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Abstract
Purpose This article analyzes the image heterogeneity of clear cell renal cell carcinoma (ccRCC) based on positron emission 
tomography (PET) and positron emission tomography-computed tomography (PET/CT) texture parameters, and provides a 
new objective quantitative parameter for predicting pathological Fuhrman nuclear grading before surgery.
Methods A retrospective analysis was performed on preoperative PET/CT images of 49 patients whose surgical pathology 
was ccRCC, 27 of whom were low grade (Fuhrman I/II) and 22 of whom were high grade (Fuhrman III/IV). Radiological 
parameters and standard uptake value (SUV) indicators on PET and computed tomography (CT) images were extracted 
by using the LIFEx software package. The discriminative ability of each texture parameter was evaluated through receiver 
operating curve (ROC). Binary logistic regression analysis was used to screen the texture parameters with distinguishing 
and diagnostic capabilities and whose area under curve (AUC) > 0.5. DeLong's test was used to compare the AUCs of PET 
texture parameter model and PET/CT texture parameter model with traditional maximum standardized uptake value (SUV-
max) model and the ratio of tumor SUVmax to liver SUVmean (SUL)model. In addition, the models with the larger AUCs 
among the SUV models and texture models were prospectively internally verified.
Results In the ROC curve analysis, the AUCs of SUVmax model, SUL model, PET texture parameter model, and PET/CT 
texture parameter model were 0.803, 0.819, 0.873, and 0.926, respectively. The prediction ability of PET texture parameter 
model or PET/CT texture parameter model was significantly better than SUVmax model (P = 0.017, P = 0.02), but it was 
not better than SUL model (P = 0.269, P = 0.053). In the prospective validation cohort, both the SUL model and the PET/
CT texture parameter model had good predictive ability, and the AUCs of them were 0.727 and 0.792, respectively.
Conclusion PET and PET/CT texture parameter models can improve the prediction ability of ccRCC Fuhrman nuclear grade; 
SUL model may be the more accurate and easiest way to predict ccRCC Fuhrman nuclear grade.
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Introduction

According to the cases announced by the American Cancer 
Society in 2021, the number of new kidney cancer cases was 
76,080, and the number of new kidney cancer deaths was 
13,780 [1]. Renal cell carcinoma accounts for about 80% 
of all kidney cancers. Saad et al. [2] conducted an epide-
miological study of renal cell carcinoma in the USA in the 
past 20 years. They found that the incidence of renal cell 
carcinoma remained stable since 2008 and the overall mor-
tality rate began to decline since 2001. However, as the most 
common subtype of renal cell carcinoma, clear cell renal cell 
carcinoma (ccRCC) had a continuously increasing incidence 
and its mortality rate did not decline until 2012. Therefore, 
research on ccRCC is of great significance to improve the 
cure rate of renal tumors. Fuhrman nuclear grade is a rec-
ognized prognostic indicator of ccRCC. Studies have shown 
that [3, 4] low grade ccRCC is associated with a good prog-
nosis and high grade ccRCC is associated with higher infil-
tration capacity, higher possibility of metastasis, and poor 
prognosis. In addition, there is a significant difference in 
the recurrence rate of ccRCC between high grade and low 
grade patients after surgery, and the risk of recurrence after 
surgery for higher grade tumors is significantly increased 
[5]. Therefore, the prediction of ccRCC grade is helpful for 
clinicians to plan management decisions. In the simplified 

Fuhrman nuclear grading system, ccRCC cases are divided 
into low grade (Fuhrman I/II) and high grade (Fuhrman III/
IV), which not only reduces the difference between observ-
ers, improves repeatability, saves time and money, but also 
does not affect the ability to predict cancer-specific mortality 
[6]. Imaging-guided fine-needle aspiration biopsy is the gold 
standard for preoperative renal tumor grading. However, 
due to the high spatiotemporal heterogeneity of ccRCC, the 
biopsy tissue only represents a part of the lesion, which may 
lead to selection bias and cannot well reflect the Fuhrman 
nuclear grade of the entire tumor. Moreover, this invasive 
operation has disadvantages such as poor repeatability and 
complications. Therefore, non-invasive methods are essen-
tial for the preoperative evaluation of ccRCC.

