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Abstract: Background: Growing evidence suggests that remnant cholesterol (RC) contributes to
residual atherosclerotic cardiovascular disease (ASCVD) risk. However, the cutoff points to treat RC
for reducing ASCVD are still unknown. This study aimed to investigate the relationships between
RC and combined cardiovascular diseases (CVDs) in a general China cohort, with 11,956 subjects
aged ≥ 35 years. Methods: Baseline RC was estimated with the Friedewald formula for 8782 subjects.
The outcome was the incidence of combined CVD, including fatal and nonfatal stroke and coronary
heart disease (CHD). The Cox proportional hazards model was used to calculate hazard ratios (HRs)
with 95% confidence intervals. The restricted cubic spline (RCS) model was used to evaluate the dose–
response relationship between continuous RC and the natural log of HRs. Results: After a median
follow-up of 4.66 years, 431 CVD events occurred. In the Cox proportional models, participants with
a high level of categorial RC had a significantly higher risk for combined CVD (HR: 1.37; 95% CI:
1.07–1.74) and CHD (HR: 1.63; 95% CI: 1.06–2.53), compared to those with a medium level of RC.
In the stratification analyses, a high level of RC significantly increased combined CVD risk for
subgroups females, age < 65 years, noncurrent smokers, noncurrent drinkers, normal weight, renal
dysfunction, and no hyperuricemia. The same trends were found for CHD among subgroups males,
age < 65 years, overweight, renal dysfunction, and no hyperuricemia; stroke among subgroup
females. In RCS models, a significant linear association between RC and combined CVD and a
nonlinear association between RC and CHD resulted. The risk of outcomes was relatively flat
until 0.84 mmol/L of RC and increased rapidly afterwards, with an HR of 1.308 (1.102 to 1.553)
for combined CVD and 1.411 (1.061 to 1.876) for CHD. Stratified analyses showed a significant
nonlinear association between RC and CVD outcomes in the subgroup aged < 65 years or the diabetes
subgroup. Conclusions: In this large-scale and long-term follow-up cohort study, participants with
higher RC levels had a significantly worse prognosis, especially for the subgroup aged 35–65 years or
the diabetes mellitus subgroup.

Keywords: remnant cholesterol; diabetes mellitus; cardiovascular disease; dyslipidemia

1. Introduction

Atherosclerotic cardiovascular disease (ASCVD) is a leading cause of morbidity and
mortality worldwide and remains a major public health challenge [1]. Lipid abnormal-
ities play a central role in the pathogenesis of ASCVD [2]. Lowering plasma levels of
low-density lipoprotein (LDL) cholesterol (LDL-C) has been reported as an important
modality to prevent ASCVD for decades [3,4]. However, substantial residual risk remains
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despite achieving an LDL-C level as a mean of 30–40 mg/dL with statins, ezetimibe,
and/or proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors [5]. Due to the
negative results of high-density lipoprotein (HDL)-raising drugs (niacin, cholesteryl ester
transfer protein inhibitors), regulating other lipid components to reduce the residual risk
of ASCVD has become the new focus for lipid intervention [6]. The Reduction of Cardio-
vascular Event Icosapent Ethyl Intervention Trial (REDUCE-IT) found that a reduction in
triglycerides by 20% led to a 25% reduction in atherosclerotic cardiovascular events [7].
However, roughly one-half of the risk reduction can be explained by a reduction in remnant
cholesterol (RC) [8].

In recent years, growing evidence has suggested that RC is a causal risk factor for
cardiovascular events and all-cause mortality [9–12]. RC is the cholesterol content of
triglyceride-rich lipoproteins (TRLs), which are formed when TRLs are partly depleted
of triglyceride (TG) by lipoprotein lipase and are composed of very-low-density (VLDLs)
and intermediate-density lipoproteins (IDLs) in the fasting state and these two lipoproteins
together with chylomicron remnants in the nonfasting state [13]. The cholesterol content of
remnant lipoproteins is defined as remnant-like particle cholesterol (RLP-C) [14].

However, the starting point and the target to treat RC for reducing cardiovascular
diseases (CVD) are still unknown. More studies are needed to investigate the association
between RC with CVD events and further determine the individual target of RC for primary
and secondary prevention of CVD risk. This study aimed to investigate the relationships
between RC and combined CVDs in a large general Chinese population.

