results recorded in the first session of the experiment, the
right column B,D shows results from the last session. In early trials, the participant’s reaction to partial feedback trials in the noninformative dimension is very
similar to behavior in no-feedback trials. Importantly, across sessions there is a significant reduction in slope in the noninformative dimension of the partial
feedback trials, indicating learning of the correlation structure (compare changes in lines highlighted with arrows, that is the yellow dashed lines in panels A
and B and cyan dashed lines in panels C and D).

doi:10.1371/journal.pcbi.1004369.g003
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the function implements iteratively re-weighted least squares with a bi-square weighting func-
tion). Flat lines indicate low performance error due to reliable feedback information. Lines
with a unit slope indicate performance of a learner that exclusively relies on prior information.
Lines with slopes in between these two extremes indicate a (Bayesian) weighting of feedback
and prior information [8]. The mathematical predictions of the perfect Bayesian actor, that
knows the statistics of the task and exactly compensates the mean of the posterior belief, can be
seen for our task in Eq (2) of the methods. For this participant, in the full feedback condition
(black lines) the slope was close to zero in both dimensions, as participants could see their vir-
tual hand position relatively clearly and could therefore compensate the error regardless of the
magnitude of the true shift. In contrast, in the no-feedback condition (purple lines) participants
had to completely rely on their learnt prior and would ideally compensate the most probable
shift, that is the mean shift. Accordingly, in no-feedback trials the participant’s deviation from
the target as a function of the true shift is roughly described by a line with unit slope and inter-
cept determined by the mean of the true shift—compare Fig 3.

Analysis of partial feedback trials in the last session
If the participant had not learnt the correlation structure, performance measured by the slope
in the partial feedback condition should be similar to the slope in the no-feedback condition
with respect to the uninformative feedback dimension. This is exactly what we see in the early
session depicted in Fig 3A and 3C showing that the mean of the distribution over shifts has
been roughly learnt, but the correlation between the two dimensions of the shift has not been
learnt. In contrast, we found a significant reduction in the slope of the uninformative feedback
dimension after extensive training in the last session—compare yellow dashed lines in Fig 3A
and 3B and cyan dashed lines in Fig 3C and 3D. This indicates that the correlation structure
has been learnt partially over the course of 4,000 trials. If the correlation had been fully learnt
we would expect all partial feedback lines in panels B,D to be very similar to the full feedback
condition, that is having a slope close to zero.

The results for all participants of the correlated and uncorrelated group are shown in Fig 4,
where in the last session of the experiment the correlated group shows a significant difference

Fig 4. Performance of all participants in the last session of the experiment. The performance in the horizontal dimension is shown in panel A,
performance in the vertical dimension in panel B. Performance is measured by slopes as in Fig 3 comparing no-feedback trials (purple) and partial feedback
trials (yellow and cyan). Learning of the correlation structure is evident whenever the slope in the uninformative dimension of the partial feedback trials is
significantly smaller than the slope in no-feedback trials (see also Fig 3). The perfect Bayesian response for no-feedback trials is characterized by a slope of
one indicated by the thin black line, the Bayes-optimal slope for partial feedback trials would be zero—assuming that the Bayesian actor perfectly knows the
statistics of the task. In both panels, error bars show standard errors of the robust fit.

doi:10.1371/journal.pcbi.1004369.g004
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in slope in the uninformative feedback dimension of partial feedback trials compared to their
performance in no-feedback trials (p = 0.030 signed-rank test for the horizontal slope and
p = 0.030 signed-rank test for the vertical slope). The mean slope for the correlated group
across participants in the last session was 0.640 ± 0.100 for the horizontal slope and
0.534 ± 0.125 for the vertical slope (mean ± standard error of the mean), which corresponds to
the proportion of the perturbation that participants were not able to compensate. This suggests
that information from the reliable dimension in partial feedback trials was successfully applied
to the dimension providing no feedback which is only possible if the correlation structure has
been learnt at least partially. In contrast, the uncorrelated group did not show a significant dif-
ference in slope in the uninformative feedback dimension of partial feedback trials compared
to their performance in no-feedback trials (p = 0.438 signed-rank test for the horizontal slope
and p = 0.063 signed-rank test for the vertical slope). The mean slope across participants of the
uncorrelated group in the last session was 0.935 ± 0.025 for the horizontal slope and
0.937 ± 0.054 for the vertical slope (mean ± standard error of the mean). In principle, however,
this group could have adapted their slope through reinforcement learning in partial and no-
feedback trials, which might explain the close-to-significant p-value in the vertical dimension.
More importantly, therefore, comparing the reduction in slope from the no-feedback to the
partial-feedback trials between the correlated and uncorrelated group, we find a significant dif-
ference between both groups (p = 0.041 rank-sum test for the horizontal dimension and
p = 0.009 rank-sum test for the vertical dimension, data from last session).

Analysis of no-feedback trials in the last session
In no-feedback trials, participants can only rely on their experience from previous trials, which
allows to directly query their prior belief about the expected shift by investigating participants
final hand positions. Fig 5A and 5B shows the mean of participants’ final hand positions in no-
feedback trials over the last session. To perfectly compensate the mean of the experimentally
induced distribution over the shift, participants should on average reach to [1,−1]cm in order
to maximize their hitting probability. This holds for both the correlated and the uncorrelated
group, since the mode of the distribution over the shift is unaffected by the correlation. As
shown in Fig 5A and 5B we found that most participants learnt the mean shift with no signifi-
cant difference between the correlated and the uncorrelated group (p = 0.590 for the horizontal
dimension and p = 0.065 for the vertical dimension, rank-sum test).

Fig 5. Means and correlation of the final hand position in no-feedback trials of the last session. A The mean of the final horizontal hand position for an
ideal actor should be +1cm to fully compensate the mean shift. B The mean of the final vertical hand position for an ideal actor should be −1cm to fully
compensate the mean shift. C Correlation coefficient between the vertical and horizontal components of the final hand position. Error bars indicate 95%
confidence intervals—bars marked with a star show significant correlations (at a 5% level).