Due to the Warburg effect of malignant tumors, the 
glucose transporter 1 (GLUT1) is up-regulated, and other 
enzymes are over-expressed, especially lactate dehydro-
genase (LDH), which appear as hypermetabolic foci on 
18F-fluorodeoxyglucose (18F-FDG) positron emission 
tomography—computed tomography (PET/CT). Therefore, 
PET/CT is widely used in the diagnosis, grading, monitor-
ing of treatment response, efficacy evaluation, and prognosis 
determination of various tumors. However, ccRCC does not 
have the typical Warburg effect, and 18F-FDG is excreted 
through the kidneys. It is difficult to distinguish between 
tumor metabolism and background. Therefore, in the profes-
sional practice guidelines issued by American Urological 
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Association (AUA), and European Society for Medical 
Oncology (ESMO) and European Association of Urology 
(EAU), it is generally not recommended to use FDG as a kid-
ney tumor imaging agent [7–9]. But this does not mean that 
PET/CT examination is useless for the diagnosis of ccRCC. 
A number of studies have shown that the value of maximum 
standardized uptake value (SUVmax) as the traditional PET/
CT parameter has a certain correlation with the Fuhrman 
grade of pathology [10–12].

Radiomics that have emerged in recent years can establish 
models by using a large amount of high-throughput infor-
mation obtained by image segmentation and feature extrac-
tion of regions of interest (ROI) in computed tomography 
(CT), magnetic resonance imaging (MRI), positron emis-
sion tomography (PET), and other images. The researchers 
input the patient's medical images into computer software 
with mathematical algorithm functions, and obtain quanti-
tative radiomics characteristics with one-click operation by 
delineating the target ROI. These features mainly include the 
shape and geometric characteristics of the lesion, the charac-
teristics of the first-order voxel intensity histogram, the sec-
ond-order texture features reflecting the spatial arrangement 
of the voxel intensity, and the high-order features through 
filters or mathematical transformations. Radiomics can assist 
physicians to make decisions through deeper mining and 
analyzing massive image data [13]. Texture analysis is a tool 
of radiomics through which we can extract texture features 
from images in a non-invasive manner, which can character-
ize the histopathological characteristics of living tumors at 
the molecular level [14]. Although PET parameters based 
on standard uptake value (SUV) are helpful for the grade of 
malignant tumors, they cannot reflect the intratumoral heter-
ogeneity (ITH) through the spatial distribution of metabolic 
activity in the tumor. Texture analysis is one of the most 
prominent methods to quantify ITH on images. It is an image 
processing technology that can extract texture information in 
a quantitative manner and perform mathematical analysis the 
visually imperceptible changes in pixel intensity. Although 
texture features are not usually used in the clinical analysis 
of PET images, there is growing evidence that they have a 
complementary role in the diagnosis, predicting grade, and 
treatment of common cancers [15–17]. However, the PET/
CT radiomics of kidney tumors is limited by many problems 
such as the difficulty of segmentation of the ROI and the 
many factors affecting the feature extraction process. There-
fore, we question whether the texture characteristics of PET/
CT will significantly improve the predictive ability of the 
traditional parameters SUV and the ratio of tumor SUVmax 
to liver SUVmean (SUL) in the grade of ccRCC. Therefore, 
we established PET texture parameter model, PET/CT tex-
ture parameter model, SUVmax model, and SUL model and 
evaluate the predictive ability of these four models.

Methods

Patient selection

A retrospective analysis of the raw image data and basic 
clinical information of the patients who underwent 18F-FDG 
PET/CT scans and detected kidney tumors in the First Affili-
ated Hospital of Harbin Medical University from February 
2017 to January 2019 was performed. The corresponding 
prospective internal verification was completed by collect-
ing patient data from February 2019 to December 2019. 
Inclusion criteria: (1) The surgical pathology was ccRCC; 
(2) The pathological Fuhrman nuclear grade was certain. 
Exclusion criteria: (1) Patients who had received any form 
of treatment before 18F-FDG PET/CT scan, including sur-
gery, chemotherapy, radiotherapy, or other methods; (2) The 
pathological Fuhrman nuclear grade was uncertain, such as 
patients with Fuhrman nuclear grade II to III; (3) Patients 
who had obtained pathological results through needle biopsy 
instead of surgery.

