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Abstract: As genomes become more and more available, gene function prediction presents itself as
one of the major hurdles in our quest to extract meaningful information on the biological processes
genes participate in. In order to facilitate gene function prediction, we show how our user-friendly
pipeline, the Large-Scale Transcriptomic Analysis Pipeline in Cloud (LSTrAP-Cloud), can be useful
in helping biologists make a shortlist of genes involved in a biological process that they might be
interested in, by using a single gene of interest as bait. The LSTrAP-Cloud is based on Google
Colaboratory, and provides user-friendly tools that process quality-control RNA sequencing data
streamed from the European Nucleotide Archive. The LSTRAP-Cloud outputs a gene coexpression
network that can be used to identify functionally related genes for any organism with a sequenced
genome and publicly available RNA sequencing data. Here, we used the biosynthesis pathway of
Nicotiana tabacum as a case study to demonstrate how enzymes, transporters, and transcription factors
involved in the synthesis, transport, and regulation of nicotine can be identified using our pipeline.
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1. Introduction

Genome sequencing and assembly are becoming more accessible in terms of cost and computational
resources required due to the advances in technology and algorithms [1]. However, elucidating gene
function is necessary to extract meaningful knowledge from genomes. Despite extensive efforts over
the decades, only 12% of genes have been characterised in the most studied model plant Arabidopsis
thaliana [2]. This is because gene characterization is a time- and labor-intensive process hindered
by various obstacles such as the lethality of mutants involving essential genes, or conversely, no
observable mutant phenotype due to functional redundancy caused by large gene families [3–7].
Evidently, unguided experimental characterization of all genes is not feasible and, consequently,
computational gene function prediction studies are conducted to meet this challenge (reviewed in
Rhee and Mutwil [3]). To this end, newly sequenced genomes are mostly annotated using sequence
similarity approaches, which annotate novel genes based on the sequence similarity to characterized
genes. While sequence similarity analysis gives a quick overview of gene functions in a new genome,
it has its limitations as genes can (i) have multiple functions, (ii) sub- or neofunctionalise via gene
duplications, or (iii) have no sequence similarity to characterized genes. Most importantly, sequence
similarity approaches often cannot reveal which genes work together in a novel biological process, for
example, a specialized metabolic pathway. Clearly, classical approaches to gene function prediction
are powerful but require other methods to complement them [3].

In order to associate genes to pathways, one has to consider the expression of genes at the level
of organs, tissues, and even cells. With the increasing availability of RNA sequencing (RNA-seq)
data, it is now possible to study genes from the perspective of their expression [3,8]. Genes that
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have similar expression profiles across different organs, developmental stages, time of the day, and
biotic and abiotic stress conditions tend to be functionally related [3,6,8–11]. These transcriptionally
coordinated (coexpressed) genes can be revealed by analyzing transcriptomic data stemming from
microarrays or RNA-seq data. In turn, coexpressed genes can be represented as nodes connected by
edges (links) in coexpression networks, which can be mined for groups of highly connected genes
(modules, clusters) that are likely to be involved in the same biological process. Coexpression networks
have become a popular tool to elucidate the function of genes, their related biological processes,
and gene regulatory landscapes. Genes involved in a wide range of processes, including cellular
processes [12–14], transcriptional regulation [15], physiological responses to the environment and
stress [9,16], and plant viability and the biosynthesis of metabolites [17–21] have been elucidated using
coexpression analyses.

The amount of gene expression data has grown tremendously over the decade, with a more than
1000-fold increase in nucleotide bases on NCBI Sequence Read Archive (SRA), from 11TB to 12 PB at
the start of 2010 and 2020, respectively. Analysing this data would have been unthinkable a decade ago,
due to limitations in software used to estimate gene expression from RNA-seq data. However, drastic
improvements in software used to estimate gene expression from RNA-seq data, such as kallisto [22]
and salmon [23], have made this task possible within a reasonable time on a typical desktop or even
a Raspberry Pi-like miniature computer [24]. Furthermore, multiple user-friendly pipelines are an
invaluable resource both for experts and nonbioinformaticians, to which pipelines such as UTAP [25],
LSTrAP-Lite [24], and LSTrAP [26] are made publicly available. However, all these resources typically
require complex installation or a linux environment.