doi:10.1371/journal.pcbi.1004369.g005
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Moreover, we computed the correlation coefficient between the vertical and horizontal
components of participants’ final hand position in no-feedback trials of the last session of the
experiment. As shown in Fig 5C, we found a significant difference between both groups
(p = 0.041, rank-sum test)—participants from the correlated group systematically showed a
negative correlation in their final hand-position (p = 0.030, sign test), whereas participants
from the uncorrelated group did not (p> 0.990, sign test). Importantly, a correlation in the
two dimensions of the hand position cannot be explained by a perfect Bayesian actor model
that exactly compensates the mean of the prior distribution over the shifts, even if some isotro-
pic motor noise was added to this planned response. We consider two hypotheses that are not
necessarily mutually exclusive. The first hypothesis is that the correlation could be a signature
of a bounded rational actor that samples beliefs from its prior distribution over shifts and
chooses its actions with regard to these samples. The second hypothesis is that the correlation
simply reflects the correlation in the previous full feedback trial assuming a trial-by-trial adap-
tation process. We found evidence for both hypotheses. In particular, we found in accordance
with the second hypothesis that participants’ responses in no-feedback trials of both the corre-
lated and uncorrelated group were significantly correlated with the shift of the previous full
feedback trial (correlated group last session: correlation-strength −0.31 ± 0.26 horizontal and
−0.34 ± 0.23 vertical (mean ± standard deviation)—uncorrelated group last session: correla-
tion-strength −0.2 ± 0.15 horizontal and −0.23 ± 0.13 vertical). For the correlated group this
correlation was significant for four out of six participants in the horizontal dimension and for
five out of six participants in the vertical dimension—for the uncorrelated group we found a
significant correlation for four out of six participants in both dimensions. If the correlation in
the two dimensions of the hand position was entirely due to trial-by-trial adaptation, we would
expect the correlation to be roughly stationary, as the xy-correlation in full feedback trials is
already present in the earliest trials of the first session and changes only minimally across ses-
sions. In contrast, we found that the correlated group started with a close-to-zero xy-correla-
tion in no-feedback trials and showed learning-dependent improvement in the correlation
over time (xy-correlation coefficient across participants in the first session −0.12 ± 0.17 versus
the last session −0.42 ± 0.33, mean ± standard deviation), which would fit with the predictions
of a bounded rational model of acting—compare Section: Model prediction.

Learning across sessions
To investigate behavior beyond the final session, we analyzed the dynamics of learning over
the entire four sessions. We assess the evolution of participants’ performance slopes in partial
feedback trials and in no-feedback trials the evolution of participants’ correlation between
the two dimensions of their final hand position as well as the evolution of their mean
responses. Fig 6 shows participants’ evolution of performance slopes across the four sessions
in partial feedback trials. The figure shows individual participants as thin colored lines and
the median over participants as a thick black line. The results show a clear difference between
the correlated and the uncorrelated group—the correlated group shows a steady decrease in
slopes across sessions, whereas the uncorrelated group shows no such trend. This suggests
that the correlated group gradually learnt to harness the informative feedback dimension to
facilitate the sensorimotor integration process in the uninformative feedback dimension.
In contrast to the gradual learning of the correlation structure, we found no difference in
learning of the mean of the distribution over shifts between the two groups—compare Fig 7.
The results suggest that large parts of learning the mean shift already happened before the
occurrence of the first no-feedback trials that we used to assess learning of the mean in the
figure.
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Finally, we investigated the evolution of participants’ correlation between the two dimen-
sions of their final hand position. In Fig 8A and 8B we show the evolution of the correlation
coefficient between the horizontal and vertical component of participants’ final hand position
in no-feedback trials over the course of the whole experiment. Similar to the results in Fig 5C,
we found that the correlated group shows an increasingly negative correlation across sessions,
whereas the uncorrelated group does not show such a trend.

Control experiment: reinforcement learning vs. supervised learning
In our experimental design the correlated group could have learnt the correlation structure
from two sources: first, from the error signal in full feedback trials allowing for some kind of
supervised learning, and second, from the binary auditory performance feedback in partial and
no-feedback trials allowing for some kind of reinforcement learning. As the uncorrelated
group experienced the same statistics and binary performance feedback in partial and no-
feedback trials, we can already exclude the possibility that the correlation structure in partial
and no-feedback trials is learnt from binary feedback alone. However, it is unclear whether
the binary feedback signal was crucial for the correlated group in learning the correlation
structure.

Fig 6. Changes in slope in partial feedback trials. The slope is a performance measure determined as in Fig 3 but using a sliding window of 100 trials.A
Evolution of the horizontal slopes in partial sv feedback trials of the correlated group where horizontal information is not given by the feedback, but can only be
obtained through knowledge of the correlation structure.B Same as A but showing data of the uncorrelated group. C Evolution of the vertical slopes in sh
feedback trials of the correlated group where vertical information is not given by the feedback, but can only be obtained through knowledge of the correlation
structure.D Same as C but showing data of the uncorrelated group. For the analysis only partial sv- or partial sh-feedback trials were taken out from the
pooled data across all sessions. Thin colored lines indicate individual participants and can vary in length since the exact number of relevant trials could
fluctuate due to the probabilistic generation of trials. The thick black line shows the median over participants—taking only into account trials where data from
all participants exists. The bar at the bottom of the figure indicates the corresponding session (on average).

doi:10.1371/journal.pcbi.1004369.g006
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Fig 7. Learning of mean shift over all sessions revealed by performance in no-feedback trials averaged over a sliding window of 100 trials. A
Learning of the mean in the horizontal dimension of the correlated group. B Same as A but showing data of the uncorrelated group.C Learning of the mean in
the vertical dimension of the correlated group.D Same as C but showing data of the uncorrelated group. For the analysis only no-feedback trials were taken
out from the pooled data across all sessions. Thin colored lines indicate individual participants and can vary in length since the exact number of relevant trials
could fluctuate due to the probabilistic generation of trials. The thick black line shows the median over participants—taking only into account trials where data
from all participants exists. The bar at the bottom of the figure indicates the corresponding session (on average).

doi:10.1371/journal.pcbi.1004369.g007

Fig 8. Adaptation of correlation between the vertical and horizontal terminal hand positionmeasured in no-feedback trials.Correlation values are
determined in a sliding window of 50 trials across all four sessions.A Correlated group.B Uncorrelated group. For the analysis only no-feedback trials were
taken out from the pooled data across all sessions. Thin colored lines indicate individual participants and can vary in length since the exact number of
relevant trials could fluctuate due to the probabilistic generation of trials. The thick black line shows the median over participants—taking only into account
trials where data from all participants exists. The bar at the bottom of the figure indicates the corresponding session (on average).

doi:10.1371/journal.pcbi.1004369.g008
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To control for this possible source of learning, we devised a control group that underwent
the same experimental procedure as the correlated group with the important exception that
this group did not receive any performance feedback in partial and no-feedback trials. We
found that this group behaved similarly to the uncorrelated group in that they showed almost
no reduction in slope in partial feedback trials (p = 0.485 horizontal and p = 0.699 vertical,
ranksum test against uncorrelated group with data from the final session), in clear contrast to
the correlated group that received binary performance feedback in partial and no-feedback tri-
als (p = 0.041 horizontal and p = 0.026 vertical, ranksum test against correlated group with
data from the final session). The same pattern is also visible in the evolution of slopes across
sessions as shown in Fig 9 (evolution of slopes of individual participants is shown in Supple-
mentary S1 Fig, evolution of means of individual participants is shown in Supplementary S2
Fig). This suggests that participants require both signals to learn, that is the immediate auditory
feedback in partial- and no-feedback trials and the endpoint feedback reflecting the correlation
structure in full-feedback trials.

