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Background
Prostate cancer (PCa) is the second most frequent malignancy 
in men and the sixth greatest cause of death from cancer 
worldwide.1 According to GLOBOCAN 2018, 1 276 106 new 
cases of prostate cancer were recorded globally in 2018, with a 
greater frequency in industrialized nations, resulting in 358 989 
fatalities. GLOBOCAN (2018) also reported that by 2024, 
approximately 20 million males would have PCa.1 This poses a 
serious concern and considered a chronic illness that needs a 
rapid pharmacological solution.2

According to research, prostate cancer begins as an andro-
gen-dependent disease that relies on the androgen receptor 
(AR) for growth and progression,3 thus, through the use of AR 
antagonists or combined androgen blockade therapy, AR has 
become a potential and appealing target for PCa therapy over 
the years.4,5 Several major mutation processes in AR have been 
discovered within the last 2 decades. According to laboratory 
observations, AR mutations have changed the growth-inhibi-
tory impact of anti-androgens into a growth-promoting effect 
in the castration-resistant type.6 Inhibiting the synthetic path-
way and the participating enzymes of androgen synthesis and 
developing novel androgen receptor antagonists are 2 popular 
methods of disrupting the signaling pathway that propagates 
prostate cancer. However, the latter has been poorly exploited.7

The use of phytomedicine has been popular amongst the 
general population in regions worldwide. This represents rem-
edies from plant secondary metabolites, which possess signifi-
cant pharmacological effects. The anti-cancer potential of Vitis 
vinifera targeting the Androgen receptor was evaluated in this 
study using computational approaches employing molecular 
docking, binding energy calculation, ADMET study, phar-
macophore modeling, and molecular dynamics simulation, 
respectively. The secondary metabolites with specific potential 
inhibitory activity against prostate cancer propagation were 
reported. V. vinifera has been investigated for its anti-cancer 
potential for a long time, and different studies have reported its 
anti-cancer potential.8,9

Methods
Virtual Screening and Docking Platform

Using Maestro 11.1,10 in silico screening was performed to pre-
dict compounds with the strongest inhibitory potential, using 
an online generated library of 84 compounds (Supplemental 
Material) that have been characterized with V. vinifera and 
docked them to the active region of AR.

The docking of the molecules was carried out following 
standard procedures.
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Ligand Library and Target Generation and 
Preparation

Secondary metabolites recovered from V. vinifera were retrieved 
in Standard Format (SDF) from the Pubchem web database.11 
The mined structures were transformed into a three-dimen-
sional structure using the ligprep tool12 by ionizing at pH 
(7.2 ± 0.2) and eliminating salt with Epik.13,14 The OPLS3 
force field15 was employed for ionization and tautomeric state 
formation. The X-ray crystalline structure of AR ligand bind-
ing domain coupled with an inhibitor (PDB ID: 2AXA)16 was 
downloaded from Protein Data Bank.17 The protein was pre-
pared using the Protein preparation wizard software of Maestro, 
Schrodinger Suite. The protein was modified by optimizing 
the H-bond assignment and minimizing it with the OPLS3e 
force field.

Receptor Grid Generation

The receptor grid displays the receptor region where the ligand 
and protein combine. The designed protein grid on the bind-
ing domain was created using the Receptor Grid Generation 
tool (Glide Grid). The binding site was discovered by select-
ing the co-crystallized ligand at the active site of 2AXA. A 
cubic grid box containing all amino acid residues at the active 
site was automatically created using the coordinates X =  −0.360, 
Y = 14.401, and Z = 47.310, respectively.

Docking

Docking was accomplished using the Glide tool on maestro 
11.1 (Schrödinger Release 2017).18 The derived crystal struc-
ture of AR was used to screen the synthesized compounds vir-
tually to determine compounds with the lowest docking score 
using Standard Precision (SP) and Extra Precision (XP) dock-
ing algorithms. The docking research was conducted with the 
protein considered a rigid body and the rotatable bonds of the 
ligand set to be free. The co-crystallized ligand with the target 
(Supplemental Material) and bicalutamide an androgen recep-
tor inhibitor was also docked using the same procedures to 
serve as the standard for a comparative study.

ADMET/Tox Screening

The swissADME (http://www.swissadme.ch) and Pro-Tox II 
online servers (https://tox-new.charite.de/protoII) online 
servers were used to determine the lead compounds’ pharma-
cokinetics, drug-likeness, and toxicity.

