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A B S T R A C T

Recurrent adverse events, once occur often continue for some duration of time in clinical trials; and the number
of events along with their durations is clinically considered as a measure of severity of a disease under study.
While there are methods available for analyzing recurrent events or durations or for analyzing both side by side,
no effort has been made so far to combine them and present as a single measure. However, this single-valued
combined measure may help clinicians assess the wholesome effect of recurrence of incident comprising events
and durations. Non-parametric approach is adapted here to develop an estimator for estimating the combined
rate of both, the recurrence of events as well as the event-continuation, that is the duration per event. The
proposed estimator produces a single numerical value, the interpretation and meaningfulness of which are
discussed through the analysis of a real-life clinical dataset. The algebraic expression of variance is derived,
asymptotic normality of the estimator is noted, and demonstration is provided on how the estimator can be used
in the setup of testing of statistical hypothesis. Further possible development of the estimator is also noted, to
adjust for the dependence of event occurrences on the history of the process generating recurrent events through
covariates and for the case of dependent censoring.

1. Introduction

In clinical trials on diseases like Chronic Obstructive Pulmonary
Disease (COPD), asthma, or migraine, etc., the event-durations are of
interest along with the event-counts, as together they define severity of
the disease.

Poisson regression or Negative-Binomial regression described by
Lawless [1] for analyzing data on recurrent events when covariates are
considered not time dependent; or for time dependent covariates, es-
timating the mean or rate function of recurrent events, e.g., method
introduced by Lin et al. [2,3] and by Miloslavsky et al. [4] (all the three
based on the definition of intensity function introduced by Andersen-
Gill [5]) are the standard approaches. Otherwise, if event occurrence is
considered dependent on previous events, then stratified Andersen-Gill
model (Cook and Lawless [6], pp 175–176) can be used. In addition,
non-parametric Nelson Aalen estimator ([7]) for the rate or mean
function of recurrent events, and the extensions by Cook et al. [8]) for
event dependent censoring and termination are commonly used
methods for analyzing data on recurrent events.

For the analysis of waiting times (with assumption of independence
among waiting times and deviating from that assumption), detailed
discussion is provided in chapter 4 of Cook and Lawless [6], pp
121–160. Otherwise, the modeling of proportional hazard ratio using

stratified Cox-type models ([9]) based on total time as well as on gap
times introduced by Prentice, William and Peterson [10] and marginal
Cox-models based on total time introduced by Wei, Lin and Weisfeld
[11] are used as well.

On methods for analyzing data on duration, Metcalfe et al. [12]
made a thorough coverage in their article. Otherwise, X. Joan Hu et al.
[13] also proposed some methods for analyzing event-duration. The
bivariate approach to deal with recurrent events with duration is
through an alternating two-state process (‘exacerbation state’ and ‘ex-
acerbation-free state’ being the two alternative states) as described by
Cook and Lawless ([6] section 6.5, pp 216–218 and section 6.7.2, pp
232–236).

However, none of the methods mentioned above present an estimate
for combined cumulative rate or mean of recurrent events and duration
of events over time.

Here in this paper, a non-parametric estimator is proposed that
takes the totality of the data into account through dealing with both,
the recurrence of events and the duration of them simultaneously; and
as a result, produces a single numerical value, which estimates the
wholesome effect of the incident. Consequently, the proposed estimator
can be looked upon as a joint or combined rate of both, the event re-
currences as well as the duration per event.

Following is how the concept of the proposed estimator is developed
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over the next few sections. In section 2, the mathematical motivation,
development and properties of the estimator are described. In section 3,
the interpretation, usefulness and meaningfulness of the single value,
produced by the estimator based on a real-life clinical dataset are dis-
cussed; and in section 4, the possible use and advantages of the pro-
posed estimator are described and further potential developments are
mentioned.

2. Mathematical development

The mathematical framework for this paper is built on a process that
generates recurrence of events to individual subjects, who constitute a
population; and the assumption regarding occurrence of events here is
that, an event can occur and end both at a time instant t (like as it
happens in case of any Poisson process), or can occur at one time in-
stant and then continues for some time before it ends.

2.1. Definitions

Let us denote by Xt the number of events that are observed to have
occurred to an individual subject by (i.e., on or before) time t .