Control experiment: cognitive strategies vs. motor learning
In our experimental design the optimal strategies in full and partial feedback conditions of the
correlated group always required diagonal compensatory movements that were either directed
left-up or right-down. This raises the question of whether participants could have learnt an
explicit cognitive strategy instead of implicit sensorimotor integration. The hypothesis is that
an explicit cognitive strategy can be verbally communicated and enable the participant more or
less instantly to perform well. To control for this possibility, we devised a group of participants
that was explicitly informed about the correlation structure, that is they were told that success-
ful compensations would either be left-up or right-down. Crucially, if the correlated group sim-
ply learnt a cognitive strategy then the explicitly instructed group should be able to perform in
their first session as well as the correlated group in their last session, assuming that the corre-
lated group had figured out the cognitive strategy by the fourth session that the instructed
group was given immediately. We found this not to be the case.

Fig 9. Changes in slope in partial feedback trials across groups. The slope is determined as in Fig 6. A Evolution of the horizontal slopes in partial sv
feedback trials where horizontal information is not given by the feedback, but can only be obtained through knowledge of the correlation structure.B
Evolution of the vertical slopes in sh feedback trials where vertical information is not given by the feedback, but can only be obtained through knowledge of
the correlation structure. The correlated group shows a gradual and steady improvement across sessions whereas the other groups do not show such a
trend. Different colored lines show the median over the different groups of participants and can vary in length since the exact number of relevant trials could
fluctuate due to the probabilistic generation of trials. The bar at the bottom of the figure indicates the corresponding session (on average).

doi:10.1371/journal.pcbi.1004369.g009
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In the partial feedback trials, the correlated group performed significantly better at the end
of the experiment than the instructed group in their first session (comparing the reduction of
slope in the first session of the instructed group against the reduction of slope in the last session
of the correlated group with a ranksum test: p = 0.026 horizontal dimension in partial sv trials
and p = 0.065 vertical dimension in partial sh trials). The performance difference between the
two groups is particularly obvious when comparing the evolution of the slope in partial feed-
back trials across sessions—compare Fig 9. The figure shows that the instructed group is not
learning the correlation structure across sessions, as there is no statistical evidence for improve-
ments of the slopes in partial feedback trials across sessions (comparing the reduction in slope
with respect to the no-feedback slope between the first and the last session of the instructed
group with a ranksum test: p = 0.937 horizontal and p = 0.937 vertical). The evolution of slopes
of individual participants is shown in Supplementary S1 Fig and the evolution of means of indi-
vidual participants is shown in Supplementary S2 Fig. There is, however, evidence that partici-
pants understood the instructions, as they showed a significant correlation between the
horizontal and vertical dimension of their hand movements under partial feedback straight
away: in the first session, the instructed group had a movement-correlation in horizontal and
vertical partial feedback trials of −0.29 ± 0.15 and −0.27 ± 0.07 (mean ± standard deviation)
respectively compared to the correlated group that showed no initial correlation of the hori-
zontal and vertical dimension of their hand-movement in partial feedback trials (−0.06 ± 0.16
and −0.04 ± 0.17, mean ± standard deviation). This difference in correlation was significant
(p = 0.026 horizontal and p = 0.026 vertical, ranksum test comparing the first session of the
correlated group and the first session of the instructed group). The evolution of the xy-
correlation in partial feedback trials across all sessions draws the same picture—compare Sup-
plementary S3 Fig.

Surprisingly, the increased correlation in the hand movements in partial feedback trials of
the instructed group did not produce a reduction in slope in these trials. In fact, the instructed
group showed strongly increased slopes in the low-uncertainty dimension of the partial feed-
back trials in the first session of the experiment—compare Supplementary S3 Fig. In the low-
uncertainty dimension of the partial feedback trials, an ideal actor should have a slope close to
zero reflecting low uncertainty about the shift. The instructed group had an elevated slope of
0.725 ± 0.469 and 0.732 ± 0.455 (mean ± standard deviation) for horizontal and vertical partial
feedback trials in the first session respectively, compared to the correlated group that had a
slope of 0.342 ± 0.160 and 0.193 ± 0.154 (mean ± standard deviation) in their first session. This
suggests that, while the instructions were clearly understood and followed, the explicit instruc-
tions actually impeded participants’ ability to compensate the shifts in the low-uncertainty
dimension of the partial feedback, particularly in the early sessions of the experiment. As per-
formance in the low-uncertainty dimension does not require learning a statistical prior (and in
fact in all the other groups there seems to be better performance and little performance
improvement in the low uncertainty dimension—see Supplementary S3C and S3D Fig), this
suggests that the deficient performance in the instructed group might be due to a shift in atten-
tional focus, where subjects might pay more attention to following the instruction than to
actual performance [38]. Further, the instructed group also shows impeded implicit learning—
compare the evolution of the slope in partial feedback trials for the instructed group in Fig 9.
While these results are not conclusive with respect to the origin of the deficient performance of
the instructed group, they clearly demonstrate that explicit instructions did not instantly
improve performance and therefore suggest that the correlated group were not following an
explicit cognitive strategy.
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Model predictions
As in the model described in [8], the ideal Bayesian actor optimally integrates prior knowledge
about the shift with feedback information in each trial. For our experiment this mathematical
prediction can be found in Eq (2) of the Methods. Importantly, this integration presumes that
the prior is perfectly learnt to be consistent with the experimentally imposed prior. While this
is the case in [8], in our study this is not the case, as can be seen for example in Fig 9, where the
slopes in partial feedback trials never approach the Bayesian optimum of zero. This implies
that the correlation in the prior is never fully learnt by participants. To model participants’
behavior we therefore devised not only a Bayesian model of sensorimotor integration of prior
and feedback, but also a Bayesian model of learning the prior and the corresponding correla-
tion structure. In this model the actor has a belief about the prior over the shift s given by
p(sjμ0,S0), where μ0 and S0 are hyper-parameters that the actor is learning over the course of
many trials. If the initial belief over s is concentrated on uncorrelated shifts, as would be

Fig 10. Simulation results. The plots show the simulation results as medians over six different simulation runs. Blue lines show the medians over six runs
where the model was trained with correlated full feedback trials. Pink lines show the medians over six run where the model was trained with uncorrelated full
feedback trials.AMedian for evolution of horizontal slope in partial sv-feedback trials—compare Fig 9A which shows the participants’ results.BMedian for
evolution of vertical slope in partial sh-feedback trials—compare Fig 9B which shows the participants’ results. CMedian for evolution of horizontal mean-
response in no feedback trials—compare Fig 7 and Supplementary S2E Fig which shows the participants’ results.DMedian for evolution of vertical mean-
response in no feedback trials—compare Fig 7 and Supplementary S2F Fig which shows the participants’ results. The parameters of the model (strength of
the initial belief over mean-shift and covariance matrix) were chosen in order to minimize the sum-of-squared-differences between the correlated simulation
median and the median obtained from participants from the correlated group. The uncorrelated simulation run used the same set of parameters.

doi:10.1371/journal.pcbi.1004369.g010
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plausible for everyday planar movements, the model can explain partial learning of the correla-
tion structure—compare Fig 10.