Pharmacophore Modeling

The receptor-ligand complexes of the lead compounds were 
investigated, and a hypothesis (E-pharmacophore) was created 
using the phase interface of the Schrodinger suite to illustrate 
the major properties that make significant contributions to the 

lead ligands’ characteristic binding to the active sites of the tar-
get proteins.

Binding Energy Calculations

For the relative binding energy calculations, the one-average 
molecular mechanics generalized Born surface area (MM/
GBSA)19,20 methods developed in the MOLAICAL code21 
were employed, in which the ligand (L) combines with the pro-
tein receptor (R) to generate the complex (RL).

∆ ∆ ∆ ∆G G G Gbind RL R L= − −

Which can be expressed by the contribution of various 
interactions,

∆ ∆ ∆ ∆ ∆ ∆G H T S E G T Sbind MM Sol= − = + −

Where the changes in the gas phase molecular mechanics 
∆EMM( ) , solvation Gibbs energy ∆GSol( ) , and conforma-

tional entropy −( )T S∆  are determined as follows: ∆EMM is the 
overall sum of the changes in the electrostatic energies ∆Eele, 
the van der Waals energies ∆EvdW, and the internal energies 
∆Eint(bonded interactions); ∆Gsol is the sum of both the polar 
solvation (calculated using the generalized Born model) and 
the nonpolar solvation (computed using the solvent-accessible 
surface area) and −T S∆ is determined using the normal mode 
analysis. Prime rotamer search techniques were used with the 
OPLS3 force field and the VSGB solvent model to accomplish 
this task.

Molecular Dynamics (MD) Simulations

The NAMD 2.13 package22,23 and the CHARMM3624 force 
field were used for all simulations. The TIP3P explicit solva-
tion approach was utilized, and the periodic boundary condi-
tions had dimensions of 75.33, 96.17, and 87.57 (x, y, z in Å). 
The system was then neutralized with 3 sodium (Na+) ions. 
Minimization, annealing, equilibration, and manufacturing 
were part of the MD protocols. In the minimization and 
annealing simulations, the protein backbone atoms were con-
fined, while the Ca atoms of the protein were impeded in the 
1 ns equilibration simulation. Also, no atoms were constrained 
in the 100 ns MD manufacturing simulation. The isothermal–
isobaric (NPT) ensemble and a 2 ns simulation integration 
time were used for all MD simulations. During the 100 ns of 
MD generation, the pressure was held at 1 atm by employing 
the Nose’–Hoover Langevin piston barostat25,26 with a 
Langevin piston decay of 0.2 ps and a period of 0.4 ps. The 
Langevin thermostat27 was used to regulate the temperature to 
298.15 K. Short-range nonbonded interactions with a pair list 
distance of 12 Å were given a distance cutoff of 10.0 Å.

In contrast, Lennard Jones interactions were trimmed 
smoothly at 8.0 Å. The particle-mesh Ewald (PME) method28,29 
was employed to treat long-range electrostatic interactions, 

http://www.swissadme.ch
https://tox-new.charite.de/protoII
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with a grid spacing of 1.0 Å utilized for all simulation cells. 
The SHAKE technique was used to limit all covalent bonds 
that involved hydrogen atoms.30

Results and Discussions
In the light of this, the phyto-compounds in V. vinifera were 
docked against the androgen receptor binding domain guided 
by the generated grid box and automated by glide script. Five 
compounds, namely cis-piceid, cis-astrigin, gallocatechin, 
phlorizin, and trans-polydatin, had docking scores of −14.565, 
−13.734, 13.350, −13.030, and 12.956 respectively (Figure 1). 
Androgen receptor signaling has a pivotal function in the 
growth and initiation of prostate cancer tumors, and androgens 
initiate the survival of prostate cancer.31 Developing an antago-
nist that suitably binds to the receptor’s ligand-binding domain 
is a proven therapeutic target in treating prostate cancer.

Interestingly, all the compounds had higher docking scores 
than the co-crystallized ligand and bicalutamide (Figure 1). 
The MM/GBSA method is a much more precise method of 
calculating the free binding energies (dG) of protein-ligand 
complexes.32 It’s one of the most promising methods for 

improving virtual screening outcomes. Just like docking scores, 
a negative dG value indicates that the complexes formed in the 
binding pocket of the target were stable.33 All lead compounds 
show a negative dG value. However, while the co-crystalized 
ligand show more binding energy than all other compounds, 
cis-piecid also show a higher binding energy than the androgen 
receptor inhibitor as shown in Figure 1.