18F‑FDG PET/CT image acquisition 
and reconstruction

All patients were fasted for 6–8 h, and fasting blood glu-
cose was less than 8 mmol/L, and 3.7–7.4 MBq/kg 18F-
FDG tracer was injected into the dorsal vein or elbow vein 
according to the body mass index. The 18F-FDG imaging 
agent was synthesized by the HM-12 cyclotron of Sumi-
tomo Corporation, Japan, and its radiochemical purity was 
greater than 98%. Images were collected after the patient 
urinated and rested for 1 h under quiet and dark environ-
ment. The whole body 18F-FDG PET/CT examination was 
performed on all patients with Gemini GXL PET/CT scan-
ner (Philips Medical System). Low-dose CT scan was used 
to attenuation correction for PET image with the following 
parameters: tube current, 50mAs; tube voltage, 120 kV; slice 
thickness, 5.0 mm. Then PET scan was performed. PET data 
were acquired for 1.5 min/bed position, and 6 to 7 bed posi-
tions were imaged per patient for whole-body PET scan. 
Patients do not need to take orally or intravenously inject 
contrast agent and change their position. According to the 
institution's standard clinical protocol, the scan range was 
from the head to the upper thigh. After the PET scan, in 
order to ensure the quality of the image, standard-dose CT 
scan was added with the following parameters: tube current, 
300mAs; tube voltage, 120 kV. Image registration and the 
fusion of PET and CT scan images were performed using 
Syntegra software from Philips, Amsterdam, Netherlands. 
The images were reconstructed by using line of response 
(LOR) with 2 mm × 2 mm × 2 mm voxels, and corrections for 
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scatter and random coincidences, while post-reconstruction 
filtering was not required.

Radiomic texture analysis

Texture parameters and SUV indicators were extracted 
using the LifeX software package (version 6.00, http:// 
www. lifex soft. org) on PET and CT images. The default 
parameter values of the software package were used. For 
PET and CT images, spatial resampling parameter was 
4.0  mm  ×  4.0  mm  ×  4.0  mm and 1.169921875  mm × 
1.169921875 mm × 2.5 mm, intensity discretization was 
64.0 bin and 400.0 bin, intensity rescaling was 0.0 ~ 20.0 
and − 1000.0 ~ 3000.0HU, respectively.

Tumor segmentation: The ROI was drawn on the image 
of the corresponding standard-dose CT scan, which included 
the part of cystic degeneration and necrosis (Fig. 1) and 
excluded the interference of the physiological 18F-FDG 
remaining in the adjacent renal pelvis and ureter on the 
fusion image. Without knowing the final histopathological 
results, two experienced radiology and nuclear medicine 
associate chief physicians worked together to draw the ROI. 
If they have a disagreement, another experienced chief phy-
sician will attend, and they will discuss and determine. If 
the ROI does not reach the minimum number of 64 voxels, 
the case was excluded.

Tumor texture extraction: SUV indicators and texture 
features were extracted on PET and CT images using LifeX 

