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Abstract

Background: Immunomodulatory agents targeting the CD11d/CD18 integrin are in development for the treatment of several patho-
physiologies including neurotrauma, sepsis, and atherosclerosis. Murine anti-human CD11d therapeutic antibodies have successfully
improved neurological and behavioral recovery in rodent neurotrauma models. Here, we present the progression of CD11d-targeted
agents with the development of humanized anti-CD11d monoclonal antibodies.
Methods: Primary human leukocytes and the THP-1 monocytic cell line were used to determine the binding of the CD11d antibodies,
determine binding affinities, and assess outside-in signaling induced by CD11d antibody binding. In addition, a rat model of spinal
cord injury was employed to demonstrate that the humanized monoclonal antibodies retained their therapeutic function in vivo. These
determinations were made using a combination of flow cytometry, western blotting, immunohistochemistry, biochemical assays, and
a locomotor behavioral assessment.
Results: Flow cytometric analysis demonstrated that the humanized anti-CD11d clones bind both human monocytes and neutrophils.
Using a THP-1 model, the humanized anti-CD11d-2 clone was then determined to bind both the active and inactive CD11d/CD18
conformations without inducing inflammatory cell signaling. Finally, an investigation using anti-CD11d-2 as a detection tool uncovered
a mismatch between total and surface-level CD11d and CD18 expression that was not altered by CK2 inhibition.
Conclusions: By developing humanized anti-CD11d monoclonal antibodies, new tools are now available to study CD11d biology and
potentially treat inflammation arising from acute neurotrauma via CD11d targeting.

Statement of Significance:
We describe the first humanized monoclonal antibodies to the β2 integrin CD11d alpha chain. These antibodies bind to CD11d on
primary human leukocytes and the anti-CD11d-2 clone did not induce outside-in signaling. The screened humanized anti-CD11d
clones recapitulate the ability of the mouse parental anti-CD11d to improve neurological outcomes in a rat acute neurotrauma model.
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Introduction
Integrins are adhesion molecules involved in the recruitment
and retention of leukocytes during an inflammatory response.
CD11d/CD18 is a β2 integrin that promotes extravasation of leuko-
cytes via binding to human vascular adhesion molecule 1 (VCAM-
1) and intracellular adhesion molecule 3 (ICAM-3) while also
contributing to tissue migration via binding to an array of extra-
cellular matrix ligands [1]. Developing novel immunomodulatory
therapeutics against CD11d/CD18 is a subject of current interest.
Our laboratory has pursued anti-CD11d therapeutic antibodies
[2–5], while other laboratories have pursued small peptide
inhibitors [6]. The common goal of CD11d-targeted therapeutic
agents is to disrupt the accumulation of pro-inflammatory
leukocytes within target tissues [1].

A perceived benefit of CD11d-targeted therapies is the low and
limited expression of CD11d/CD18 that is subsequently increased

during select pathophysiologies [1]. Damaging accumulation
of neutrophils and monocytes is linked to the upregulation
of CD11d/CD18 on these leukocytes during the acute stages
of neurotrauma [7] and respiratory distress syndrome [8, 9].
Chronic accumulation of pro-inflammatory macrophages has
been associated with increased levels of CD11d in atherosclerosis
[10], obesity [11], and nonalcoholic steatohepatitis [12, 13]. Past
work has detailed the genetic regulation of the CD11d gene
[14–17], but less is known regarding the post-transcriptional
regulation and subsequent cell surface expression of the CD11d
protein [18].

Historically, integrin-targeted immunotherapies have been
limited by their broad impacts that lead to serious side effects.
Efalizumab was an early integrin-targeted immunotherapy that
targeted the CD11a/CD18 β2 integrin expressed on all leukocytes.
Blockage of CD11a/CD18 with efalizumab resulted in broad
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immunosuppression and reactivation of the john cunning-
ham (JC) virus [19]. Modern approaches to integrin-targeted
immunotherapies have addressed the broad immunosuppression
problem by targeting integrins with restricted expression profiles.
Vedolizumab was designed against the α4β7 integrin, which
is primarily restricted to leukocyte recruitment within the
gastrointestinal tract [20, 21]. Clinical use of vedolizumab resulted
in effective treatment of inflammatory bowel disease (Crohn’s
and ulcerative colitis) without prohibitive adverse events [22,
23]. The regulated expression profile of CD11d likewise provides
an avenue to treat pathology with minimal systemic effects.
Understanding the potential side effects of CD11d-targeted
agents, however, cannot be determined by CD11d-expression
profiles alone. Elucidating whether a CD11d-targeted agent binds
the active and/or inactive conformations of CD11d/CD18 and
whether it may induce or inhibit inflammatory cell signaling are
important considerations.