The introduction of cloud computing has provided alternatives to how data can be managed,
stored, and processed. Google colaboratory (colab), a Jupyter notebook environment, was launched in
2017, and it allows users to write and execute python code on Google’s cloud servers through their
browser (https://colab.research.google.com/). The use of the colab platform for RNA-seq analysis was
demonstrated by Melsted et al., 2019 [27], who implemented the workflow of preprocessing single
cell transcriptomic data. The choice of colab greatly improves user friendliness with the clean layout
of jupyter notebooks, a graphical interface that is more friendly for biologists than the typical linux
terminal, and problems associated with installation in different local environments. Collaboration
between scientists is also easily established as notebooks can be saved to Google Drive and Github and
deployed on a new computer within a minute. Most importantly, colab provides the computing power
to perform RNA-seq analysis for free, allowing users to run computationally heavy calculations using
any computer, tablet or cell phone.

These advances and resources have prompted us to showcase the use of colab as a seamless and
user-friendly interface for large-scale transcriptomic analysis. We illustrate this by using RNA-seq
data of the model plant Nicotiana tabacum to dissect the biosynthesis of nicotine by coexpression
network analysis. The presented pipeline, the Large-Scale Transcriptome Analysis Pipeline in Cloud
(LSTrAP-Cloud), is available from https://github.com/tqiaowen/LSTrAP-Cloud, and can be easily
applied to other pathways and organisms.

2. Materials and Methods

2.1. Streaming RNA Sequencing Data

The pipeline (Figure 1) was implemented on Google Colaboratory and consists of two jupyter
notebooks that are available on https://github.com/tqiaowen/LSTrAP-Cloud. RNA sequencing
experiments (Table S1) were streamed as fastq files from the European Nucleotide Archive (ENA) [28]
using curl v7.58.0 with the parameters “-L -r 0-1,000,000,000 -m 600 –speed-limit 1,000,000 –speed-time
30”, which allows curl to retrieve the first billion bytes (953 megabytes) of the fastq file over a maximum
duration of 600 s. The streaming is also aborted if the download speed drops below 1 million bytes
per second (1 Mb/s) for 30 s. Files ending with “_1.fastq.gz” and “.fastq.gz” were downloaded for
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paired and single library layouts, respectively. The streamed data from curl was piped to kallisto quant
v0.46.0 [22] with the parameters “–single -l 200 -s 20 -t 2” (single end experiment with read length of
200 bp, standard deviation of 20 and to run with two threads) and mapped against the kallisto index of
coding sequences (CDS) of N. tabacum [29]. CDS Nitab-v4.5_cDNA_Edwards2017.fasta was obtained
from SolGenomics [30] and used to generate kallisto index with default parameters. A total of 1049
out of 1060 experiments were processed successfully. Seven files were not found, and four files had
unacceptable download speed among the files that were not processed successfully (Table S2).
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Figure 1. Schematic of the Large-Scale Transcriptomic Analysis Pipeline in Cloud (LSTrAP-Cloud)
pipeline used for streaming and mapping of RNA sequencing data, and for the generation of coexpression
network based on the gene of interest.

2.2. Constructing Coexpression Networks

Coexpression network of the gene of interest, Nitab4.5_0000884g0010.1, was obtained by including
a maximum of 50 other genes with a Pearson Correlation Coefficient of at least 0.7 against the
gene of interest. The coexpression network of Nitab4.5_0000884g0010.1 was visualised on colab
using Cytoscape.js v3.9.4 [31]. The shapes and colours of the genes were assigned according
to the major Mapman bin classification obtained from Mercator4 v2.0 [32] with the N. tabacum
Nitab-v4.5_cDNA_Edwards2017.fasta CDS (Table S3). The coexpression neighbourhood of the gene of
interest is also displayed at the end of the colab notebook.

To annotate and summarise the coexpression network of Nitab4.5_0000884g0010.1, the JSON file
of the network was downloaded from colab and modified in Cytoscape desktop v3.7.1 (Table S4).
For brevity, only transporters, transcription factors and genes involved in nicotine biosynthesis are
shown, but the network containing all 50 genes is available (Figure S1).