2. Materials and Methods
2.1. Study Design and Population

The Northeast China Rural Cardiovascular Health Study (NCRCHS) is a community-
based prospective cohort study conducted in rural areas of Northeast China. The study
design has been described previously [15]. From January 2012 to August 2013, a total
of 11,956 subjects aged ≥ 35 years were recruited as a baseline visit from three counties
(Dawa, Zhangwu, and Liaoyang) in Liaoning province, using a multistage, randomly
stratified cluster-sampling scheme. Detailed information was collected for each subject.
In 2015 and 2017, all subjects were invited to attend two stages of follow-up. Detailed
cardiovascular examination was repeated in 2015, and incident CVD events were collected
in 2017–2018. Of the 11,956 subjects, 10,700 participants consented and qualified for our
follow-up study. A total of 10,349 participants completed at least one follow-up visit.
The study was approved by the Ethics Committee of China Medical University (Shenyang,
China). Written informed consent was obtained from each participant, in accordance with
the principles of the Declaration of Helsinki.

In the present analyses, we excluded participants with CVD at baseline (n = 821), miss-
ing a baseline lipid profile (n = 73), or using lipid-lowering agents at baseline
(n = 248). Participants with ineligible values of HDL cholesterol (HDL-C), LDL-C,
and TG (>4.5 mmol/L) were also excluded (n = 415). Data were therefore available for
8782 participants. The flow chart of the study is shown in Supplementary Figure S1 online.

2.2. Study Variables

At baseline, detailed information on demographic characteristics, dietary and lifestyle
factors, and medical history was obtained by an interview with a standardized question-
naire. History of coronary heart disease (CHD) was defined by a self-reported history of
myocardial infarction (MI) or prior coronary revascularization and electrocardiography ev-
idence of MI at baseline and confirmed by medical records. History of stroke was similarly
defined by a self-reported history of stroke at baseline and confirmed by medical records.
Current use of antihypertensive medications, hypoglycemic agents, and lipid-lowering
agents was self-reported. Medication use over the prior 2 weeks was verified by reviewing
the medication containers that participants brought to the visit. Lipid-lowering agents
included statins, bile sequestrants, fibrates, niacin, and antihyperlipidemic medications.
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Family history of hypertension, diabetes mellitus, stroke, and CHD was defined such that
more than one first-degree relative was involved.

All study participants underwent a physical examination, including measurements
of weight and standing height and systolic and diastolic blood pressure, as previously
reported in detail [15]. Body mass index (BMI) was calculated as weight in kilograms
divided by the square of height in meters. According to the World Health Organization
(WHO) criteria [16], low and normal weight, overweight, and obesity were defined as
BMI < 25 kg/m2, BMI 25–29.9 kg/m2, and BMI ≥ 30 kg/m2, respectively. Blood pres-
sure was measured three times with participants seated after at least 5 min rest using a
standardized automatic electronic sphygmomanometer (HEM-907; Omron, Tokyo, Japan).
Hypertension (HTN) was defined as systolic blood pressure (SBP) ≥ 140 mm Hg, diastolic
blood pressure (DBP) ≥ 90 mm Hg, and/or use of antihypertensive medications. Smoking
and alcohol use status was defined as “current use” or not.

2.3. Other Variates

Fasting blood samples were collected in the morning after at least 12 h fasting for all
subjects. Biochemical analyses were performed automatically (Olympus AU 640, Tokyo,
Japan) for the measurement of circulating concentrations of fasting blood glucose (FBG),
total cholesterol (TC), LDL-C, HDL-C, TG, uric acid (UA), serum creatinine, and other
routine blood biochemical indexes. As previously proposed, fasting RC was calculated
as TC minus HDL-C minus LDL-C and expressed as mmol/L [17]. Diabetes mellitus
(DM) was defined according to the WHO criterion [18]: FBG ≥ 7.0 mmol/L (126 mg/dL),
self-reported physician diagnosis, or use of antidiabetic medications. Estimated glomeru-
lar filtration rate (eGFR) was calculated using the Modification of Diet in Rural Disease
(MDRD) equation as previously proposed [19]. Renal dysfunction was defined as re-
duced eGFR < 60 mL/min/1.73 m2. Hyperuricemia was defined as serum uric acid
level > 420 µmol/L (7 mg/dL) in males and >360 µmol/L (>6 mg/dL) in females [20].

2.4. Outcome Ascertainment

The outcome of the present study was CVD incidence. Incident CVD was defined
as fatal and nonfatal stroke and CHD according to adjudication by a physician panel.
The specific incidences of all-cause mortality, stroke, and CHD were also determined.
Hospital records or death certificates were also collected. The diagnosis was classi-
fied and coded according to the International Classification of Diseases-Tenth Revision
(ICD-10). Stroke was defined following the WHO Multinational Monitoring of Trends
and Determinants in Cardiovascular Disease criteria [21] as rapidly developing signs of
focal or global disturbance of cerebral function lasting more than 24 h (unless interrupted
by surgery or death) with no apparent nonvascular cause. The ICD-10 codes for stroke
were I60.x–I69.x. Transient ischemic attack and chronic cerebral vascular disease were
excluded. CHD was defined as a diagnosis of hospitalized angina pectoris, hospitalized MI,
any coronary revascularization, or CHD death [22], and the ICD-10 codes for CHD were
I20.x–25.x. All materials were independently evaluated and adjudicated by the endpoint
assessment committee. The date of the first participant recruited was January 2012, and the
last follow-up date was January 2018. A series of irregular follow-up visits were conducted.
Follow-up time was calculated as the interval between the date of randomization and the
date of death, the date of the last visit, or the last recorded clinical event of participants still
alive, whichever occurred first.