Previously, our laboratory has demonstrated that a mouse anti-
human CD11d clone (217 L) improves behavioral and neurolog-
ical recovery within rodent neurotrauma models [2–5] as well
as demonstrating the mechanistic consequences of anti-CD11
treatment that contributed to the neurological benefits obtained
[24–33]. In the following report, we showcase an array of human-
ized anti-CD11d clones that can be used as a new tool in study-
ing CD11d/CD18 mechanics. Among the humanized anti-CD11d
clones, we identified a potential therapeutic clone (anti-CD11d-
2) and characterized its binding dynamics. Finally, we uncovered
an unexpected phenomenon of β2 integrin downregulation with
a maintained mismatch between total vs surface level CD11d
expression following the blockade of CK2 phosphorylation in PMA
differentiated THP-1 cells.

Materials and methods
The studies reported were conducted in a manner consistent
with animal research: reporting of in vivo experiments (ARRIVE)
guidelines.

CD11d humanized monoclonal antibody
derivation
The original 217 L mouse anti-human CD11d clone, provided by Eli
Lily & Co [34], was used as the basis for creating humanized mon-
oclonal anti-CD11d antibodies. Complementarity-determining
regions (CDRs) of the original 217 L clone were isolated, and four
subsequent CDR variants were produced. The five resulting CDR
sequences were incorporated into a human IgG4 framework to
create the final clones (United States Patent No. US-11873340-B2
January 16, 2024) [35]. Specificity was verified by flow cytometry
using HEK293 cells transfected with expression vectors expressing
human CD11d and CD18 in the absence of any other β2 integrin.
The purified humanized CD11d monoclonal antibodies (anti-
CD11d-1, anti-CD11d-2, anti-CD11d-3, anti-CD11d-4, anti-CD11d-
5) were initially provided by Eli Lily & Co. Subsequently, the
humanized CD11d monoclonal antibodies were produced in
chinese hamster ovary (CHO) cells and then purified from
culture supernatants under contract with Biologics at the Human
Health Therapeutics Research Center, National Research Council
Canada, Montreal, Canada. Endotoxin levels were determined to
be <0.1 EU/mg.

Human leukocyte collection
Acquiring human blood samples for this study was approved
(Project ID: 7332) by the University of Western Ontario Health
Science Ethics Review Board (HSERB). After obtaining informed

consent, human peripheral blood was collected via venipuncture
in heparin vacutainer tubes (BD, San Jose, CA, USA) as approved
by the HSERB and in accordance with an approved Biosafety-
Biohazard Protocol (BIO-RRI-0021).

Cell culture
THP-1 (ATCC TIB-202) and THP-1 NF-kB-Luc2 (ATCC TIB-202-
NFkB-Luc2) and Jurkat T cells were all obtained from American
Tissue Culture Collection (ATCC, Cedarlane). All cells were
cultured with complete Roswell park memorial institute (RPMI)
media supplemented with 10% FBS, 1% L-glutamine, 100 U/ml
penicillin, 100 μg/ml streptomycin, 1 mM sodium pyruvate, 10 nM
(4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid) (HEPES),
and 50 μM 2-mercaptoethanol. Additionally, 1 μg/ml of puromycin
was added to the complete RPMI selection media for the THP-1
NF-kB-Luc2 cell line. All tissue culture media, plastic ware, and
supplements were acquired from ThermoFisher Scientific. Jurkat
T cell cultures were grown in standing T75 flasks at 37◦C and 5%
CO2 in a humidified incubator, and cell density did not exceed
1 × 106 cells/ml. THP-1 cells were seeded at 1 × 106 cells/well
into 6-well plates, 2 × 105 cells/well into 12-well plates, or 6 × 104

cells/well into 96-well plates and differentiated with 100 nM of
phorbol myristic acetate (PMA; Millipore Sigma), for up to 72 h.