software package. SUV indicators of tumor tissue include 
minimum standardized uptake value (SUVmin), mean stand-
ardized uptake value (SUVmean), maximum standardized 
uptake value (SUVmax), and total lesion glycolysis (TLG). 
All texture parameters were divided into six groups: histo-
gram (HISTO), shape (SHAPE), gray-level co-occurrence 
matrix (GLCM), gray-level run-length matrix (GLRLM), 
neighborhood gray-level difference matrix (NGLDM), and 
gray-level region Length matrix (GLZLM). A total of 42 
texture parameters were found, including (1) Five histogram 
features: Skewness, Kurtosis, Entropy_log10, Entropy_log2, 
and Energy. (2) Five shape features: Volume (ml), Volume 
(vx), Sphericity, Surface  (mm2), and Compacity. (3) Seven 
GLCM functions: Homogeneity, Energy, Contrast, Cor-
relation, Entropy_log10, Entropy_log2, and Dissimilarity. 
(4) Eleven GLRLM functions: Short-run emphasis (SRE), 
Long-run emphasis (LRE), Low gray-level run emphasis 
(LGRE), High gray-level run emphasis (HGRE),Short-
run low gray-level emphasis (SRLGE), Short-run high 
gray-level emphasis (SRHGE), Long-run low gray-level 
emphasis(LRLGE), Long-run high gray-level emphasis 
(LRHGE), Gray-level non-uniformity for run (GLNU), 
Run length non-uniformity (RLNU), and Run percentage 
(RP). (5) Three NGLDM features: Coarseness, Contrast, and 
Busyness. (6) Eleven GLZLM features: Short-zone empha-
sis (SZE), Long-zone emphasis (LZE), Low gray-level zone 
emphasis (LGZE), High gray-level zone emphasis (HGZE), 
Short-zone low gray-level emphasis (SZLGE), Short-zone 

Fig.1  An example of artificially drawing a ROI for clear cell renal 
cancer in the same patient was shown. The ROI was drawn on the CT 
image (A), then mapped it to the PET image on the same machine to 

get the ROI of the PET/CT (B). The ROI included the cystic part and 
the necrotic part of the tumor

http://www.lifexsoft.org
http://www.lifexsoft.org
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high gray-level emphasis (SZHGE), Long-zone low gray-
level emphasis (LZLGE), Long-zone high gray-level empha-
sis (LZHGE), Gray-level non-uniformity for zone (GLNU), 
Zone length non-uniformity (ZLNU), and Zone percentage 
(ZP).

Delineate normal liver tissue and record the SUVmean of 
healthy liver tissue: Normal liver tissue was delineated in the 
software and the SUVmean was recorded, while liver lesions 
and larger blood vessels in the liver were avoided. SUL was 
used as the evaluation index.

Histopathological analysis

All tumors were surgically removed to obtain tissue sam-
ples, and their ccRCC Fuhrman nuclear grade were obtained 
through pathological results. Cases of grade III and IV were 
considered high grade tumors, and cases of grade I and II 
were considered low grade tumors.

Statistical analysis

Statistical analysis was performed using SPSS (v25.0, IBM, 
USA) and MedCalc (v19.4.1, Ostend, Belgium) software. 
The normality of each parameter was checked using Sha-
piro–Wilk test. The measurement data that conformed to 
the normal distribution were expressed as mean ± standard 
deviation, and those that did not conform to the normal dis-
tribution were expressed as median (P25, P75). All meta-
bolic data and texture data were divided into low grade and 
high grade tumor by receiver operating curve (ROC), and 
the corresponding area under the ROC curve (AUC) was 
calculated. The texture parameter with distinguishing and 
diagnostic capabilities was selected when its AUC value was 
higher than 0.5. The logistic regression analysis was used 
to evaluate the relationship between the ccRCC Fuhrman 
nuclear grade and the selected texture parameters. Model 
variable selection was based on stepwise criteria. The final 
models were used to generate the ROC. The AUC, sensi-
tivity, specificity, negative predictive value (NPV), and 
positive predictive value (PPV) were compared. The AUCs 
were compared using DeLong's test [18]. In addition, the 
baseline information of patients was compared using T-test, 
Chi-square test, and Fisher’s exact test.

Result

Baseline characteristics

In the retrospective analysis cohort, of a total of 93 patients, 
49 patients met the criteria, and there were 27 cases of low 
grade ccRCC (5 cases of Fuhrman grade I, 22 cases of grade 
II) and 22 cases of high grade ccRCC (16 cases of Fuhrman 
grade III, 6 cases of grade IV). The age ranged from 37 to 82 
(60.06 ± 1.66) years old, and there was no statistical differ-
ence in age in the ccRCC Fuhrman nuclear grade (t = 0.269, 
P = 0.607). There were 29 males and 20 females. There was 
no statistical difference in the grading of ccRCC by gender 
(χ2 = 3.032, P = 0.082).