The intensity function is defined (Cook and Lawless [6], chapter 1.3,
p 10) as

�
�= =

↓
χ t

ΔX
Δt

( ) lim Pr( 1 | )
t

Δt

t t

0 (1)

where = −+ΔX X Xt t Δt t and � = ≤ <X s s t{ ( ), 0 }t is the history of a
process.

Note that the intensity function can also be looked upon as
� � �= = =χ t dt P dX E dX( ) ( 1 ) { | }t t t t t .

Based on the definition of intensity function for the occurrence (or,
onset, to be precise) of a new event presented above, let us define the
intensity function for ending of events for an event that has already
occurred (and started) to an individual subject at time-point <t t͠ 0 (i.e.,
the onset of the event was at time-point <t t͠ 0 ) and is not continuing
until (i.e., has ended by) time t as:
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where � = ≤ <X s s t{ ( ), 0 }t is the history of a process and
= −+ΔZ Z Zt t Δt t, with Zt denoting an indicator function such that,

=Z 1t , when an event that has already occurred (and started) at
time-point <t t͠ 0 (i.e., the onset of the event was at time-point

<t t͠ 0 ), continues until time t , or,
=Z 0t , when an event that has already occurred (and started) at

time-point <t t͠ 0 (i.e., the onset of the event was at time-point
<t t͠ 0 ), has also ended by time t .

Note that the intensity function can also be looked upon as
� � �= − = = −χ t dt Pr ΔZ E dZ( ) ( 1 ) { | }Z

t t t t t .

2.2. Mathematical motivation

Let us now define the following variables:

Nt =total count of the onset of events occurred to the population of
n subjects by time t , which is non-decreasing over time, and
Nt

Z =count of events that have already occurred to the population
of n subjects before time t and are continuing until time t.

Clearly, ≥N Nt t
Z at any given time t .

If we define a new variable Nt
s as:

= +N N Nt
S

t t
Z , then = +ΔN ΔN ΔNt

S
t t

Z .
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where X t( )k( ) is an indicator function such that:

=X t( ) 1k( ) when a new event has occurred (in terms of onset of that
new event) by time t to the kth individual subject, or

=X t( ) 0k( ) , when a new event has not occurred (in terms of onset
of that new event) until time t since the preceding event occurred
and ended to the kth individual subject;
Y t( )k( ) is an indicator function with following such that:
Y t( )k( ) =1, when the kth subject belongs to the risk set at time t for
having a new event, since the preceding event occurred and ended,
Y t( )k( ) =0, when the kth subject does not belong to the risk set at
time t for having a new event, since the preceding event has oc-
curred and is continuing;
and C t( )k( ) is an indicator function with following such that:

= ≤C t I t C( ) ( )k k( ) ( ) is an indicator function of whether the kth

subject is under observation at time t.

Clearly, C t( )k( ) is the indicator for censoring of a subject and here
we assume data to be missing at random after censoring.

We also consider = ∑ − − +=ΔN Z t Z t Δt[1 { ( ) ( )}]t
Z

k
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Z t C t( ) ( )k k( ) ( ) ,where Z t( )k( ) is an indicator function such that:

Z t( )k( ) =1 if an event that has already occurred (and started) to the
kth subject and is continuing until time t ;
Z t( )k( ) =0 if an event that has already occurred (and started) to the
kth subject and has also ended by time t.
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2.3. Development of the estimator

It is already defined that = +N N Nt
S

t t
Z , implies = +ΔN ΔN ΔNt

S
t t

Z ,
where = −+ΔN N Nt t Δt t.

Since by the total probability theorem, ∪P a b( )
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ε: risk set of subjects at time t for having a new event
ε :C set of (subjects with) existing events (i.e., events that did not end
by time t ) that continuing until time t
a: occurrence of a new event to a subject within the interval of

+t t Δt[ , )
b: an existing event continuing during the interval of +t t Δt[ , )
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be looked upon as the estimator of the cumulative weighted event-time
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A detailed derivation of these individual components of the esti-
mator is provided in the Appendix section of this paper.

2.4. Properties

2.4.1. Asymptotic property and variance
Due to the very way of the mathematical development here, the

estimator of the cumulative weighted event-time recurrence rate de-
fined above should retain the asymptotic normality property held by
the Nelson-Aalen estimator; in addition, the derivation for the estimate
of variance for Nelson-Aalen estimator, as derived in Cook and Lawless
([6] chapter 3.4.1, pp 68–69), can be adapted to derive the variance
estimate of the proposed estimator in the following way.
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The practical utility of the proposed estimators' asymptotic nor-
mality property is that, in case of large samples it can be used for the
testing of the statistical hypothesis regarding comparison of treatment
effects on the cumulative weighted event-time recurrence rate.