Flow cytometry
Rat and human primary whole blood leukocytes were stained
for flow cytometry as previously described [36]. THP-1 cells were
either differentiated or cultured as previously described. A 15-min
incubation at 37◦C and 5% CO2 with 1 ml Versene (ThermoFisher
Scientific) was used to collect adherent cells following differen-
tiation. To block promiscuous antibody binding, THP-1 cells were
resuspended in 200 μl Hank’s balanced salt solution (HBSS) + 0.1%
bovine serum albumin (BSA) plus 5 μl normal goat serum (Jackson
ImmunoResearch) and 5 μl AB human serum (ThermoFisher
Scientific) on ice for 20 min. Cells were then surface-stained in
fluorescent activated cell sorting (FACS) tubes (Corning) with a
combination of LIVE/DEAD Fixable Aqua Dead Cell Stain Kit (Ther-
moFisher Scientific), anti-CD18 (TS1/18) fluorescein (FITC) (BioLe-
gend), anti-CD11d (anti-CD11d-2) Alexa 647, anti-IgG4 Alexa 647
(Eli Lily & Co), anti-CD11a (TS2/4) PerCP (BioLegend), anti-CD11b
(ICRF44) Violet 421 (BioLegend), and/or anti-CD11c (3.9) PE-Cy7
(BioLegend).

Intracellular staining was performed in a 96-well U-bottom
plate (Corning) after performing fixable vital dye and/or cell sur-
face staining. Cells were washed in staining buffer (HBSS + 0.1%
BSA) and then fixed and permeabilized using the manufacturer’s
instructions (Foxp3/Transcription Factor Staining Buffer Set, eBio-
science, ThermoFisher Scientific). The cells were then spun down,
and each well was resuspended in a 50 μl permeabilization buffer
containing BioLegend TruStain human FcX block and incubated
for 5–10 min at room temperature. Without washing, cells were
stained with all intracellular antibodies or isotype control anti-
bodies for 20 min at room temperature. This was followed by two
washes in 200 μl of permeabilization buffer and two washes in
200 μl of HBSS + 0.1% BSA. Cells were then resuspended in HBSS +
0.1% BSA followed by an appropriate amount of 4% paraformalde-
hyde (PFA) (BioShop) to allow for a final concentration of 1% PFA
in each well.

For saturated antibody binding curves to determine antibody
affinity, blocking and surface staining occurred live in HBSS, HBSS
+ 1 mM ethylenediaminetetraacetic acid (EDTA), or HBSS + 1 mM
Mn2+, and flow cytometry was performed on cells that were
subsequently fixed.
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For CK2 inhibition, the SGC-CK2–1 inhibitor was a gift from Dr.
David Litchfield (Western University, Canada) and can be found
commercially at MedKoo Biosciences. THP-1 cells were treated
with or without 5 μM of SGC-CK2-1 in the presence or absence
of 100 nM PMA for 48 h. Cells were fixed and stained as described
above. Flow cytometry graphs of a 48-h dimethyl sulfoxide (DMSO)
control treatment can be found in Supplemental Fig. 1B.

A BD LSR II flow cytometer (BD Biosciences) was used for
data acquisition with at least 50 000 total cells recorded per
experimental condition. Data were analyzed on FlowJo, version
10.8 (BD Life Sciences) [37]. Gating strategies can be found in
Supplemental Fig. 2.

Experimental spinal cord injury and anti-CD11d
anti-inflammatory treatment
All animal experiments were approved by the University of West-
ern Ontario’s Animal Care Committee (AUP no. 2010-237) and con-
ducted in accordance with the Canadian Council of Animal Care
guidelines, the University Animal Care Committee’s Standard
Operating Procedures, and the University’s Biosafety-Biohazard
Protocol (BIO-RRI-0021). Additionally, all animal experiments were
conducted in accordance with the Standards for Humane Care
and Use of Laboratory Animals as approved by the Office of Labo-
ratory Animal Welfare, Department of Health & Human Services,
U.S.A. (Protocol Assurance Identification #A5527-01).