Fig 10 shows the median of performance slopes and mean-responses under two different
training conditions, each with six exemplary runs of the model. The blue curves show model
predictions when trained on correlated trials, the pink curves show model predictions when
trained on uncorrelated trials. Independent of the training regime the model predicts that both
groups of participants should learn the mean shift equally well, which is in line with our experi-
mental findings. In the case of partial feedback trials, the model predicts that the uncorrelated
group shows no learning and should have a slope close to one. In contrast, when trained on
correlated trials, the model predicts that the slope should decrease over time, indicating gradual
learning of the correlation structure. Moreover, if actions are determined by samples from the
distribution over shifts, the model predicts that the xy-correlation in no-feedback trials should
gradually increase in magnitude when trained on correlated trials, whereas no such trend
should be observed when trained on uncorrelated trials—simulation results are shown in
Fig 11. Also this prediction fits with our experimental data shown in Fig 8.

Discussion
In this study, we designed a three-dimensional reaching task where we could displace the visual
feedback of participants’ hand positions with a two-dimensional translational shift. The statis-
tics over the shift could be learnt by participants in training trials with precise visual feedback.
We imposed a correlation between the two dimensions of the shift as a statistical structural
invariant and found that participants gradually learnt this structural invariant during training.
Participants exploited the structural knowledge to facilitate sensorimotor integration in test tri-
als with partial feedback where the visual feedback was completely uninformative in one
dimension. However, we only found this to be the case when participants had binary reward-
feedback at the end of these trials. We also recorded a control group, where the correlation
structure was absent during training but could have potentially been learnt through the binary
reward-feedback in test trials. We found no statistically significant evidence that the correlation
structure was learnt over the course of the experiment in the control group. We also found that

Fig 11. Simulation results.Median for evolution of xy-correlation in no feedback trials—compare Fig 8A and
8B which shows the participants’ results. The plot shows the simulation results as medians over six different
simulation runs. The blue line shows the median over six runs where the model was trained with correlated
full feedback trials. The pink line shows the median over six runs where the model was trained with
uncorrelated full feedback trials. The parameters of the model (strength of the initial belief over mean-shift
and covariance matrix) were chosen in order to minimize the sum-of-squared-differences between the
correlated simulation median and the median obtained from participants from the correlated group. The
uncorrelated simulation run used the same set of parameters.

doi:10.1371/journal.pcbi.1004369.g011
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explicit instructions about the nature of the perturbation and the optimal compensatory
response did not enhance participants’ performance, which suggests that they were not follow-
ing a cognitive strategy. In all groups, we used trials without any visual feedback to probe par-
ticipants’ prior beliefs over the shift and found that participants in all groups rapidly learnt the
mean shift. Our results show that participants in our experiment were indeed able to extract
structural invariants in order to enhance their performance in a Bayesian sensorimotor integra-
tion task.

In our experiment participants never learnt the correlation structure perfectly. A perfect
Bayesian actor with full knowledge of the correlation should show the same behavior in partial
feedback trials as in full feedback trials, as one fully visible dimension with correlation structure
contains in principle the same amount of information as two fully visible dimensions. This
raises the question whether learning of the correlation was still ongoing after four days of train-
ing or whether learning of the correlation is imperfect. In the latter case our results would hint
at sub-optimal behavior in Bayesian integration tasks. The results in Fig 6A and 6C showing
the learning progress over the course of the experiment suggest that learning had not yet flat-
tened out by the end of the fourth session and participants would potentially continue to
improve their performance in subsequent sessions of the experiment. Therefore, we cannot dis-
tinguish between these two possibilities in our data.

In control experiments we found that reward-feedback was crucial in order to improve the
response in partial feedback trials. This raises the question why the group without binary
reward-feedback would fail to show improvements under partial feedback despite undergoing
training with correlated full feedback trials? There are at least three possibilities. First, this
group might have lacked incentive in partial and no-feedback trials, as there was no perfor-
mance feedback and therefore they might not have cared about their action. Second, this group
might have not been able to transfer their skill from full feedback to partial feedback without
additional reward cues, as the stimuli in the full- and partial-feedback conditions looked differ-
ent. Third, this group might have failed to learn the correlation altogether, as in full feedback
trials knowledge of the correlation is not necessary to perform well. The third hypothesis is
unlikely as in previous studies of sensorimotor integration in a single dimension [8] partici-
pants were shown to learn the Bayesian prior despite the absence of any reward feedback in
partial and no feedback conditions. While we cannot distinguish between the first two possibil-
ities, our results seem to suggest that learning of the correlation in the full-feedback trials
would narrow down the hypothesis space regarding the shifts sufficiently such that participants
could exploit the reward-feedback either simply as an incentive (first possibility) or as a rein-
forcement learning signal for efficient adaptation (possibility two). In any case, the results of
the uncorrelated group show that reinforcement learning with binary reward-feedback by itself
is not sufficient to learn the correlation structure.

In no-feedback trials we found that participants of the correlated group showed a correlation
between the vertical and horizontal dimension of their final hand position. This cannot be
explained by a perfect Bayesian actor model that simply compensates the mean shift in no-feed-
back trials. The two possibilities we considered that could explain this finding are first, trial-by-
trial adaptation of participants and second, a sampling strategy where participants sample
beliefs from the prior distribution and act accordingly. In the first case, the correlation in no-
feedback trials would simply show up in the correlated group as an aftereffect of the previous
correlated full feedback trial. In the second case, participants would behave as bounded optimal
Bayesian actors that actively sample from the learnt prior distribution rather than just picking
the maximum [39–45]. Since the prior distribution exhibits the correlation structure, such a
bounded optimal actor would also reflect the correlation structure in their actions in no-feed-
back trials. We found evidence for both hypotheses and, indeed, they are not mutually exclusive,
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as a bounded rational actor could be implemented by a Monte-Carlo sampler that naturally
introduces trial-by-trial correlations, because all changes in strategy are always stepwise [46, 47].

The sensorimotor integration of different sources of information has been studied previ-
ously, in particular the combination of information from different sensory modalities with dif-
ferent reliability and the combination of prior experience with feedback information [7–12, 19,
20]. Other studies have investigated how motor behavior adapts when perturbation statistics
change dynamically across trials [21, 23, 24]. Our task belongs to the first category of studies,
as there is no trial-by-trial dynamics of the perturbation, just samples from a stationary distri-
bution. Most of these previous studies have reported a quantitative agreement between their
data and Bayesian model predictions. Our task is an extension of [8], where the authors used a
two-dimensional reaching task with a one-dimensional visuomotor shift to show that the
human sensorimotor system optimally combines prior expectations of a hidden variable with
noisy visual feedback. In their task, feedback of the virtual hand position was provided by iso-
tropic Gaussian point clouds. In extension of this previous work, we investigate the role of
higher-level statistical structure during Bayesian sensorimotor integration. The three-dimen-
sional task setup allowed us to impose such higher-level structure in the space of the two-
dimensional hidden variable, which was not possible in the planar task design in [8].