In the prospective validation cohort, of a total of 53 
patients, 25 patients met the criteria, and there were 14 cases 
of low grade ccRCC (2 cases of Fuhrman grade I, 12 cases 
of grade II) and 11 cases of high grade ccRCC (6 cases of 
Fuhrman grade III, 5 cases of grade IV). The age ranged 
from 41 to 79 (64.80 ± 0.35) years old, and there was no 
statistical difference in age in the ccRCC Fuhrman nuclear 
grade (t = 0.069, P = 0.946). There were 16 males and 9 
females. There was no statistical difference in the grading 
of ccRCC by gender (P = 0.677) (Table 1).

Differences of conventional PET parameters 
in the Fuhrman grades of ccRCC 

Except for SUVmin, the conventional PET parameters were 
statistically different in predicting ccRCC Fuhrman nuclear 
grade (Table 2). The ability to predict ccRCC Fuhrman 
nuclear grade according to the AUCs of routine parameters 
were ranked as: SUL > SUVmax > SUVmean > TLG.

Radiomic parameters

The ability of a single texture parameter to predict the 
ccRCC Fuhrman nuclear grade was shown (Table 3). Among 
the 42 PET texture features, there were 2 in HISTO fea-
tures, 4 in GLCM features, 3 in GLRLM features, and 4 in 
GLZLM features that had good discriminative ability and 
diagnostic performance. However, SHAPE features and 
NGLDM features were limited in distinguishing clear cell 

Table 1  Basic information of 
the retrospective analysis cohort 
and the prospective validation 
cohort

Retrospective analysis cohort Prospective validation cohort

Low grade High grade P value Low grade High grade P value

Sex 0.082 0.677
 Male 13(48.1%) 16(72.7%) 8(57.1%) 8(72.7%)
 Female 14(51.9%) 6(27.3%) 6(42.9%) 3(27.3%)

Age 59.63 ± 2.39 60.59 ± 2.39 0.607 64.93 ± 3.19 64.64 ± 2.56 0.946
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carcinoma grade. Among CT texture features, 1 in GLRLM 
feature and 1 in GLZLM feature had good discriminating 
ability.

PET texture parameter model

Regression equation:

PREPET = 0.058 GLRLM_HGRE

+ 0.197 GLZLM_GLNU − 4.978.

PET/CT texture parameter model

Regression equation:

Comparison of SUV model and texture parameter model 
in predicting the ability to ccRCC Fuhrman nuclear grade 
was shown (Table 4; Fig. 2). The SUVmax model predicted 
ccRCC Fuhrman nuclear grade with a sensitivity of 68.18%, 
a specificity of 88.89%, a PPV of 71.4%, and a NPV of 75%. 
The SUL model had a sensitivity of 59.09%, a specificity 
of 96.3%, a PPV of 92.9%, and a NPV of 74.3%. SUV-
max model and SUL model had no statistical difference 

PREPET/CT = 0.046 GLRLM_HGRE (PET)

+ 0.01 GLZLM_HGZE (CT) − 193.379.

Table 2  Differences of 
conventional PET parameters in 
the Fuhrmangrades of ccRCC 

Conventional 
parameters

Low grade (N = 27) High grade (N = 22) AUC SEM P 95%CI

SUVmin 0.75 (0.53–1.02) 0.96 (0.51–1.35) 0.594 0.086 0.26 0.425–0.763
SUVmean 1.75 (1.41–2.15) 2.36 (1.94–2.95) 0.779 0.067 0.001 0.648–0.911
SUVmax 3.42 (2.59–3.74) 4.72 (3.56–5.72) 0.803 0.065  < 0.001 0.677–0.93
TLG(mL) 91.32 (27.81–123.15) 248.38 (28.78–589.76) 0.685 0.081 0.027 0.525–0.845
SUL 1.39 (1.22–1.63) 2.13 (1.56–2.91) 0.818 0.061  < 0.001 0.698–0.938

Table 3  The ability of texture features to distinguish the grade of clear cell carcinoma