2.5. Statistical Analysis

Data are reported as means and standard deviations for normally distributed variables
or as medians for non-normally distributed variables. According to the 33.3% and 66.6%
percentiles of RC level, all subjects were divided into three groups (Tertile I, Tertile II,
and Tertile III). Baseline characteristics were assessed across different groups with the
analysis of variance for parametric variables or Kruskal–Wallis test for nonparametric vari-
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ables. Bonferroni post-hoc analysis was performed to determine the specific demographic
categories that had statistically significant differences. Nominal variables were expressed
as absolute numbers and proportions and compared by a χ2 test or Fisher’s exact test
when appropriate. The correlations between continuous RC and adjustment variables were
assessed by Pearson’s or Spearman’s rank correlation test as applicable.

The cumulative incidence for cardiovascular outcomes in subjects with different levels
of calculated RC at baseline was evaluated by Kaplan–Meier curves and compared with
the log-rank test. Cox proportional hazards models were used to calculate hazard ratios
(HRs) with 95% confidence intervals (CIs) for the associations between RC (considered as
both continuous and categorical variables) and CVD events. Proportionality of hazards
was assessed for each variable by using Schoenfeld residuals. Three adjustment models
were found for Cox analysis. Model 1 was adjusted for age, gender, and ethnicity. Model 2
was further adjusted for current smoking, current drinking, and BMI (normal, overweight,
or obesity). Model 3 was further adjusted for serum levels of triglyceride (continuous),
eGFR (dichotomous), uric acid (dichotomous), DM, and HTN.

Restricted cubic spline (RCS) regression [23] was applied to flexibly model the nonlin-
ear association between continuous RC and the natural log of HRs (lnHRs) of outcomes.
The knots were placed at the 5th, 50th, and 95th percentiles. Variables in Cox Model 3
were adjusted. Stratified analyses were used to explore whether the association of RC
with CVD risk varied across age and DM. Departure from linearity of the final cubic
spline model was assessed using the Wald test for nonlinearity [24]. The median value
of RC was considered as the reference due to the skew distribution of RC. As the associa-
tions of RC and outcomes were approximately log-linear below and above their medians
(50th percentile), a linear model was used to calculate HRs per standard deviation increase
of RC in outcome prediction [25].

Statistical analyses were performed using SPSS (version 23.0; IBM, Chicago, IL, USA),
SAS (version 9.3; Institute Inc., Cary, NC, USA), and GraphPad prism (V.8.4.2; San Diego,
CA, USA). Two-sided p < 0.05 were considered statistically significant. p-Values were
adjusted for multiple comparisons using the Bonferroni correction.

3. Results
3.1. Baseline Characteristics

The characteristics of the participants were assessed by the tertiles of RC in Table 1.
In the whole cohort of 8782 subjects (46.4% males), the mean age was 53.2 ± 10.4 years.
The mean BMI was 24.7 ± 3.6 kg/m2; 47.3% had HTN, and 8.4% had DM.

The mean concentration of RC was 0.8 ± 0.4 mmol/L. According to the level of RC,
all participants were divided into three groups: Tertile I (RC < 0.65 mmol/L), Tertile II
(RC 0.65–1.00 mmol/L), and Tertile III (RC ≥ 1.00 mmol/L). Across tertiles of RC, age,
serum levels of TC, TG, uric acid, and proportion of participants with DM increased
gradually (all p < 0.001), whereas the level of eGFR, proportions of male, participants with
HTN, and current smokers significantly declined (all p < 0.05). Serum level of HDL-C
and the proportion of participants with current use of alcohol were significantly higher
(both p < 0.001) in Tertile I than those of the other two groups (p < 0.001). Post-hoc analysis
with Bonferroni correction revealed a significantly higher age for participants in Tertile III,
LDL-C level, than those in Tertile II or Tertile I (p < 0.001). Significantly increased levels of
TC, TG, and serum uric acid and declined levels of eGFR across tertiles of RC were found.
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Table 1. Baseline characteristics by tertiles of remnant cholesterol.