Structure learning has been proposed in the literature as an important meta-learning con-
cept for extracting higher-level invariants in behavioral experiments, both in cognitive tasks
[22, 48–52] as well as sensorimotor tasks [27, 28, 34, 35, 37, 53, 54]. In this study we investigate
how structural invariants in a two-dimensional hidden variable influence sensorimotor inte-
gration, that is the combination of prior experience with uncertain feedback, where the feed-
back uncertainty could be manipulated experimentally. In contrast, previous studies on
structure learning in sensorimotor control typically did not manipulate feedback reliability,
and studies on Bayesian sensorimotor integration have typically not investigated multi-
dimensional hidden variables with structured spaces. In particular, we designed visual feedback
conditions where knowledge of the correlation structure allowed the integration of information
across the two dimensions of the hidden shift variable. Therefore, in the current experiment
the two structures (correlated vs. uncorrelated) can be subsumed by a single model with
parameter ρ and the structure learning problem can be cast as learning the prior over ρ (or the
covariance matrix). However, in general it need not always be the case that the models are
nested. In the nomenclature of Bayesian networks structure learning refers in general to learn-
ing the dependencies between multiple (hidden) variables. These dependencies can be repre-
sented by multiple model classesM, such that structure learning implies learning a prior p(M)
over the model classesM. Upon arrival of new evidence, the sensorimotor system can then
decide between the different models—see for example [37, 53, 54].

In our current paper, our results demonstrate that participants who were trained on a corre-
lation structure could use their structural knowledge to guide their adaptation in test trials with
binary reward-feedback. In contrast, participants in the control group that were not exposed to
the correlation structure during training were unable to learn the structure in test trials from
binary feedback. In summary, we find that structural invariants of hidden variables play an
important role in the sensorimotor integration process of combining sensory feedback with
prior experience. We find this process to be consistent with Bayesian inference.

Materials and Methods

Ethics statement
The study was approved by the ethics committee of the Max Planck Society (reference number:
0269/2010BO2). All participants gave written informed consent.
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Participants
Sixteen female and eight male participants were recruited from the student population of the
University of Tübingen. All participants were naive and the local standard rate of eight Euros
per hour was paid for participation in the study.

Materials
We used a virtual reality setup consisting of a Sensable

1

Phantom
1

Premium 1.5 High Force
manipulandum for tracking participants’ hand movements in three dimensions and an NVIS

1

nVisor ST50 head-mounted display (HMD) for creating stereoscopic 3D virtual reality. Move-
ment position and velocity were recorded with a rate of 1kHz.

Experimental design: overview
We designed a 3D-visuomotor task in virtual reality where participants had to perform reach-
ing movements to a fixed target. The participants’ hand position ph was represented by a
shifted hand position ps. In each trial the virtual position ps was translated in the vertical plane
by adding a two-dimensional Gaussian random vector s = [sh,sv], such that

ps ¼ ph þ
sh

sv

0

2
64

3
75;

where the z-dimension corresponds to the veridical forward-backward movement direction
and the vertical plane is spanned by h (right-left movement direction) and v (up-down move-
ment direction). Crucially, the virtual position was only briefly displayed about halfway
through the movement, which allowed inference of the unobserved shift depending on
the preciseness of the display. As the hidden shift variable was bivariate and Gaussian with
s*N (s; μ, S), we could introduce statistical structure between the two dimensions of the shift
by correlation, such that

m ¼ m1

m2

" #
¼ �1

þ1

" #
cm and S ¼ s2

1 rs1s2

rs1s2 s2
2

" #
;

with σ1 = σ2 = 1cm and the correlation coefficient ρ depending on the experimental condition.
We choose a non-zero mean to be able to assess learning not only through correlation, but also
through learning of the mean.

In particular, we trained the first six participants on a correlated 2D-Gaussian distribution
over the shift (correlated group, ρ = −0.999) and the next six participants on an isotropic
2D-Gaussian distribution (uncorrelated group, ρ = 0.0). We refer to these training trials as full
feedback trials, where the virtual position was displayed with very low uncertainty in both
dimensions of the shift. We tested both groups of participants on a statistically identical set of
test trials with either partial feedback or no feedback. Importantly, the shift in these test-trials
was always drawn from the correlated 2D-Gaussian (ρ = −0.999), regardless of the group. Par-
tial feedback trials were very reliable in one dimension but provided no information about the
other dimension of the shift—only if the correlation structure had been learnt successfully, reli-
able feedback in one dimension allows to infer the shift in the other. No-feedback trials allowed
us to test participants’ learnt representation of the prior knowledge over the shift. The different
feedback types are illustrated in Fig 1.
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Experimental design: workspace
The workspace of the experiment was ±5cm in the left-right direction (h-axis), ±5cm in the up-
down direction (v-axis) and 0–14cm in the forward-backward direction (z-axis). The h-v plane
was tilted by 20° against the vertical direction of gravity to make it approximately perpendicu-
lar to participants’ line of sight when looking down at the center of the workspace. The start-
position was indicated by a white sphere (radius: 0.6cm) centered at (h, v, z) = (0,0,0.5)cm and
the target was indicated by a yellow sphere (radius: 0.5cm) centered at (0,0,14)cm. Before initi-
ating the trial by moving into the start sphere, participants’ virtual hand position was veridi-
cally displayed by a small cursor (blue sphere, radius: 0.3cm). To facilitate 3D-perception, we
displayed a grid at the bottom and at the back of the workspace. We also showed a red rectangle
moving along the grid to indicate the veridical depth of participants’ virtual hand position.

Experimental design: trials
To start a trial, participants had to move the cursor representing their hand position into the
start-sphere and remain steady for 0.1s. After that, a beep indicated the start of the trial. Simul-
taneously, the start-sphere and the cursor display vanished and the target-sphere was dis-
played. Participants had a maximum of 2s to complete their movement by passing through the
target-plane located at 14cm in the z-direction—otherwise the trial was repeated. The average
trial duration across all participants and trials was 1.041s.

After participants had moved 6cm into the forward direction towards the target, visual feed-
back was presented for 150ms. The feedback display was dynamic, that is tracking participants
hand movements for the duration of the display. There were four different types of visual feed-
back. In full feedback trials (compare Fig 1A), the visual feedback consisted of a small red
sphere (radius: 0.3cm), centered at the virtual hand position ps. In partial sh-feedback trials
(compare Fig 1B), participants saw a vertically elongated rectangle centered on the horizontal
component of ps that consisted of 50 small red circles (radius: 0.1cm), each circle located ran-
domly within the area spanned by the rectangle and re-sampled at 60Hz—compare Fig 1B. The
bar stimulus had a width of 0.6cm in the horizontal direction and a height that covered the full
vertical workspace, thus providing no information about the vertical component of ps. In par-
tial sv-feedback trials, participants were shown the same kind of bar stimulus, but this time
elongated in the horizontal direction with a height of 0.6cm in the vertical direction. The stimu-
lus covered the full horizontal workspace, providing no information about the horizontal com-
ponent of ps. In no-feedback trials (compare Fig 1C), no visual feedback was shown to the
participant. Accordingly, participants could only rely on their prior experience in these trials.