Texture parameter Low grade (N = 27) High grade (N = 22) AUC SEM P 95%CI

HISTO_Entropy_log10(PET) 0.77 (0.69–0.79) 0.89 (0.76–0.99) 0.746 0.073 0.003 0.602–0.89
HISTO_Entropy_log2(PET) 2.57 (2.29–2.64) 2.96 (2.52–3.28) 0.746 0.073 0.003 0.602–0.89
GLCM_Contrast(PET) 1.53 (1.24–1.8) 2.39 (1.41–3.92) 0.746 0.073 0.003 0.603–0.888
GLCM_Entropy_log10(PET) 1.38 (1.19–1.43) 1.59 (1.37–1.79) 0.746 0.072 0.003 0.604–0.887
GLCM_Entropy_log2(PET) 4.57 (3.96–4.76) 5.27 (4.54–5.93) 0.746 0.072 0.003 0.604–0.887
GLCM_Dissimilarity(PET) 0.9 (0.79–1) 1.15 (0.87–1.51) 0.747 0.072 0.003 0.607–0.888
GLRLM_HGRE(PET) 41.15 (28.19–56.18) 67.96 (51.61–106.44) 0.790 0.066 0.001 0.661–0.918
GLRLM_SRHGE(PET) 31.48 (23.26–46.33) 57.08 (41.82–92.72) 0.786 0.066 0.001 0.656–0.916
GLRLM_LRHGE(PET) 106.89 (67.99–129.83) 151.38 (104.74–195.83) 0.739 0.072 0.004 0.598–0.88
GLZLM_HGZE(PET) 52.9 (39.2–64.27) 92.44 (60.56–124.45) 0.811 0.062 0.000 0.69–0.933
GLZLM_SZHGE(PET) 20.04 (14.38–24.74) 37.58 (24.86–60.17) 0.768 0.075 0.001 0.621–0.915
GLZLM_GLNU(PET) 3.74 (2.65–7.37) 9.47 (2.26–13.88) 0.666 0.086 0.048 0.497–0.835
GLZLM_ZLNU(PET) 4.88 (2.4–6.35) 14.56 (5.08–36.88) 0.719 0.081 0.009 0.561–0.877
GLRLM_HGRE(CT) 10,548.84 (10,501.66–10,634.58) 10,737.51 (10,661.28–10,794.27) 0.879 0.047 0.000 0.787–0.971
GLZLM_HGZE(CT) 10,275.65 (10,103.23–10,413.19337) 10,504.91 (10,361.19–10,566.41) 0.857 0.052 0.000 0.756–0.958

Table 4  Comparison of the difference in predictive ability between the texture parameter models and the SUV models

P refers to the significance for ROC curves

Model Cut-off Sensitivity (%) Specificity (%) PPV (%) NPV (%) AUC P value

SUVmax model  > 4.11 68.18 88.89 71.4 75 0.803  < 0.0001
SUL model  > 1.91 59.09 96.3 92.9 74.3 0.819  < 0.0001
PET texture parameter model  > − 0.45 81.82 88.89 88.2 78.1 0.873  < 0.0001
PET/CT texture parameter model  > − 87.1 86.36 88.89 86.4 88.9 0.926  < 0.0001
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in predicting the AUCs of ccRCC Fuhrman nuclear grade 
(P = 0.725) (Table 5). Compared with the SUV model, 
the PET texture parameter model and the PET/CT tex-
ture parameter model both showed better predictive abil-
ity, sensitivity (81.82% and 86.36%), specificity (88.89% 
and 88.89%), and PPV (88.2% and 86.4%), NPV (78.1% 
and 88.9%), but there was no statistical difference in AUCs 
between the two texture parameter models (P = 0.171). The 
AUCs of the texture parameter models established by the 
logistic regression method were greater than that of the SUV 
models. The difference in AUCs was statistically significant 
between the PET texture parameter model and the SUVmax 

Fig. 2  The ROC graphs of SUV model and texture parameter models 
in predicting ccRCC Fuhrman nuclear grade was shown (A SUVmax 
model; B SUL model; C PET texture parameter model; D PET/CT 

texture parameter model). The blue area represents the 95% confi-
dence interval, and the cross-marked point represents the best thresh-
old point