Total
n = 8782

Remnant Cholesterol
p-Value p1 p2 p3Tertile I

(n = 2949)
Tertile II
(n = 2932)

Tertile III
(n = 2901)

Age (year) 53.2 ± 10.4 52.2 ± 10.6 52.7 ± 10.4 54.7 ± 10.0 <0.001 0.201 <0.001 <0.001
Male (%) 4075 (46.4) 1432 (48.6) 1343 (45.8) 1300 (44.8) 0.012

Ethnicity of Han (%) 8277 (94.2) 2664 (90.3) 2820 (96.2) 2793 (96.3) <0.001
Current smoking (%) 3118 (35.5) 1121 (38.0) 1022 (34.9) 975 (33.6) 0.001

Current drinking
alcohol (%) 1992 (22.7) 755 (25.6) 619 (21.1) 618 (21.3) <0.001

Physical activity
Low 2964 (33.8) 819 (27.8) 1033 (35.2) 1112 (38.3)

<0.001Medium 1652 (18.8) 566 (19.2) 581 (19.8) 505 (17.4)
High 4091 (46.6) 1534 (52.0) 1290 (44.0) 1267 (44.0)

HTN (%) 4154 (47.3) 1141 (38.7) 965 (32.9) 911 (31.4) <0.001
DM (%) 738 (8.4) 201 (6.8) 212 (7.2) 325 (11.2) <0.001

BMI (kg/m2) 24.7 ± 3.6 24.7 ± 3.8 24.4 ± 3.6 24.8 ± 3.5 <0.001 0.003 0.866 <0.001
SBP (mmHg) 140.5 ± 22.7 144.0 ± 24.3 137.1 ± 21.6 140.3 ± 21.5 <0.001 <0.001 <0.001 <0.001
DBP (mmHg) 81.6 ± 11.5 81.1 ± 11.8 81.1 ± 11.5 82.6 ± 11.3 <0.001 1.0 <0.001 <0.001

FBG (mmol/L) 5.8 ± 1.5 5.6 ± 1.4 5.8 ± 1.7 5.8 ± 1.3 <0.001 0.043 <0.001 <0.001
TC (mmol/L) 5.2 ± 1.0 4.7 ± 0.9 5.0 ± 0.8 5.8 ± 1.0 <0.001 <0.001 <0.001 <0.001
TG (mmol/L) 1.4 ± 0.8 1.1 ± 0.5 1.3 ± 0.7 1.8 ± 0.8 <0.001 <0.001 <0.001 <0.001

HDL-C (mmol/L) 1.4 ± 0.3 1.6 ± 0.4 1.3 ± 0.3 1.3 ± 0.3 <0.001 <0.001 <0.001 0.626
LDL-C (mmol/L) 2.9 ± 0.8 2.8 ± 0.8 2.8 ± 0.7 3.1 ± 0.8 <0.001 0.429 <0.001 <0.001
Estimated eGFR

(mL/min/1.73 m2) 94.1 ± 15.1 101.6 ± 13.2 92.3 ± 14.3 88.2 ± 14.4 <0.001 <0.001 <0.001 <0.001

Serum uric acid
(µmol/L) 285.6 ± 81.5 260.7 ± 73.8 284.8 ± 79.5 290.4 ± 78.5 <0.001 <0.001 <0.001 <0.001

RC (mmol/L) 0.83 ± 0.44 0.36 ± 0.16 0.84 ± 0.10 1.32 ± 0.30 <0.001 <0.001 <0.001 <0.001

BMI: body mass index; DBP: diastolic blood pressure; DM: diabetes mellitus; FPG: fasting plasma glucose; GFR: glomerular filtration rate;
HDL-C: high-density lipoprotein cholesterol; HTN: hypertension; LDL-C: low-density lipoprotein cholesterol; RC: remnant cholesterol;
SBP: systolic blood pressure; SD: standard deviation; TC: total cholesterol; TG: triglyceride. Data are expressed as mean ± SD or as
n (%). p-Value: statistical significance among three groups; p1, p2, and p3: respective statistical significance with Bonferroni correction for
measurement data between Tertile I and Tertile II, Tertile I and Tertile III, and between Tertile II and Tertile III.

3.2. Survival Analyses for Different Levels of RC

After the median follow-up time of 4.66 years, a total of 431 CVD events occurred
in the studied population (293 stroke cases, 150 CHD cases, and 71 MI cases), including
148 fatal CVD cases. The Kaplan–Meier curves for each endpoint in participants with
different levels of RC are shown in Figure 1. Participants with high level of RC (Tertile III)
had a significantly higher cumulative incidences of combined CVD (p = 0.0019), CHD
(p = 0.0101), stroke (p = 0.0448), and fatal CVD (p = 0.0465) compared to those with a
medium level of RC (Tertile II).