A trial was completed, once the participant crossed the vertical target-plane at z = 14cm in
the forward direction. This final hand-position in the vertical plane was analyzed in the Results.
Regardless of the visual feedback type of the trial, the participant was informed of whether they
had hit the target. A target hit was counted whenever the (potentially non-visible) final cursor
position (sphere, radius: 0.3cm, corresponding to the final shifted hand-position) was intersect-
ing with the target-sphere (radius: 0.5cm). To indicate a hit, the target sphere changed its color
to green and a rewarding sound was played back. To indicate a miss, the target sphere changed
its color to red and a deep-pitched buzzing sound was played back. In full feedback trials, the
final cursor position was marked on the grid (blue sphere, radius: 0.3cm) in the target-plane (at
z = 14cm).

In order to start a new trial, participants had to return their hand position to the start
sphere. Since they did not see their shifted hand position represented by the cursor throughout
the trial, they could use the highlighted rectangle on the grid to judge the cursor’s depth. Once
they moved their hand into the front half of the work space (z� 7cm), the target-sphere and
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any additional final feedback (in case of full feedback trials) disappeared. Instead, the start-
sphere and the veridical cursor were displayed. Participants were allowed to take breaks when-
ever they wanted in this inter-trial phase. Importantly, when participants returned to the start
position after completion of a trial the cursor was faded out and no visual feedback of their
hand position was shown. When getting close to the start position their hand position was
shown veridically. Participants would thus not experience an abrupt jump in the cursor when
returning to the start-position.

Experimental design: sessions
For each participant the experiment consisted of four sessions, spread over four days, with
each session consisting of 1000 completed trials (see Fig 2). The first session included a three-
staged training-phase (with full feedback trials only): for the first 50 trials there was no shift
and the veridical cursor was displayed throughout the whole movement. In the subsequent 50
trials the shifted cursor was displayed throughout the whole trial and participants could see the
jump from veridical to shifted cursor after movement onset. In the last training stage (the fol-
lowing 100 trials) only full feedback trials were presented, but no cursor was shown during the
trial (except for the brief visual feedback of 150ms duration). After the training stage the differ-
ent feedback types were presented in randomly interspersed order with the following probabili-
ties: 1/2 for full feedback trials and 1/6 for partial sh-feedback, partial sv-feedback and no-
feedback respectively. The second, third and fourth session did not include a training phase.

Experimental design: instructions
Participants were informed that their task was to hit the target with the virtual cursor and that
the virtual cursor would “jump” immediately after movement onset (as they would experience
in the second training stage). They were informed about the different feedback types and were
told that in case of partial feedback the virtual cursor was somewhere behind the flickering bar
and could not be outside the bar. In no-feedback trials they were instructed to guess where the
cursor might have jumped to and try to blindly hit the target. As an additional incentive partic-
ipants were shown their overall hit-ratio in partial- and no-feedback trials as a percentage
above the workspace. Performance in full-feedback trials did not count towards this hit-rate
display.

Experimental design: control experiments
We introduced two control groups (six participants each) to study the influence of explicit per-
formance signals in partial and no-feedback trials and the potential impact of cognitive strate-
gies. Like the correlated group, both control groups were exposed to correlated shifts in all
feedback conditions. In the first control group, the correlated group without auditory feedback,
participants did not receive any performance feedback about whether they had hit the target in
partial- and no-feedback trials. This means that in these trials, the target color did not change
according to whether the target was hit or not and a neutral sound was played back instead of
the sounds indicating a hit or a miss. Additionally the hit-rate percentage in partial- and no-
feedback trials was not shown to participants.

The second control group, the correlated group with instruction received additional instruc-
tions at the beginning of the experiment. In particular, they were informed about the correla-
tion of the horizontal and vertical dimension of the shift. They were instructed as follows: “If
the cursor jumps to the left, it always jumps up as well and if it jumps to the right it always jumps
down as well. This also means that if it jumps up it will also jump to the left and if it jumps down
it will also jump to the right. This information is particularly useful for the trials with the bar-
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feedback”. Participants were reminded of this instruction after the training phase ended in the
first session and again before starting the second session. In order to test for trial-by-trial corre-
lations between full feedback and no-feedback trials in this group, in approximately 8% of all
trials an uncorrelated shift stimulus was presented in the full feedback trial just before a no-
feedback trial. Uncorrelated full feedback trials never preceded a partial feedback trial, which is
the trial type we used to evaluate learning of the correlation structure. Importantly, therefore,
these uncorrelated trials do not affect the validity of the control experiment, because a cognitive
strategy in partial feedback trials should not depend on the statistics of previous trials, espe-
cially if they do not directly precede.

Computational model: Bayesian sensorimotor integration
The visual feedback d = [dh, dv]

T is modeled using a Gaussian likelihood model:
p(djs) =N (d; s, Sobs). The off-diagonal entries of Sobs are zero, whereas the diagonal entries
depend on the visual feedback type of the trial, that is

Sobs ¼
s2
h 0

0 s2
v

" #
;

In the full feedback trials both, the variance in h- and v-dimension are very low, in no-feed-
back trials the variance in both dimensions is infinite and in partial feedback trials the vari-
ance in one dimension is low whereas it is infinite in the other dimension. The posterior-
belief over the shift s given the visual feedback d is obtained by combining prior knowledge
over the shift with the likelihood model—leading to a Bayesian integration of both sources of
information:

pðsjdÞ ¼ pðdjsÞpðsÞR
pðdjsÞpðsÞds ; ð1Þ

where the likelihood model is p(djs) =N (d; s, Sobs) and the prior is given by p(s) =N (s; μ,
S) as described in Experimental design: overview.