Table 5  DeLong test within different models

Model P value

SUVmax model VS SUL model 0.725
PET texture parameter model VS PET/CT texture param-

eter model
0.171

PET/CT texture parameter model VS SUL model 0.0529
SUVmax model VS PET/CT texture parameter model 0.02
SUL model VS PET texture parameter model 0.2691
SUVmax model VS PET texture parameter model 0.017
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model, and between the PET/CT texture parameter model 
and the SUVmax model (P = 0.017, 0.02). However, there 
was no statistically significant difference in AUCs between 
the PET texture parameter model and the SUL model, and 
between the PET/CT texture parameter model and the SUL 
model (P = 0.269, 0.053).

Prospective verification

Using the regression equation in the retrospective analysis 
cohort, we selected one model with larger AUCs of SUV 
models and texture parameter models, respectively and 
prospectively verified their ability to predict the Fuhrman 
grade of ccRCC in 25 patients. The AUCs of SUL model 
and PET/CT texture parameter model were 0.727 and 0.792, 
respectively. Although the predictive abilities of the SUL 
model and PET/CT texture parameter model are lower than 
in retrospective analysis cohort, they still have better pre-
dictive abilities (Table 6; Fig. 3), and there was no statisti-
cally significant difference in AUCs between the two models 
(P = 0.489).

Discussion

The results of our study indicate that 18F-FDG PET/CT 
SUV indicators and radiological parameters can assist in 
predicting ccRCC Fuhrman nuclear grade. Among the four 
discriminant models in the retrospective analysis cohort, 
the PET/CT texture parameter model had the highest sen-
sitivity and NPV, and higher specificity and PPV. The SUL 
model had the highest specificity, the lowest sensitivity, the 
highest PPV, and the lowest NPV. PET and PET/CT texture 
parameter models (AUC = 0.874, 0.926) had more predic-
tive ability than SUVmax model (AUC = 0.803); Compared 
with the SUL model (AUC = 0.819), PET and PET/CT tex-
ture parameter models (AUC = 0.874, 0.926) could improve 
the predictive ability, but it was not statistically significant 
(P = 0.269, 0.053). In the prospective validation cohort, the 
predictive ability of the SUL model and the PET/CT texture 
parameter model decreased (AUC = 0.727, 0.792), but both 
models showed the ability to distinguish the high and low 
Fuhrman nuclear grade of ccRCC, and there was no statisti-
cal difference in the AUCs of the two models.

Table 6  Predictive ability 
of SUL model and PET/CT 
texture parameter model in the 
prospective validation cohort

P refers to the significance for ROC curves

Model Sensitivity (%) Specificity (%) PPV (%) NPV (%) AUC P value

SUL model 63.64 85.71 77.8 75 0.727 0.033
PET/CT texture 

parameter model
63.64 92.86 87.5 76.5 0.792 0.0049

Fig. 3  The ROC graphs of SUL model and PET/CT texture parameter 
model in predicting ccRCC Fuhrman nuclear grade in the prospec-
tive validation cohort was shown (A SUL model; B PET/CT texture 