Table 2 shows the multivariable-adjusted HRs for the incidence of outcomes by
RC concentration. In the categorial analysis of RC, risks for combined CVD (HR: 1.37;
95% CI: 1.07–1.74) and CHD (HR: 1.63; 95% CI: 1.06–2.53) were significantly higher among
participants in Tertile III, compared with those in Tertile II after full adjustment. In the
continuous analysis of RC, a high level of RC significantly increased 28% risk of combined
CVD (HR: 1.28; 95% CI: 1.02–1.62) and 51% risk of fatal CVD (HR: 1.51; 95% CI: 1.05–2.17)
after full adjustment. Significantly higher stroke risk was found for participants in Tertile
III after adjustment for Model 1 (HR: 1.31; 95% CI: 1.03–1.67) and Model 2 (HR: 1.30;
95% CI: 1.02–1.67), but the significance disappeared for Model 3. The results were similar
when the intensity of physical activity was additionally adjusted.
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Figure 1. Unadjusted Kaplan–Meier curves for incident cardiovascular events stratified by different 
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coronary heart disease; CVD: cardiovascular disease. 

Table 2. Multivariate-adjusted hazard ratios and 95% confidence intervals for cardiovascular outcomes associated with 
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Model 2 1.22 (0.95–1.57) 1.00 (ref) 1.49 (1.18–1.89) ** 1.32 (1.08–1.62) ** 
Model 3 1.16 (0.90–1.50) 1.00 (ref) 1.37 (1.07–1.74) * 1.28 (1.02–1.62) * 
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Model 2 1.74 (1.12–2.70) * 1.00 (ref) 1.71 (1.12–2.61) * 1.16 (0.81–1.66) 
Model 3 1.68 (1.08–2.62) * 1.00 (ref) 1.63 (1.06–2.53) * 1.15 (0.76–1.74) 
Stroke     

n/N 88/2191 87/2932 118/2901 293/8782 
Model 1 1.04 (0.77–1.40) 1.00 (ref) 1.30 (0.98–1.72) 1.31 (1.03–1.67) * 
Model 2 1.04 (0.77–1.41) 1.00 (ref) 1.31 (0.98–1.73) 1.30 (1.02–1.67) * 
Model 3 0.99 (0.73–1.35) 1.00 (ref) 1.19 (0.89–1.59) 1.25 (0.94–1.66) 

Fatal CVD     
n/N 41/2191 44/2932 63/2901 148/8782 

Model 1 0.97 (0.64–1.49) 1.00 (ref) 1.394 (0.95–2.05) 1.44 (1.05–1.97) * 
Model 2 0.95 (0.62–1.46) 1.00 (ref) 1.421 (0.97–2.09) 1.47 (1.07–2.01) * 
Model 3 0.90 (0.58–1.39) 1.00 (ref) 1.37 (0.92–2.05) 1.51 (1.05–2.17) * 

CHD: coronary heart disease; CVD: cardiovascular disease; RC: remnant cholesterol. Model 1: adjusted for age (<65 years 
vs. ≥65 years), sex, and ethnicity (Han or not). Model 2: adjusted for factors in Model 1 and smoking status, drinking status, 
and body mass index (normal, overweight, obesity). Model 3: adjusted for factors in Model 2 and estimated glomerular 
filtration rate (<60 mL/min/1.73 m2 vs. ≥60 mL/min/1.73 m2), diabetes mellitus (yes or no), hypertension (yes or no), tri-
glyceride (continuous), and hyperuricemia (yes or no). † HR for continuous 1-SD increment. * p < 0.05; ** p < 0.01. 

  

Figure 1. Unadjusted Kaplan–Meier curves for incident cardiovascular events stratified by different
levels of remnant cholesterol. The whole cohort was divided into three groups due to different levels
of remnant cholesterol. Low level: Tertile I; Medium level: Tertile II; High level: Tertile III. CHD:
coronary heart disease; CVD: cardiovascular disease.

Table 2. Multivariate-adjusted hazard ratios and 95% confidence intervals for cardiovascular outcomes associated with
baseline remnant cholesterol.

RC Q1 RC Q2 RC Q3 RC Continuous (1-SD †)

Combined CVD
n/N 139/2191 117/2932 175/2901 431/8782

Model 1 1.23 (0.96–1.57) 1.00 (ref) 1.49 (1.18–1.89) ** 1.33 (1.09–1.63) **
Model 2 1.22 (0.95–1.57) 1.00 (ref) 1.49 (1.18–1.89) ** 1.32 (1.08–1.62) **
Model 3 1.16 (0.90–1.50) 1.00 (ref) 1.37 (1.07–1.74) * 1.28 (1.02–1.62) *