If both the prior and the likelihood are Gaussian, the posterior can also be expressed as a
Gaussian distribution p(sjd) =N (s; μp, Sp)

mp ¼ SpðS�1
obsd þ S�1mÞ ð2Þ

Sp ¼ ðS�1 þ S�1
obsÞ�1 ð3Þ

with mean μp and covariance Sp. The parameters μ and S denote the mean and covariance-
matrix of the prior and correspond to the parameters of the true distribution over the shift

m ¼ m1

m2

" #
and S ¼ s2

1 rs1s2

rs1s2 s2
2

" #
;

In the four feedback conditions of our experiment, Eq (2) simplifies further to

• Full feedback condition (σh ! 0 and σv! 0)

mp ¼
dh

dv

" #
¼ d
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• Partial sh-feedback condition (σv!1)

mp ¼
s2
1

s2
h þ s2

1

0

r
s1s2

s2
h þ s2

1

0

2
664

3
775 dh

dv

" #
þ

s2
h

s2
h þ s2

1

0

�r
s1s2

s2
h þ s2

1

1

2
664

3
775 m1

m2

" #

• Partial sv-feedback condition (σh!1)

mp ¼
0 r

s1s2

s2
v þ s2

2

0
s2
2

s2
v þ s2

2

2
664

3
775 dh

dv

" #
þ

1 � r
s1s2

s2
v þ s2

2

0
s2
v

s2
v þ s2

2

2
664

3
775 m1

m2

" #

• no-feedback condition (σh!1 and σv !1)

mp ¼
mh

mv

" #
¼ m

If participants maximized their hitting chances by following the maximum of the posterior
given by μp, the only difference between the correlated and uncorrelated group occurs in the
partial feedback conditions. In the uncorrelated group with ρ = 0, participants would integrate
the informative feedback dimension with their prior information about this dimension, and
they would solely rely on the prior in the uninformative feedback dimension. In the correlated
group with ρ = −0.999 participants would differ from the uncorrelated group in how they pro-
cess the uninformative feedback dimension by generating an estimate of the uninformative
feedback dimension that relies on the informative feedback dimension and prior expectations
on both dimensions.

Computational Model: hierarchical learning of correlation structure
In the previous section, the Bayesian integration of visual feedback information and prior
knowledge about the shift requires knowledge about the parameters μ, S of the prior over the
shift p(s) =N (s; μ, S). In our experiment however, these parameters must be learnt by partici-
pants over the course of the experiment. In the Bayesian framework this learning process can
be modeled by assuming a prior distribution over these parameters—the so-called hyper-prior-
—and updating the hyper-prior distribution in light of new observations in a Bayesian fashion.
In our case the hyper-prior is again a parametric distribution (a normal inverse-Wishart distri-
bution), which allows for a sequential Bayesian update of the parameters of this distribution,
sometimes referred to as hyper-parameters. In the following model, the hyper-parameters are
updated through the observed shifts in training-trials, that is in full feedback trials, only.

We denote the previously observed shifts in full feedback trials byD = {d1, . . ., dN}. Ulti-
mately, we seek the belief over the shift s in the current trial after observing the visual feedback
d and after having observed the previous training trialsD. This belief is formalized as the distri-
bution p(sjd,D). While an optimal Bayesian actor would respond with an action that corre-
sponds to the (negative) mode of this belief, a bounded-rational Bayesian actor would sample
beliefs from the distribution p(sjd,D) and base its movement response on these samples. In our

Structure Learning in Bayesian Sensorimotor Integration

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004369 August 25, 2015 21 / 27



case, we draw a single sample ~s � pðs j d;DÞ and respond with ~r ¼ �~s. The distribution
p(sjd,D) is given by Bayes’ rule

pðsjd;DÞ ¼ pðdjsÞpðsjDÞ
pðdjDÞ :

The Gaussian likelihood model p(djs) =N (d; s, Sobs) remains the same as in the previous sec-
tion. Additionally, we have introduced a data-dependent prior p(sjD) that models the prior
belief about the shift s after having observed the training dataD. The prior over the shift p(sjD)
depends on the update of the hyper-parameters μ0, S0 that specify the distribution p(sjμ0, S0).
The update of the hyper-parameters is modeled probabilistically through p(μ0, S0jD, Sobs).
This allows us to specify a model for Bayesian integration of prior beliefs and feedback infor-
mation, where the prior beliefs are data-dependent:

pðsjd;DÞ ¼ pðdjsÞpðsjDÞ
pðdjDÞ ¼ pðdjsÞ R dm0dS0 pðsjm0;S0Þpðm0;S0jD;SobsÞ

pðdjDÞ : ð4Þ

where the update equation for the hyper-parameters μ0, S0 is given by

pðm0;S0jD;SobsÞ ¼
pðDjm0;S0;SobsÞpðm0;S0Þ

pðDjSobsÞ
; ð5Þ

with

pðDjm0;S0;SobsÞ ¼
YN
i¼1

pðdijm0;S0;SobsÞ

¼
YN
i¼1

Z
ds pðdijs;SobsÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

N ðdi ;s;SobsÞ

pðsjm0;S0Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
N ðs;m0 ;S0Þ

¼
YN
i¼1

N ðdi; m0;S0 þ SobsÞ ¼
YN
i¼1

N ðdi;c;YÞ:
ð6Þ

It is crucial to note that the likelihood of a previously observed data point di has a Gaussian
formN (di; μ0, S0+Sobs) =N (di; ψ, Θ)—see the standard textbooks [55, 56] by Bishop (2.115)
or Murphy (4.126). If we replace μ0, S0 with ψ,Θ in Eq (5) and subsume Sobs, we can use a nor-
mal inverse-Wishart distribution as a prior distribution p(ψ,Θ) = NIW(ψ,Θ), which is the con-
jugate prior for a Gaussian with unknown mean and covariance matrix. Conveniently, this
leads to closed-form sequential update equations for the posterior parameters of the normal
inverse-Wishart distribution after having observed N data-points.

pðc;YjDNÞ ¼
pðDN jc;YÞpðc;YÞ

pðDNÞ
¼ NIWðc;YjmN ; kN ; nN ; SNÞ ð7Þ

mN ¼ k0m0 þ N �D
kN

ð8Þ

kN ¼ k0 þ N ð9Þ

nN ¼ n0 þ N ð10Þ
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SN ¼ S0 þ S�D þ k0N
k0 þ N

ð�D �m0Þð�D �m0ÞT ð11Þ

with D ¼ 1
N

PN
i¼1 di being the empirical mean-shift and S�D ¼

XN

i¼1
ðdi � �DÞðdi � �DÞ

T

(see

[56] Murphy section 4.6.3.3).
Putting it all together (and correcting for the subsumed Sobs in the hyper-prior) we get the

following rejection-sampling scheme to simulate a participant:

1. Sample from p(μ0,S0jD,Sobs) as given by Eq (5)

a. Draw a sample from the normal inverse-Wishart ~c;Y
~ � pðc;Y j DN Þ

b. ~m0 ¼ ~c (follows from the last equality in Eq (6))

c. ~S0 ¼ ~Y� Sobs (follows from the last equality in Eq (6), always use the full feedback Sobs

in this particular step as the model is trained on full feedback trials only)

d. If ~S0 is not positive semi-definite (that is if it has eigenvalues� 0), discard samples and
re-start at the first step, otherwise continue.

2. For a given ~m0; ~S0, draw a sample from ~s � pðs j m~0;S~0Þ.
3. Perform a rejection-acceptance step with the likelihood of the observed feedback given the

sampled shift pðd j ~sÞ. To do so evaluate if u � pðd j ~sÞ=lmax for u* U[0; 1] and accept the
sample if the inequality holds or reject otherwise. lmax is the maximum value of the likeli-

hood given by lmax ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j Sobs j ð2pÞ2

q
, where j � j denotes the determinant.