2.3. Identification of Genes Involved in Nicotine Biosynthesis

Nucleotide sequences of genes that reported to be involved in nicotine biosynthesis and transport
(ODC1: AB031066; ODC2: AF233849; PMT: D28506; MPO1: AB289456; MPO2: AB289457; AO:



Genes 2020, 11, 428 4 of 10

XM_016633697, XR_001648132; QS: XM_016642986, XM_016638757; QPT1: AJ748262; QPT2: AJ748263;
A622: D28505; BBLa: AB604219; BBLb: AM851017; BBLc: AB604220; BBLd: AB604221; MATE1:
AB286963; MATE2: AB286962 and NUP1: GU174267) [33] were retrieved from NCBI. The gene IDs
of these genes in the tobacco genome version Nitab-v4.5_cDNA_Edwards2017.fasta were identified
through blast v2.6.0+ against the N. tabacum CDS. The function of the genes found in the network was
further annotated using results from blast and Mercator (Tables S3 and S5).

2.4. Relative Expression of Nicotine Biosynthesis Genes in 5 Major Organs

To obtain the relative expression of the genes shown in the coexpression network of
Nitab4.5_0000884g0010.1, annotation of experiments was retrieved from NCBI SRA run selector
(Table S1). Only wild-type and untreated experiments indicating leaf, flower, root, shoot and stem were
selected for the analysis (Table S6). The median expression value of a gene in an organ was normalised
with the highest median expression value of the gene across all organs.

3. Results

3.1. Implementation of Gene Coexpression Pipeline on Google Colaboratory

The improvement in transcript estimation algorithms has greatly reduced the amount of time
and resources required to estimate gene expression from RNA-sequencing data. Previously, we
have demonstrated with the LSTrAP-Lite pipeline that analysis of large-scale transcriptomic data
was possible on a small computer costing less than 50 USD [24]. However, user friendliness of the
LSTrAP-Lite pipeline was still limited, as it runs in the linux terminal and Advanced RISC Machine
(ARM) CPU architecture, which is not user-friendly to most biologists and not compatible with most
software, respectively.

Here, we implemented a large-scale transcriptomic analysis pipeline on Google Colaboratory, a
free cloud computing platform that allows multiple users to easily share and deploy python code in a
jupyter notebook environment. The pipeline (Figure 1), Large-Scale Transcriptome Analysis Pipeline
in Cloud (LSTrAP-Cloud), takes the CDS of the organism of interest, and streams the list of RNA-seq
experiments specified by the user from ENA. After all files have been streamed, quality statistics from
the download report are displayed on the notebook and summarised in plots. The plots allow the user
to set an appropriate cutoff for experiments to be included in downstream analyses. Lastly, the pipeline
generates and displays a coexpression network of the gene of interest, which can be downloaded as a
PNG or JSON file. All outputs from the notebook are saved in the Google Drive account of the user,
which is needed to run the notebook. We provide a user’s manual (Document S1) and SRA experiment
list (Table S1), allowing the readers to replicate this analysis.

The performance of the LSTrAP-Cloud was evaluated on the gene expression data of N. tabacum,
a commercially important crop for the production of tobacco and an important model used in plant
research. The first billion (953 megabytes) bytes of all publicly available RNA sequencing experiments
of N. tabacum were streamed from ENA and processed by kallisto. An average processing speed of 4
Mb/s was achieved (Figure 2A), and an average of 17 million reads was pseudoaligned per 1 Gb of data
(Figure 2B). Overall, 796 Gb of data were streamed in 59 h (Figure 2C), which is equivalent to 4 min per
Gb. Quality statistics revealed that most experiments had more than 107 reads processed by kallisto,
where 60–80% of the reads were pseudoaligned to the CDS (Figure 2D), and 50–70% of the CDSs had a
nonzero expression (Figure 2E). Under the assumption that most samples are of good quality, we chose
RNA-seq experiments that had at least one million reads pseudoaligned to the N. tabacum CDS, 40% of
streamed reads mapped to the CDS, and at least 40% of genes with nonzero (Figure 2E). Nine hundred
and sixty-two experiments passed these conditions and were compiled into an TPM expression matrix,
where genes were arranged in rows and experiments in columns (Table S2).
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Figure 2. Summary of tobacco experiments streamed and processed by LSTrAP-Cloud. (A) The
violin plot shows the speed of simultaneous streaming and processing of RNA-seq files by kallisto.
(B) Amount of reads processed per gigabyte streamed. (C) Cumulative size (y-axis) of files streamed
over time (x-axis). (D) The scatterplot shows the percentage of reads pseudoaligned to the coding
sequences (CDS) (x-axis) against the total number of streamed reads (y-axis) for each experiment, which
are represented as dots on the plot. (E) The percentage of reads pseudoaligned to the CDS (x-axis)
versus the percentage of genes with nonzero Transcripts Per Kilobase Million (TPM) values (y-axis) for
each experiment, which are represented as dots on the plot. Red lines indicate cutoffs that were used to
the select experiments for downstream analyses.