CHD
n/N 55/2191 34/2932 61/2901 150/8782

Model 1 1.77 (1.15–2.74) * 1.00 (ref) 1.71 (1.12–2.61) * 1.17 (0.82–1.67)
Model 2 1.74 (1.12–2.70) * 1.00 (ref) 1.71 (1.12–2.61) * 1.16 (0.81–1.66)
Model 3 1.68 (1.08–2.62) * 1.00 (ref) 1.63 (1.06–2.53) * 1.15 (0.76–1.74)
Stroke
n/N 88/2191 87/2932 118/2901 293/8782

Model 1 1.04 (0.77–1.40) 1.00 (ref) 1.30 (0.98–1.72) 1.31 (1.03–1.67) *
Model 2 1.04 (0.77–1.41) 1.00 (ref) 1.31 (0.98–1.73) 1.30 (1.02–1.67) *
Model 3 0.99 (0.73–1.35) 1.00 (ref) 1.19 (0.89–1.59) 1.25 (0.94–1.66)

Fatal CVD
n/N 41/2191 44/2932 63/2901 148/8782

Model 1 0.97 (0.64–1.49) 1.00 (ref) 1.394 (0.95–2.05) 1.44 (1.05–1.97) *
Model 2 0.95 (0.62–1.46) 1.00 (ref) 1.421 (0.97–2.09) 1.47 (1.07–2.01) *
Model 3 0.90 (0.58–1.39) 1.00 (ref) 1.37 (0.92–2.05) 1.51 (1.05–2.17) *

CHD: coronary heart disease; CVD: cardiovascular disease; RC: remnant cholesterol. Model 1: adjusted for age (<65 years vs. ≥65 years),
sex, and ethnicity (Han or not). Model 2: adjusted for factors in Model 1 and smoking status, drinking status, and body mass index
(normal, overweight, obesity). Model 3: adjusted for factors in Model 2 and estimated glomerular filtration rate (<60 mL/min/1.73 m2

vs. ≥60 mL/min/1.73 m2), diabetes mellitus (yes or no), hypertension (yes or no), triglyceride (continuous), and hyperuricemia (yes or no).
† HR for continuous 1-SD increment. * p < 0.05; ** p < 0.01.
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3.3. Stratification Analyses

The relationships between RC and outcomes were evaluated among different RC
categories (Tertile II as reference) and stratified with sex, age (<65 years vs. ≥65 years),
smoking status (current smoker or not), drinking status (current drinker or not), BMI sub-
groups (normal, overweight, obesity), DM (yes or no), HTN (yes or no), renal dysfunction
(eGFR <60 mL/min/1.73 m2 vs. eGFR ≥60 mL/min/1.73 m2), and hyperuricemia (yes or
no). Due to the small number of other nationalities except Han, there were no subgroup
comparisons for nationality.

After full adjustment of other factors, subjects with a high level of RC (Tertile III) had
a significantly higher incidence of CVD than those with a medium level of RC (Tertile II)
in the following subgroups (Figure 2): females (HR: 1.515, 95%CI: 1.043–2.201), subjects
aged < 65 years (HR: 1.547, 95%CI: 1.127–2.123), noncurrent smokers (HR: 1.482, 95%CI:
1.064–2.062), noncurrent drinkers (HR: 1.431, 95%CI: 1.079–1.898), subjects with normal
BMI (HR: 1.486, 95%CI: 1.046–2.110), renal dysfunction (HR: 1.357, 95%CI: 1.050–1.752),
and normal uric acid (HR: 1.439, 95%CI: 1.101–1.880). The same trends were found for
CHD among subgroups: aged ≤ 65 years, overweight subgroup, renal dysfunction,
and normal uric acid (Supplementary Figure S2). For participants in Tertile III, males
had a significantly higher risk for CHD (HR: 2.170, 95%CI: 1.038–4.537), and females had
more probability of stroke (HR: 1.643, 95%CI: 1.010–2.686) compared to those in Tertile II
(Supplementary Figure S3). There were no significant interactions between subgroups and
RC on the incidence of the above outcomes (all p > 0.05).
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Figure 2. Remnant cholesterol (Tertile II and Tertile III) in relation to combined cardiovascular
disease (CVD) for different subgroups. Model adjusted for age, sex, ethnicity, body mass index,
smoking status, drinking status, hypertension, diabetes mellitus, estimated glomerular filtration
rate, hyperuricemia, and continuous triglyceride. BMI: body mass index; CI: confidence inter-
val; CVD: cardiovascular disease; eGFR: estimated glomerular filtration rate; HR: hazard ratio;
RC: remnant cholesterol.

Compared with the reference (Tertile II), a low level of RC (Tertile I) also increased
the risk for CHD in subgroups aged < 65 years, no current smoking, no current drink-
ing, BMI 25–30 kg/m2, renal dysfunction, and normal uric acid (Supplementary Figure
S4). No significant differences were found for fatal CVD among participants in Tertile
III and combined CVD, stroke, and fatal CVD among participants in Tertile I. No signif-
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icant interactions between subgroups and RC were found on the incidence of outcomes
(all p > 0.05).