Different forces contribute to binding a small molecular 
weight compound to protein targets. These interactions include 
hydrogen bonding, salt bridges, pi stacking, etc. The major 
interactions observed in the binding of the lead compounds to 
the Androgen receptor are hydrogen bonding and pi-stacking. 
Hydrogen bonding is one of the most vital and specific interac-
tions in biological systems and plays a major role in the recog-
nition, binding, and affinity of a ligand to the complementary 
protein target.

Cis-piceid, while interacting with the binding site of 2AXA, 
formed 5 hydrogen bonds (LEU 704, GLN 711, ASN 705, 
GLN 738, MET 742) and pi-stacking with the aromatic amino 
acid residue, namely Tryptophan (TRP 741) (Figure 2). In the 
same vein, Cis-Astrigin formed a single hydrogen bond with 
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Figure 1.  The docking scores and binding energy of the test compounds.
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GLN 711 and MET 742 but 2 with GLN 738. Similarly, 
Gallocatechin had 3 amino acid interactions with the substrate-
binding site of the receptor (GLN 711 and 2 others with ASN 
705) (Figure 2). Phlorizin and Trans-polydatin had 3 and 4 
hydrogen bonds interacting with the receptor’s binding site, and 
both formed a pi stacking interaction with TRP741. Hydrogen 
bond and pi stacking are peculiar to all interactions (Figure 2).

The receptor-based pharmacophore models of the com-
pounds showed that aromatic rings, hydrogen bond acceptors, 
and hydrogen bond donors are the fundamental properties that 
contributed to the binding of the ligands to the ligand-binding 
domain of the androgen receptor (Figure 3). In accordance with 
the predictive model, potential receptor antagonists require 
these peculiar physicochemical properties to enable bind effec-
tively to the ligand-binding domain.

Some physicochemical properties of the test compounds, 
including molar refractivity, number of hydrogen bond accep-
tors, number of hydrogen bond donors, and topological surface 
area, are presented (Table 1). The number of hydrogen bond 
donors and acceptors present in a compound is one of the 
physicochemical properties that contribute substantially to the 
accurate prediction of its bioavailability as a drug candidate. 
Also, it has been reported that the increase in enthalpy during 
the formation of internal hydrogen bond facilitates the move-
ment of compounds across cell membranes despite the forma-
tion being entropically unfavorable.34

As per SwissADME pharmacokinetic profiling (Table 2), 
all the test compounds are considered soluble. The Silicos-IT 
model of water solubility showed the solubility level in the 
range of −1.61 to – 1.02, phlorizin being the least soluble and 

Figure 2.  Interactions of the compounds with the ligand-binding domain of androgen receptor.
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cis-Astrigin, the most. Water solubility is significant for drug 
candidates, and poor water solubility may result in inefficient 
absorption even though the rate of permeation of the drug is 
considered high.35

The lipophilicity of the test compounds was predicted using 
the consensus log P-value, which is in the mean of 5 different 
predictive models. The lipophilicity of a compound is experi-
mentally the partition coefficient of n-octanol to water. Trans-
polydatin was predicted to be the most lipophilic with a Log P 
value of .64 and has a better chance of being absorbed than the 
other compounds. However, the gastrointestinal absorption 
rate must also be considered to accurately determine how effi-
ciently a compound is absorbed into the systemic circulation. 
Low lipid solubility levels equate to a high water solubility 
level, an integral factor for drug-likeness. However, the ability 
of a drug to reach its therapeutic target may be compromised if 
the lipophilicity is too low. Contrarily, compounds with high 
water solubility return low lipophilicity and poorly permeated 
membranes and substantially reduce the absorption mecha-
nism. Phlorizin was the least lipophilic, with a log P value of 
.06.

The drug-likeness and bioavailability profiling of the lead 
(Table 3) compounds returned a favorable bioavailability score 
of 0.55. The drug-likeness predictions using 3 rule-based fil-
ters, namely Lipinski, Ghose, and Verber filters, showed posi-
tive results. In detail, all compounds violated just one of the 
filters of the Lipinski rule of 5 and none in the Ghose filter. 