2.4.2. Poisson properties
In case of a Poisson process or a renewal process without duration,

that is, when the events occur and ends at the same time instant t , the
estimator of the cumulative weighted event-time recurrence rate boils
down to the regular Nelson-Aalen estimator for the cumulative rate (or
mean in case of Poisson process, as discussed in details in Cook and
Lawless ([6] p 68) of event occurrences (equivalently known as the
cumulative intensity function or the integrated hazard function over
time).

2.4.3. Equivalence with mean total duration
Under the assumption of no drop outs, ∑ = ≤ ≤= C t n t T( ) , 0 ¨
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where n is the total number of subjects in the population and T̈ is the
total time all these n subjects were under study, the estimator for the
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successive duration-times for k th subject (i.e., the time-ordered se-
quence of time-intervals presenting duration of recurrent events oc-
curred to k th subject) over a given time-period T(0, ¨) and ≤ …≤t tk

m
k

1 k

are the time-points when recurrent events occurred and then ended
(i.e., the time-ordered sequence of onset-time-point and the end-time-
point of the recurrent events, which occurred) to the k th subject.

Note that the right-hand side of the algebraic expression above is
nothing but the mean of the total duration-time, i.e., the average of the
sum of time-intervals, or in other words, the average of the sum of
durations of recurrent events occurred to subjects during the study.

Consequently, if the event occurrence (or onset, to be precise) rate
and duration distribution are stationary over time, then by construc-
tion, the cumulative weighted event-time recurrence rate is essentially
the same as the mean of the total duration-time (per some unit time).
That is, the estimator proposed here is equivalent to =E D T t[ | ]T for
large t , where DT is a random variable denoting the sum of time-in-
tervals or durations of recurrent events occurred to a subject

over a given time-period (i.e., = ∑ =
=⎡⎣ ⎤⎦ −−D dt i

i
t t1

m

i i
2

(2 1) 2 , where
{ = ≤ ≤ …≤ ≤ ≤− −−d i t t t t}, 1(1)[ ], 0t t

m
m m2 1 1i i(2 1) 2 are the random

variables denoting the successive time-intervals presenting duration of
recurrent events occurred to a subject over a given time-period t(0, ),
and ≤ …≤t tm1 are the time-points when recurrent events occurred and
then ended (i.e., the time-ordered sequence of onset-time-point and the
end-time-point of the recurrent events, which occurred) to that subject.
However, since the event occurrence (or onset, to be precise) rate and
the distribution of event durations both might vary with time, the es-
timates from the proposed estimator might only be comparable to the
numerical values of Dt as t increases.

3. Data analysis

Since the non-parametric estimator introduced here is developed to
estimate a novel parameter for assessing the disease condition in a
population through a single value combining recurrence of events and
duration over time, which has not been dealt with by any other existing
and/or standard methods so far, the purpose of the data analysis here is
to understand the purpose of such an estimator in the context of data on
recurrent events with duration, through the meaning, usefulness and
interpretation of the numerical value the estimator produces, instead of
comparing the new estimator to any existing estimator of the event-
time recurrence rate, which in fact does not exist until now.

It should be noted that if an event to a subject ends at any time t ,
then another event to that subject can begin immediately afterwards,
that is, at time +t Δt, which will make the previous event appear to be
continuing for that subject through the time +t Δt . Hence when day is
the time-unit in any data set used for estimating the cumulative
weighted event-time recurrence rate, then if an event to a subject ends
on a particular day, then continuation of event will be considered for
that subject until the day before.

An exacerbation dataset from one of the historical COPD studies is
used for the data analysis and estimation of the cumulative weighted
event-time recurrence rate with COPD exacerbations being the re-
current events. The Nelson-Aalen estimator of the event rate and the
descriptive means for total-duration and also for the duration of the
disease (in days) have been calculated on that dataset, so that the re-
sults can be compared side by side, in order to understand the meaning
and usefulness of the estimator introduced here.