4. If the sample was accepted, respond to the stimulus with a response ~r ¼ �~s. If the sample
was rejected, restart at the first step.

5. In case of a full feedback trial, update the parameters of the normal inverse-Wishart with
the sequential update rules for the parameters following Eqs (8)–(11).

For our simulation we used the following parameters. The initial belief about the mean-shift
was chosen asm0 = [0, 0]T with an initial weight of κ0 = 300. The initial belief about the covari-
ance matrix was set to a diagonal matrix (no correlation between the horizontal and vertical
dimension) with a variance of one for both dimensions with an initial weight of ν0 = 3000. For
the inverse-Wishart prior, S0 must then be specified in the following way:

S0 ¼
n0 0

0 n0

" #
:

The weights of the initial beliefs κ0 and ν0 were determined by averaging over 30 simulation
runs and then comparing the resulting medians of the quantities shown in Fig 10 and Fig 11 to
the medians obtained from the participants of the correlated group (that is the median slopes
in horizontal and vertical dimension, the median means in both dimensions as well as the
median correlation in no feedback trials). In particular, we performed a grid-search over a
range of parameter-values such that the sum-of-squared-errors between the time course of
simulated medians and the participants’median was minimized. We found that the weights on
the initial beliefs directly govern the learning-rates (as expected), which allows to reproduce a
broad range of learning-behavior. The results obtained are not particularly sensitive to small
changes in the parameters.
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The results shown in Fig 10 and Fig 11 were obtained by taking the median over six virtual
participants with the best-fit parameters. In the figure we compare two different runs—one run
where the model was trained on correlated shifts (identical to the shifts experienced by the six
participants in the correlated group) and another run where the model was trained on uncorre-
lated shifts (identical to the shifts experienced by the six participants of the uncorrelated
group) without changing the model parameters.

The covariance matrix of the observation noise Sobs was dependent on the trial type, but
was always a diagonal matrix (no correlation in the observation noise). For full feedback trials,
both diagonal entries were set to 0.2cm2 reflecting reliable feedback. For partial-sh feedback tri-
als the entry for the horizontal dimension was 0.2cm2 and the entry for the vertical dimensions
was set to 40cm2 as the feedback provided reliable information in the horizontal dimension
and no information in the vertical dimension. For the partial sv feedback trials the entries were
reversed—the horizontal dimension was set to 40cm2 and the entry for the vertical dimensions
was 0.2cm2. For the no feedback trials both diagonal entries were set to 40cm2 as the feedback
provided no information about the shift in either dimension.

Supporting Information
S1 Fig. Evolution of slopes in partial feedback trials—individual participants and group
medians for correlated group without auditory feedback and correlated group with instruc-
tion. Changes in slope in partial feedback trials. The slope is a performance measure deter-
mined as in Fig 3 in the main manuscript but using a sliding window of 100 trials. For the
analysis only partial sv- or partial sh-feedback trials were taken out from the pooled data across
all sessions. Thin colored lines indicate individual participants and can vary in length since the
exact number of relevant trials could fluctuate due to the probabilistic generation of trials. The
thick black line shows the median over participants—taking only into account trials where data
from all participants exists. The marked ticks on the x-axis at the bottom of the figure indicate
the end of the corresponding session (on average). A Evolution of the horizontal slopes in par-
tial sv feedback trials of the correlated group without auditory feedback. Horizontal informa-
tion is not given by the feedback, but can only be obtained through knowledge of the
correlation structure. B Same as A but showing data of the instructed group. C Evolution of the
vertical slopes in sh feedback trials of the correlated group without auditory feedback. Vertical
information is not given by the feedback, but can only be obtained through knowledge of the
correlation structure.D Same as C but showing data of the instructed group.
(EPS)

S2 Fig. Evolution of means in no feedback trials—individual participants and group medi-
ans for correlated group without auditory feedback and correlated group with instruction.
Learning of mean shift over all sessions revealed by performance in no-feedback trials averaged
over a sliding window of 100 trials. For the analysis only no-feedback trials were taken out from
the pooled data across all sessions. Thin colored lines indicate individual participants and can
vary in length since the exact number of relevant trials could fluctuate due to the probabilistic
generation of trials. Thick black lines show the median over participants—taking only into
account trials where data from all participants exists. The bar at the bottom of the figure indi-
cates the corresponding session (on average). A Learning of the mean in the horizontal dimen-
sion of the correlated group without auditory feedback. B Same as A but showing data of the
instructed group. C Learning of the mean in the vertical dimension of the correlated group with-
out auditory feedback.D Same as C but showing data of the instructed group. E Learning of the
mean in the horizontal dimension—showing the medians of all groups of participants. F

Structure Learning in Bayesian Sensorimotor Integration

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004369 August 25, 2015 24 / 27

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004369.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004369.s002


Learning of the mean in the vertical dimension—showing the medians of all groups of partici-
pants.
(EPS)

S3 Fig. Evolution of xy-correlation in partial feedback trials and low-uncertainty-dimen-
sion slopes in partial feedback trials—medians for all groups. Changes in correlation and
low-uncertainty-slope in partial feedback trials using a sliding window of 100 trials. For the
analysis only partial sv- or partial sh-feedback trials were taken out from the pooled data across
all sessions. Different colored lines show the median over the different groups of participants
and can vary in length since the exact number of relevant trials could fluctuate due to the prob-
abilistic generation of trials. The marked ticks on the x-axis at the bottom of the figure indicate
the end of the corresponding session (on average) A Adaptation of correlation between the ver-
tical and horizontal terminal hand position measured in partial sh-feedback trials. Large magni-
tudes of the correlation indicate a more “diagonal”movement, which is required by the
optimal response in these trials. B Adaptation of correlation between the vertical and horizon-
tal terminal hand position measured in partial sv-feedback trials. Large magnitudes of the cor-
relation indicate a more “diagonal”movement, which is required by the optimal response in
these trials. C Evolution of the horizontal slopes in partial sh feedback trials where horizontal
information is given by the feedback with low uncertainty. Ideally, the value of this slope would
be close to zero.D Evolution of the vertical slopes in partial sv feedback trials where vertical
information is given by the feedback with low uncertainty. Ideally, the value of this slope would
be close to zero. In the upper panels it can be seen that the instructed group initially shows an
increased magnitude in movement correlation in partial-feedback trials which indicates that
they understood and followed the instruction. However in Fig 9 in the main manuscript it can
be seen that the instructed group does not have a decreased slope in these trials. In contrast,
their slope in the low-uncertainty dimension in these trials was increased compared to the
other groups (shown in lower panels of this figure). This suggests that the instruction was not
helpful but rather impeded their shift-compensation in the low-uncertainty dimension.
(EPS)

S1 Dataset. Data recorded from the experiment. All data required for reproducing the results
and figures presented in the paper.
(ZIP)
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