However, one violation each was recorded for Cis-Astrigin and 
Phlorizin in Verber’s rule-based filter. Computer-aided drug-
likeness prediction is essential in the preliminary stages of drug 
development and is also a cost-effective approach. It predicts 
the extent to which a small molecular weight compound is 
drug-like.

A structural orientation that aids absorbance in the gastro-
intestinal tract is an essential pharmacokinetic descriptor that 
contributes to the likelihood of a compound being an oral drug 
candidate. Based on the SWISSAdme predicted pharmacoki-
netic profile (Table 4), Cis-piceid, Gallocatechin, and trans-
polydatin have the structure architecture that gives them a high 
permeation into the systemic circulation. In addition, the lipo-
philicity of compounds also contributes substantially to this 
property. Therefore, the high GI absorption of these com-
pounds (Cis-Piceid, gallocatechin, and trans-polydatin) could 
be linked to the relatively high lipophilic property. Phlorizin 
was the least lipophilic and unsurprisingly had a low GI 
absorption.

Similarly, Cis-Astrigin was found to have the same absorp-
tion profile. Furthermore, none of the lead compounds can per-
meate the Blood-brain barrier. This is considered a suitable 
property for a drug candidate whose target site is not the brain 
primarily because permeating the brain could cause adverse 
drug reactions.

Cis-Astrigin and gallocatechin are predicted to be non-
substrate of Permeability glycoprotein while the transporter 

Figure 3.  Receptor-based pharmcophore models of the top-scoring compounds.
A = cis-Piceid, B = cis-Astrigin, C = Gallocatechin, D = Phlorizin, E = trans-Polydatin.
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Table 2.  SWISSADME Predicted Lipophilicity (Log P) and Water Solubility (Log Sw).

Compounds Molecular weight (g/mol) Consensus log P Silicos-IT LogSw Silicos-IT class

cis-Piceid 390.38 .57 −1.61 Soluble

cis-Astringin 406.38 .28 −1.02 Soluble

Gallocatechin 306.27 .52 −1.56 Soluble

Phlorizin 436.41 .06 −1.66 Soluble

trans-polydatin 390.38 .64 −1.61 Soluble

Table 3.  Drug-Likeness and Bioavailability.

Compounds Lipinski #violations Ghose #violations Veber #violations Bioavailability score

cis-Piceid 1 0 0 0.55

cis-Astringin 1 0 1 0.55

Gallocatechin 1 0 0 0.55

Phlorizin 1 0 1 0.55

trans-polydatin 1 0 0 0.55

Table 1.  Physicochemical Properties of the Top-Scoring Compounds.

Compounds Molecular 
refractivity

#H-bond 
acceptors

#H-bond 
donors

TPSA

Cis-Piceid 100 8 6 139.84

Cis-Astrigin 102.3 9 7 160.07

Gallocatechin 76.36 7 6 130.61

Phlorizin 106.15 10 7 177.14

Trans-Polydatin 100 8 6 139.84
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can act upon the rest. P-glycoprotein belongs to the family of 
ATP-binding cassette transporters, which is mainly expressed 
in organs that function in excretion and provide a barrier. The 
organs include but are not limited to the liver, kidney, and 
blood-brain barrier.36 Consequentially, P-glycoprotein sub-
strates are effluxed out of the cell before bio-accumulating up 
to a significant or therapeutic level. This leaves cis-Astrigin 
and gallocatechin with an increased probability of accumula-
tion up to significant concentration in the cell.

Interestingly, all compounds are non-substrates of the 
Cytochrome p450 isoforms analyzed. Cytochrome P450 
enzymes are phase 1 reaction specialists; inhibiting these 
enzymes may induce a drug-drug reaction and ultimately lead 
to toxic accumulation of the drug or its metabolites due to inef-
ficient processing and clearance.37 In the same vein, none of the 
compounds are predicted to have hepatotoxic and carcinogenic 
activity as per Pro-tox II (Table 5).

The lead molecule was subjected to 100 ns MD simulation 
to study its interactions at the active site of the target. Root-
mean-square deviation (RMSD), root-mean-square fluctua-
tion (RMSF), Radius of Gyration (ROG), and Hydrogen 
Bonding and ligand contact frequency with the amino acid 
residues at the binding site of the protein were evaluated 
(Figure 4)

The RMSD measures the average distance between the 
atoms of the superimposed proteins.38 The trajectory’s bounds 
of the complex RMSD over 100 ns were computed and shown 
in Figure 4A. Stability was observed in Ligand’s RMSD plot 
generated with a resolution less than 2.0 Å throughout the 
simulation. Stability is also seen throughout the simulation in 

the protein and the protein-ligand complex with a crystallo-
graphic resolution of less than 1.5 and 2.5 Å, respectively.