The dataset, thus considered, has a total of 165 patients, of which
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117 were under an active drug under study (drug A, say) and the rest of
the 48 patients were under an active comparator (drug B, say) for one
year, which was the study-period. All the patients under both the
treatment arms had at least one occurrence of exacerbation to them. 28
patients under drug A and 11 patients under drug B had more than one
exacerbation during the one-year of on-treatment study period. The
maximum number of exacerbations to a patient under drug A was three
and the maximum number of exacerbations to a patient under drug B
was four. The minimum duration of COPD exacerbation was one day
under drug A (maximum 34 days) but was two days under drug B
(maximum 31 days). Two patients under drug A and one patient under
drug B were observed with an event but without any respective dura-
tion-time recorded in the dataset. 38 patients under drug A and 20
under drug B had dropped out of the study early.

Table 1 shows the results of the different estimators: cumulative
weighted event-time recurrence rate introduced here, the mean dura-
tion and the Nelson-Aalen event rate.

3.1. Meaningfulness

As seen in Table 1, the numerical comparison of the estimated cu-
mulative weighted event-time recurrence rate and the product of the
Nelson-Aalen estimate of the event rate and the mean duration in-
dicates that the new estimator may be looked upon as a combined rate
(over time) of event recurrence and duration. This is because the pro-
duct of Nelson-Aalen estimate and the mean duration (average event-
day of 10.8747 for drug A and 10.9510 for drug B) can be looked upon
as a single numerical value giving an idea about the totality of the data
through dealing with both: the intensity of the disease through the
Nelson-Aalen estimate of the recurrent event rate and the average
duration of events. Likewise, the estimated cumulative weighted event-
time recurrence rate (9.0652 event-days for drug A and 10.1556 event-
days for drug B, both in 1 patient-year) gives an idea about the com-
bined cumulative weighted rate (within a year) of the number of event
occurrences (intensity of the disease) along with duration of time those
events continued, presented as a single numerical value.

3.2. Usefulness

Because of the asymptotic normality property of the estimator
mentioned in section 2.4.1, in case of large samples it can be used as a
statistic for the t-test in testing a statistical hypothesis regarding com-
parison of treatment effect on the cumulative weighted event-time re-
currence rate, as presented in Table 1. Since neither the p-value for
proposed estimator nor the p-value for N.A. estimator is significant, it's
not meaningful to compare between them. However, the ability of
performing hypothesis testing using the proposed estimator signifies the
purposefulness of the estimator over both: The Nelson-Aalen estimator,
which does not take duration into account, and the simple product of
Nelson-Aalen event rate and mean duration, which cannot be used as a
statistic for the t-test in testing a statistical hypothesis regarding com-
parison of treatment effect.

Fig. 1 presents the over-time graph comparing the progression of the
cumulative weighted event-time recurrence rate and of the Nelson-
Aalen estimate over one year from the COPD dataset described above.
As observed in the graph (Fig. 1), the different in treatment effects
between drugs A and B are more clearly visible in the curves for the

cumulative weighted event-time recurrence rate than in the curves for
Nelson-Aalen estimates for the cumulative intensity function of event
recurrence.

The estimates of the cumulative weighted event-time recurrence
rate in Table 1 (9.0652 event-days for treatment A and 10.1556 event-
days for treatment B both in 1 patient-year) are numerically compar-
able to the means of total duration-time (9.73 for treatment A and
9.766 for treatment B) in the one-year time-period, as it is discussed in
section 2.4.3.

3.3. Interpretability

When covariance of two variables is considered, it is viewed as a
single numerical value, expressing the joint behavior of the two vari-
ables. Likewise, the proposed rate should be viewed as a linear com-
bination of progression of event-recurrence and duration over time.

If the cumulative weighted rate of 9.0652 event-days for drug A of
the event-time recurrences over 1 patient-year (10.1556 event-days in 1
patient-year for drug B) is viewed as a combined, single-valued rate of
event-recurrence and duration, then the proposed estimator can be used
to understand the wholesome effect of the recurrence of COPD ex-
acerbations in these subjects under the two different treatments. In
other words, this combined, single-valued cumulative weighted rate of
event-time recurrences may be used as a measure to assess the severity
of the disease involving recurrence of events (intensity of the disease)
and the duration of events. This is because, the proposed estimator
takes the totality of data on disease causing recurrent events with
duration into account and produces a single value containing all in-
formation (recurrence of events, duration of events and total observa-
tion-time) about that data.