3.2. Investigating the Nicotine Biosynthesis Coexpression Network

Nicotine is a toxic alkaloid produced by plants in the Solanaceae family to deter herbivores and a
potent addictive substance. The synthesis of nicotine occurs in the roots and involves two precursors,
a pyrrolidine (N-methyl-∆1-pyrrolinium cation) and a pyridine (nicotinic acid) ring derived by a series
of reactions from ornithine and aspartate, respectively ([34], Figure 3A). The rings are then combined
by the enzymes A622 (isoflavone reductase) and berberine bridge enzyme-like (BBL) to form nicotine.
After synthesis in the roots, nicotine is sequestered out of the roots by multidrug and toxic compound
extrusion (MATE) family transporters [35] and accumulated in organs that are highly prone to attack
by herbivores, such as leaves [36].

Coexpression networks have been shown to be useful in the identification of enzymes, transcription
factors, and probable transporters of plant metabolites [11,20,24,37]. To demonstrate that this is
also true in the case of nicotine biosynthesis, we retrieved the top 50 genes coexpressed with
A622 (Nitab4.5_0000884g0010.1) (Figure 3B). The network revealed enzymes that are known to be
involved in nicotine biosynthesis (aspartate oxidase (AO), quinolate synthase (QS), quinolinate
phosphoribosyltransferase 2 (QPT2), ornithine decarboxylase 2 (ODC2), putrescine N-methytransferase
(PMT), N-methylputrescine oxidase (MPO), and BBL) and transcription factors (APETALA 2/ethylene
responsive factor (AP2/ERF) and basic helix-loop-helix (bHLH)], which regulate nicotine biosynthesis [38].
In addition to the expected MATE2 transporters, other transporters such as organic cation transporter
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(OCT), nicotinate transporter (NiaP), Usually Multiple Amino Acids Move In and Out Transporter
(UmamiT), and purine uptake permease (PUP) are also observed. To conclude, from the coexpression
network of A622, we observed that more than half of the genes in the network (27 out of 50) are
involved in nicotine biosynthesis. The remaining genes found in this coexpression network are excellent
candidates for further functional analysis of their involvement in nicotine biosynthesis.

Genes 2020, 11, x FOR PEER REVIEW 6 of 10 

 

[38]. In addition to the expected MATE2 transporters, other transporters such as organic cation 
transporter (OCT), nicotinate transporter (NiaP), Usually Multiple Amino Acids Move In and Out 
Transporter (UmamiT), and purine uptake permease (PUP) are also observed. To conclude, from the 
coexpression network of A622, we observed that more than half of the genes in the network (27 out of 
50) are involved in nicotine biosynthesis. The remaining genes found in this coexpression network are 
excellent candidates for further functional analysis of their involvement in nicotine biosynthesis. 