parameter model). The blue area represents the 95% confidence inter-
val, and the cross-marked point represents the best threshold point
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As far as we know, this is the first article to study the 
prediction of ccRCC Fuhrman nuclear grade by PET/CT 
radiomics characteristics. In previous studies on 18F-FDG 
PET/CT to predict ccRCC Fuhrman nuclear grade, SUV-
max was the most commonly used index [10, 19]. SUVmax 
can be affected by many factors, such as blood sugar level, 
temperature, muscle activity, renal background metabolism, 
etc. There are still many shortcomings in the grading of kid-
ney cancer based on SUVmax alone, so the standardiza-
tion of SUVmax may be more meaningful to distinguish 
between high and low grade of ccRCC. Since the uptake 
of 18F-FDG in the liver blood pool is relatively stable, it is 
often used as a reference standard in some studies [20]. Nado 
et al. [21] did some researches on the correlation between 
tumor SUVmax, tumor SUL, and pathological Fuhrman 
nuclear grade, and they found that the AUC of tumor SUL 
was greater than that of tumor SUVmax, but there was no 
significant difference, which is consistent with our results. 
In terms of ROI drawing, since many tumors only show low 
level uptake of 18F-FDG, it is impossible to segment the 
tumor area directly from the PET image through freehand 
or semi-automated methods such as percentage threshold 
or fuzzy local adaptive Bayesian methods. Therefore, ROIs 
were drawn on the corresponding CT image in our research, 
which covered almost the tumor tissue and the entire healthy 
liver tissue excluding the lesions and blood vessels in the 
liver. Compared with the research of Nado [21], our research 
is more objective, comprehensive and accurate in reflect-
ing the metabolism of tumor and liver tissue. The ROIs 
drawn by different observers may be different, which will 
affect the analysis of texture features. Based on the image 
characteristics of ccRCC, in order to reduce the difference 
between observers, two physicians were engaged in drawing 
the ROI in our study. When they had a disagreement, a third 
physician participated, and the three physicians negotiated 
and determined together. Current researches mainly focus 
on the relationship between CT, MR texture analysis, and 
ccRCC Fuhrman nuclear grade [22–27]. Since PET texture 
analysis can better reflect the heterogeneity of tumors than 
conventional radiomics, the emergence of PET radiom-
ics provides new possibilities for the prediction of ccRCC 
Fuhrman nuclear grade. Although the 18F-FDG PET image 
does not have high spatial resolution, it may better reflect 
the situation of the tumor than the traditional parameters or 
morphological characteristics, which quantified the uptake 
distribution within the tumor through radiomics feature, and 
this has been verified in many tumors [28–30]. At present, 
there are few articles on studying the PET radiomics of kid-
ney cancer. Wang et al. [31] found that PET texture param-
eters can predict the overall survival of patients with renal 
lymphoma or adrenal lymphoma. ZHU et al. [32] used PET 
texture analysis method to distinguish renal cell carcinoma 
and renal lymphoma. They created a new variable through 

binary logistic regression analysis of various parameters of 
HISTO, SHAPE, PARAMS, GLCM, GLRLM, NGLDM, 
and GLZLM, and determined the AUC, cutoff value, sen-
sitivity, and specificity of this new variable. However, this 
study cannot eliminate the collinearity between various indi-
cators. Our research selected the single variable with the 
strongest diagnostic ability and distinguishing grading abil-
ity among texture indicators, and screened the statistically 
significant parameters for predicting grading by stepwise 
regression, which can eliminate the collinearity between 
various parameters and avoid overfitting of the regression 
equation.

Our research also has certain limitations. The main limi-
tation is the relatively small sample size. On the one hand, 
fewer patients come to our center due to the limited value 
of 18F-FDG PET/CT in the qualitative diagnosis of renal 
tumors. Most of the confirmed patients come to check for 
metastasis or recurrence, while they have lost the opportu-
nity for surgery. On the other hand, PET radiomics features 
are very sensitive to changes in acquisition methods, image 
reconstruction algorithms, number of iterations or subsets, 
and acquisition time after injection [33–35], which largely 
limits the development of multi-center studies. Although 
there are currently some methods to eliminate the influence 
of multiple sites and different scanners on texture features 
[36, 37], such as using conditional generative adversarial 
networks (cGANs) or ComBat, they are still in the research 
stage and there is no authoritative standardized guideline. 
Therefore, the sample size of patients who meet the research 
conditions is small. With the popularization of PET radiom-
ics, it is necessary to conduct further research and verifica-
tion on larger samples in the future to confirm our findings.

Conclusion

Although this study has some shortcomings, it can still be 
proved that 18F-FDG PET/CT radiomic parameters have 
a significant positive effect on the pathological Fuhrman 
nuclear grade of ccRCC, and will have a greater effect in 
improving the diagnosis and treatment of renal cancer. At 
the same time, the tumor SUL is also a promising method 
because of its simple operation and high ability to predict 
the Fuhrman nuclear grade of ccRCC pathology.
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