For the 100 ns simulation time, RMSF was used to 
track local changes along with the AR amino acid residues 
(Figure 4B). The alpha helices and beta strands of the docked 
complex oscillate between 0.8 and 1.6 Å. All simulated sys-
tems’ loop sections showed high swings of up to 2.2 Å.

The radius of gyration was also utilized in this study to esti-
mate the structure’s compaction level. The mass-weighted root 
mean square distance of a cluster of atoms from their common 
center of mass is denoted as the radius of gyration.39 Figure 4C 
shows the plot of the radius of gyration of AR for 100 ns simu-
lation time. High fluctuation in the radius of the gyration plot 
shows less compatibility and might result in less stability of the 
protein. Figure 4C indicates low fluctuation between the pro-
tein with a resolution of 17.8 and less than 18.2 Å. This signi-
fies that the protein compaction level is very tight with indicate 
stability of the protein during the simulation period.

In developing a ligand-protein complex, non-covalent 
interactions such as hydrogen bonds are crucial. Figure 4D 
shows that three hydrogen bonds were formed at the beginning 
of the simulation before dropping to 2 at around 2 ns. The 
hydrogen bonds fluctuated rapidly between 2 and 1 for about 
35 ns before they dropped and fluctuated between 0 and 1 with 
few occurrences of 2 hydrogen bonds for the rest of the simula-
tion time

It can be seen that ligand has contact with LEU 704, GLY 
708, TRP 741, MET 742, MET 745, HSD 874, and THR 877 
throughout the 100 ns simulation time, while other residues, 
which include ASN 705, LEU 707, GLN 711, GLN 738, TYR 

Table 4.  Predicted Pharmacokinetic Properties of Test Compounds.

Compounds GI absorption BBB 
permeant

Pgp 
substrate

CYP1A2 
inhibitor

CYP2C19 
inhibitor

CYP2C9 
inhibitor

CYP2D6 
inhibitor

CYP3A4 
inhibitor

cis-Piceid High No Yes No No No No No

cis-Astringin Low No No No No No No No

Gallocatechin High No No No No No No No

Phlorizin Low No Yes No No No No No

trans-polydatin High No Yes No No No No No

Table 5.  Pro-tox II Toxicity Prediction.

Compounds LD 50 (mg/kg) Toxicity class Hepatotoxicity Carcinogenicity

cis-Piceid 1380 IV – –

cis-Astringin 1380 IV – –

Gallocatechin 10 000 VI – –

Phlorizin 3000 – –

trans-polydatin 1380 IV – –
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739, VAL 746, MET 749, PHE 764, MET 787, LEU 874, 
LEU 880, MET 895, ILE 898, ILE 899, and VAL 903 show 
contact frequencies ranging from 20% - 90% for the 100 ns 
simulation time as shown in Figure 4E.

Conclusions
This study features a computational approach to study the 
inhibitory potentials of V. vinifera against AR. It was discov-
ered that 5 compounds: cis-piceid, cis-astrigin, gallocatechin, 
phlorizin, and trans-polydatin, could be potential inhibitors of 

AR as they possess better docking scores and ADMET proper-
ties when compared to a standard compound, leaving cis-piceid 
as the best-predicted inhibitor.

The best compound was subjected to MD simulation, and 
good stability and interaction with the amino acid residues at 
the active site of the target were observed.

This study suggests that V.vinifera might be a good plant 
source for drug molecules that can treat prostate cancer by 
inhibiting the Androgen receptor. However, further validations 
using in-vivo and in-vitro analysis are recommended.

Figure 4.  (continued)
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Figure 4.  MD simulation plot for cis-piceid/AR complex for 100 ns. (a) cis-piceid/AR complex RMSD plot. (b) cis-piceid/AR complex RMSF plot.  

(c) cis-piceid/AR complex radius of gyration plot. (d) cis-piceid/AR complex Contact frequency plot. (e) cis-piceid contact frequency with the amino acid 

residues at the active site of AR.
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