3.4. Dose–Response Analyses of RC with Cardiovascular Outcomes

Dose–response analyses were implemented with RCS to investigate the optimal level
of RC for each outcome (Figure 3). Multivariable-adjusted RCS analyses showed sig-
nificant overall associations between RC and combined CVD (poverall = 0.0324) or CHD
(poverall = 0.0398) for the whole cohort. A significant linear relationship (plinear = 0.0225)
between RC and combined CVD and a nonlinear relationship (pnonlinear = 0.0221) between
RC and CHD was found for all participants. The risk of combined CVD was relatively
flat until around 0.84 mmol/L (32.76 mg/dL) of RC and then started to increase rapidly
afterwards. For participants with a higher level of RC than 0.84 mmol/L, the HR of
combined CVD and CHD per standard deviation was 1.308 (1.102 to 1.553) and 1.411
(1.061 to 1.876), respectively.
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Figure 3. The dose–response associations between RC and cardiovascular outcomes for the whole cohort. Restricted cubic
splines displaying the lnHRs of cardiovascular events with 95% confidence intervals according to the serum level of remnant
cholesterol. Reference set to median (0.84 mmol/L). Knots located at 0.18, 0.84, and 1.58 mmol/L (at the 5th, 50th, and 95th
percentiles). Adjusted for age, sex, ethnicity, body mass index, smoking status, drinking status, hypertension, diabetes
mellitus, estimated glomerular filtration rate, hyperuricemia, and continuous triglyceride. CHD: coronary heart disease;
CVD: cardiovascular disease; lnHRs: natural log of hazard ratios; RC: remnant cholesterol.

Nonlinear associations between RC and lnHRs for outcomes stratified by subgroups
(<65 years vs. ≥65 years; DM or not) are shown in Figure 4. Significant nonlinearity asso-
ciation and “J”-shape curves were shown for RC and combined CVD (pnonlinear = 0.0059)
or CHD (pnonlinear = 0.0002) in participants with an age < 65 years (Figure 4A). Meanwhile,
a linear association was found between RC and lnHR for fatal CVD (plinear = 0.0104).
A 50.7% increase risk for combined CVD, a 57.0% increase risk for CHD, and a 2.0% in-
crease risk for fatal CVD were found for participants under 65 years with a serum level of
RC > 0.83 mmol/L. The same trend was found for participants with DM and a serum level
of RC > 0.95 mmol/L (Figure 4B). Some significant associations were also found among
other subgroups (Supplementary Figures S5–S7).
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4. Discussion

The current study of a general Chinese population confirmed an independent relation-
ship between calculated RC and the incidence of CVD. The Kaplan–Meier curves explored
significantly higher cumulative incidences of combined CVD, CHD, stroke, and fatal CVD
for participants with a high level of RC than those with a medium level of RC. Cox models
confirmed a 37% increased risk for combined CVD and a 63% increased risk for CHD in
the categorial analysis and a 28% increased risk of combined CVD and a 51% increased risk
of fatal CVD in the continuous analysis of RC. A significantly higher risk of stroke was also
found for participants with an RC level of Tertile III after part adjustment. Further dose–
response association analyses and subgroup analyses elucidated significant associations
between continuous RC and the incidence of combined CVD and CHD not only for the
whole population but also for the subgroup aged < 65 years or the DM subgroup.

RC refers to the cholesterol content of TRLs, which is composed of chylomicron
remnants, VLDL, and IDL. A recent study showed a close relationship between RC
and coronary atheroma progression independent of conventional lipid parameters [11].
A growing number of population studies, epidemiological, and genetic evidence suggests
that high concentrations of RC are closely associated with a high risk of ischemic heart
disease [9,26,27], MI [28,29], and all-cause mortality [10,30]. A cardiovascular benefit of
statin therapy, independently of LDL-C reduction, was suggested in reducing TRL-C levels
among those with high TRL-C levels [31].

The onset age of CVD is getting younger and younger worldwide [2,32]. Dyslipidemia
is a prominently traditional risk factor in the development of early-onset CVD [33,34].
Early identification and modification of atherogenic dyslipidemia can improve primary
and secondary prevention of CVD outcomes. The ideal level of lipids is very important
in reducing the risk of early-onset cardiovascular-related death [35,36]. Lifestyle modifi-
cation at the age of 20 years could change the odds of atherosclerosis 30 years later [37].
The currently employed CVD risk assessment tools are heavily age weighted and have
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been shown to underestimate CVD risk in young to middle-aged populations [38–40].
However, the optimal RC level for preventing CVD in young to middle-aged populations
has not yet been reported. The present study suggested increased risks of CVD, CHD,
and fatal CVD for participants 35 to 65 years of age and an RC level > 0.83 mmol/L. This
may contribute to risk stratification for dyslipidemia and constructing further treatment
strategies to prevent CVD in young to middle-aged populations.