 

Figure 3. Nicotine biosynthesis. (A) Schematic of the nicotine biosynthesis pathway. Abbreviations for 
the enzymes are ODC2: ornithine decarboxylase 2, PMT: putrescine N-methyltransferase, MPO1: N-
methylputrescine oxidase 1, BBL: berberine bridge enzyme-like proteins, AO: L-aspartate oxidase, 
QS: quinolinate synthase, QPT2: quinolinate phosphoribosyltransferase 2, A622: isoflavone-like 
oxidoreductase. (B) Coexpression network of A622 (Nitab4.5_0000884g0010.1). Abbreviations are 
AP2/ERF: APETALA 2/ethylene responsive factor, bHLH: basic helix-loop-helix, MATE2: 
multiantimicrobial extrusion family protein 2, OCT: organic cation transporter, NiaP: nicotinate 

Figure 3. Nicotine biosynthesis. (A) Schematic of the nicotine biosynthesis pathway. Abbreviations
for the enzymes are ODC2: ornithine decarboxylase 2, PMT: putrescine N-methyltransferase, MPO1:
N-methylputrescine oxidase 1, BBL: berberine bridge enzyme-like proteins, AO: L-aspartate oxidase,
QS: quinolinate synthase, QPT2: quinolinate phosphoribosyltransferase 2, A622: isoflavone-like
oxidoreductase. (B) Coexpression network of A622 (Nitab4.5_0000884g0010.1). Abbreviations
are AP2/ERF: APETALA 2/ethylene responsive factor, bHLH: basic helix-loop-helix, MATE2:
multiantimicrobial extrusion family protein 2, OCT: organic cation transporter, NiaP: nicotinate
transporter, PUP: purine uptake permease, and UmamiT: Usually Multiple Amino Acids Move In and
Out Transporters. For brevity, only homologs of genes involved in nicotine biosynthesis as described in
(A), transporters, and transcription factors are shown.
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3.3. Expression Analysis of Genes Related to Nicotine Biosynthesis in Flower, Leaf, Root, Shoot, and Stem

It is well established that the synthesis of nicotine occurs in the root, and numerous analyses
have shown that secondary metabolism is under strong transcriptional control [7,24,39,40]. Hence, the
expression of nicotine biosynthesis genes should be either specific or highly expressed in the roots.
To confirm this, we calculated the median gene expression value of the genes found in the coexpression
network (Figure 3) in roots, leaves, flowers, shoots, and stems (Figure 4). As expected, all enzymes
directly involved in nicotine biosynthesis are most expressed in roots and lowly expressed in other
organs. Thus, we can conclude that the genes identified in the network of A622 have root specific
expression in N. tabacum and are very likely to be involved in nicotine biosynthesis.
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for each gene were scaled by dividing each row by the maximum value found in the row.

4. Discussion

As we sit on an expanding trove of data today, there is an immense amount of knowledge to
be uncovered with the improvement in gene annotation and characterization. Classical genomic
approaches have allowed us to rapidly annotate genomes in silico based on sequence similarity to
existing sequences. This approach has its limitations but can be greatly improved when the spatial and
temporal expression of genes is taken into account.

In this study, we leveraged on the benefits of cloud computing and the user-friendliness of
the Jupyter notebooks to implement a large-scale transcriptomic analysis pipeline, LSTrAP-Cloud
(Figure 1). Using N. tabacum as an example (Figure 2), we showed that coexpression networks not only
identified the enzymes involved in the metabolism of nicotine but also regulators and transporters that
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are found up- and down-stream of nicotine biosynthesis (Figures 3 and 4). The example of nicotine
biosynthesis demonstrates that coexpression networks analysis is a valuable addition to sequence
similarity-based approaches, as it can infer modules of functionally related genes.

While the field of bioinformatics is advancing rapidly, it is important that biologists are also
empowered with the tools and predictions available to bioinformaticians as this can greatly shorten
the amount of time required for gene characterization through the identification of potential targets.
The future of gene function prediction, however, will require a new generation of biologist equipped to
tackle both wet and dry lab as sequencing data become available at a faster and larger rate [41].

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/4/428/s1,
Figure S1: Complete coexpression network of A622 (Nitab4.5_0000884g0010.1), Table S1: SRA run table from NCBI
SRA, Table S2: Download report of N. tabacum RNA-seq experiments streamed using LSTrAP-Cloud, Table S3:
Annotation of N. tabacum CDS by Mercator, Table S4: Neighbourhood of A622, Table S5: BLAST output of genes
involved in nicotine biosynthesis, Table S6: Summary of RNA-seq experiments included in the calculation of
relative gene expression, Document S1: User manual for LSTrAP-Cloud.
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