4. Discussion

The estimator of the cumulative weighted event-time reccurrence
rate introduced in this paper accounts for both, the recurrence of events
as well as the duration per event over time. In case of the recurrent
adverse events with duration that occur in clinical studies, the occur-
rence of events are dependent on whether or not the preceding event is
still continuing; and hence, the issue of event continuation should be

Table 1
Comparison of estimators for event rate and for duration of events with the proposed estimator.

Treatment N Cumulative Weighted Event-Time
Recurrence Rate (SE)

Mean (SD) of total
duration-time

Mean Duration
(SD)

Nelson-Aalen Event
Rate (SE)

Product of N.A. Event Rate
and Mean Duration

A 117 9.0652 (0.331) 9.730 (5.579) 7.5608 (3.635) 1.4383 (0.126) 10.8747
B 48 10.1556 (0.759) 9.766 (6.273) 7.650 (4.100) 1.4315 (0.185) 10.9510
Treatment comparison (p-value) – 0.4879 0.9060
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Fig. 1. Comparison of the proposed combined rate and N.A. rate over time.
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taken into account while considering the risk set(s) over time for the
occurrence of the following event(s). Moreover, in a process generating
recurrent events where every event, once occurred, may continue for
some duration of time, events and the associated time per event should
be considered inseparable in defining such a process generating re-
current events, as done in section 2.2 of this paper. Naturally, one way
of analyzing the data of recurrent events with durations is by dealing
with them simultaneously, by introducing an extra parameter in the
method of estimation, which has been done in the estimator introduced,
as shown in section 2.3 of this paper. The proposed estimator, named as
the cumulative weighted event-time recurrence rate in section 2.3 of
this paper, is discussed in section 3 as a tool for understanding the
wholesome effect of the recurrence of events with duration, e.g., the
severity of a disease observed in a real-life data-set, as it gives an idea
about the totality of the data regarding the disease causing recurrent
events with duration through the estimation of the combined rate (over
a given period of time) of event recurrences (intensity of the disease)
along with duration of time those events continued, presented as a
single numerical value.

The proposed estimator is very easy to calculate and also easy to
interpret. In fact, the estimator can be interpreted in any of the fol-
lowing two ways. The estimator can be looked upon as an estimate of
the combined rate of both: the recurrence of events and of the duration
of events calculated over a given period of time. Or, under certain
conditions (e.g., the event occurrence (onset) rate and duration dis-
tribution being stationary over time and/or when the time of study-
period is very large, as described in section 2.4.3) it can be viewed as an
estimate of the mean of the total duration-time (or, in other words, the
average of the sum of the time-intervals of duration of recurrent events
occurred to a subject during the study).

While the alternating two-stage model described in Cook and
Lawless ([6] section 6.5, pp 216–218 and section 6.7.2, pp 232–236) is
a very appropriate approach to analyze data on recurrent events with
duration, the method uses many assumptions (e.g. distribution for the
frailty type parameter representing the conditional transitional in-
tensities between states, assumption that the hazard function be de-
pendent on the preceding events i.e., on the process generating re-
current events only through the time-dependent covariates, etc.) that
are sometimes hard to justify. Whereas the estimator proposed in this
paper uses minimum amount of assumption due to its developmental
background being in the non-parametric methodology.

The estimator developed in this paper may be extended to fit into
different conditions (namely, Poisson or even general point process in
the sense that jumps are greater than of unit one, time-dependent
covariates and dependent censoring) by adapting various methods for
estimating the mean or the rate function of recurrent events, e.g.,
method introduced by Lin et al. [2], by Lin et al. [3], and by Mi-
loslavsky et al. [4] i.e., methods wherever increments in the number of
events at any time and the risk sets for having the following events over
time are considered in the estimation procedure. This is a work left for
future research.
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(following the same mathematical theory as that used in defining the Nelson Aalen estimator ([7]).
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For the estimation of the rate of the continuing events, what is note-worthy is that since the recurrence of events along with their duration of
sustenance is of interest here, the consideration of the ending time of events may not be relevant in the context. This is because, if an event ends at
any time t, by definition of instantaneous intensity function for event ending, that event is no longer visible at time +t Δt . Whereas, events that occur
at time t and some or all of which continue beyond the time t (i.e., do not also end at time t) or other events that have occurred before time t and
continue till time t (i.e., end at some point of time beyond t) are all what are visible at time +t Δt .

Consequently, as the objective here is to find the rate of such continuing cases of events, the following is derived.
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Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.conctc.2018.03.002.
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