DM confers at least a two to threefold excess risk for ASCVD [41]. Data have revealed
that serum RC concentrations are elevated in patients with DM or pre-DM and can increase
the risk for CHD and future coronary outcomes [42–44]. This suggests RC as a possi-
ble treatment target for patients with impaired glucose metabolism [17]. A baseline RC
level ≥ 30 mg/dL (0.78 mmol/L) identifies a high risk of major adverse cardiovascular
events for individuals with type 2 DM (T2DM) or more than three CVD risk factors [45].
Additionally, the risk is independent of whether LDL-C levels are on target at ≤100 mg/dL
(2.59 mmol/L) or not. For patients with T2DM who underwent previous percutaneous
coronary stents, a baseline RLP-C level at 0.505 mmol/L was identified as the optimal cutoff
point to predict in-stent restenosis [46]. The lipid level for participants with DM should
be lower than those without DM for preventing ASCVD. Several guidelines proposed a
stratification of cardiovascular risk among people with DM and recommend an intensive
therapy for dyslipidemia in DM [47,48]. However, the target for regulating RC concentra-
tion is still not assured among Chinese populations with DM. In this study, the incidence
of combined CVD and CHD significantly increased for general Chinese participants with
a T2DM and serum level of RC > 0.95 mmol/L (Figure 4). It follows that RC is another
intervening target to reduce CVD except LDL-C.

The mechanism behind this cardiovascular benefit for RC is not fully understood.
There is a complex link between RC, inflammation, and CVD events [49]. Balling evidence
revealed that one-third of TC in plasma was present in RC by using direct measure-
ments [50]. High levels of RC can cause a variety of proatherogenic effects, including
monocyte activation, upregulation of proinflammatory cytokines, and increased prothrom-
botic factors production [26,51]. Remnant lipoproteins can enter and get trapped in the
intima of the arterial wall, promoting endothelial dysfunction and inflammation through
increased secretion of various cytokines and adhesion molecules [52]. Without oxidative
modification by macrophages [53], RC is accumulated in the arterial wall and may play
a causal role in the development of atherosclerosis and ultimately ASCVD [26,27]. RC
also accelerates the onset of endothelial progenitor cells senescence via increased oxidative
stress and induces endothelial dysfunction by inhibiting nitric oxide production [54]. Au-
topsy case analysis showed coronary atherosclerosis in the young (<40 years), commonly
exhibiting eccentric plaques with associated inflammation [55]. The atherosclerotic plaques
of younger patients are rich in foam cells, which reduce plaque stability and induce early-
onset ACS [56]. Mazzone reviewed the important roles of diabetic dyslipidemia (beyond
the LDL cholesterol level) and inflammation for accelerating vascular injury and increasing
the rates of CVD in T2DM patients [57].

The present study demonstrated that high levels of RC were significant predictors of
increased risk of CVD events, especially for the 35- to 65-years-old population and DM
patients. This suggests that assessing RC levels in these populations might be likely to
have clinical utility in terms of CVD risk stratification and future intervention. Further
investigations into RC lowering interventions to reduce residual ASCVD risk are neces-
sary. This study had several limitations. Firstly, RC was calculated with the Friedewald
formula but not measured directly. A simple and widely available assay is needed to
be developed to measure the cholesterol content of RC. Secondly, the effect of different
constructions of diet on RC concentration is lacking. Finally, this was a study among a
general Chinese population. Studies of RC in other countries with different diet cultures
need further investigation.



J. Clin. Med. 2021, 10, 3388 11 of 14

5. Conclusions

In conclusion, in this large-scale population-based study, we found a high level of
RC significantly related to a worse prognosis. For the first time, we revealed that the risk
of CVD significantly increased after the median values of RC for young to middle-aged
populations (0.83 mmol/L) and the DM subgroup (0.95 mmol/L). RC as a causative risk
factor for CVD events deserves further attention and may constitute a prominent target for
interventions to reduce vascular risk after LDL cholesterol lowering, especially for young
to middle-aged populations or participants with diabetes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jcm10153388/s1, Figure S1: Study flow chart, Figure S2: Remnant cholesterol (tertile II and
tertile III) in relation to coronary heart disease for different subgroups, Figure S3: Remnant cholesterol
(tertile II and tertile III) in relation to stroke for different subgroups, Figure S4: Remnant cholesterol
(tertile I and tertile II) in relation to coronary heart disease for different subgroups, Figures S5–S7:
Significant dose-response associations between remnant cholesterol and cardiovascular outcomes for
some subgroups.
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