Experimental spinal cord injury (SCI) was induced at the T4
spinal cord segment in female 220 g Wistar rats (Charles River).
The T4 spinal cord segment was exposed by a dorsal laminectomy
and injured, without disrupting the dura by a 60 second clip
compression using a 50 g clip as previously described [2, 38]
and randomly assigned to a treatment group. Postoperative care
was provided as described previously [38]. To measure neutrophil
infiltration into the spinal lesion using a myeloperoxidase assay,
rats were given anti-CD11d clones at 2 h post-SCI for the 24-h
assay time point, or at 2, 24, and 48 h post-SCI for the 72-h
assay time point, as previously described [25]. For rats undergoing
open-field locomotor assessment, the anti-CD11d clone was
administered intravenously via the tail vein at 2, 24, and 48 h
post-SCI. All animals were monitored twice daily using a
veterinarian-approved clinical scoring sheet that monitored the
level of alertness and activity, hydration status (water consump-
tion), percent weight loss, appearance of the surgical wound,
evidence of pain (piloerection, hunched back, discoloration
around eyes), bowel movements (presence of fecal pellets in cage),
bladder fullness, urine leakage, and appearance (cloudy, presence
of blood). Bladders were emptied twice per day by gentle manual
compression.

Basso, Beattie, and Bresnahan rat open-field
locomotor assessment
Hind limb locomotor assessment was conducted using the Basso,
Beattie, and Bresnahan (BBB) locomotor rating scale for open-field
testing, as previously described [2, 39]. Testing was done twice per
week, and scores were averaged to generate a weekly score. Scores
of left and right legs were averaged. The BBB assessment was
conducted by four individuals experienced in the BBB open-field
locomotor assessment and who were blinded to the treatment
each rat received until after the end of the 10-week assessment.

Myeloperoxidase assay
At the 24 and 72 h time points, spinal cord–injured rats were
euthanized by deep induction of anesthesia with 4% isoflu-
rane followed by exsanguination (cardiac perfusion with cold

phosphate buffered saline [PBS]). Spinal cord tissue was harvested
around the lesion, and a homogenate was prepared as previously
described [2]. A portion of the homogenates was then assayed for
myeloperoxidase activity as a surrogate marker for the presence
of neutrophils. Complete methods of the myeloperoxidase assay
were performed as previously described [25].

Immunocytochemistry
THP-1 NF-kB-Luc2 cells were seeded onto circular cover glasses
placed at the bottom of 12-well plates and differentiated with
RPMI selection media containing 100 nM of PMA for 48 h at 37◦C
and 5% CO2. RPMI selection media were removed, and cells were
washed once with HBSS + 0.1% BSA. In 300 μl of HBSS + 0.1%,
cells were blocked with 15 μl of FcX TruStain block (BioLegend)
for 20 min at 10◦C. The remainder of the staining procedure
occurred at room temperature in the dark. In 500 μl of fresh
HBSS, anti-CD11d (anti-CD11d-2) Alexa-647 (3 μg/ml) and anti-
CD18 (TS1/18) FITC (10 μg/ml) were applied for 20 min. Cells were
washed once with HBSS and fixed in 4% PFA for 20 min. Following
three washes with 1 ml of HBSS, cells were permeabilized with
0.1% Triton X in HBSS for 15 min. In 300 μl of HBSS, 1:1000
DAPI stain (Millipore Sigma) was applied for 20 min. Finally, cells
were washed three times with 1 ml of HBSS, and imaging was
performed on a Leica DMI6000 microscope (Leica Microsystems)
and an electron multiplication charged-coupled device (EM CCO)
EvOLVE camera (Teledyne Photometrics). Images were analyzed
on the FIJI software platform [40].

Western blot
THP-1 cells were differentiated or cultured in a 6-well plate as pre-
viously described in cell culture methods. Next, the culture media
were removed, and the cells were washed twice with 1 ml PBS. The
cells were incubated in 1 ml of ethylene glycol-bis(β-aminoethyl
ether)-N,N,N′,N′-tetraacetic acid (EGTA) -supplemented PBS for
15 min at 37◦C and 5% CO2, to minimize focal adhesion sig-
naling. Cells were washed twice with 1 ml PBS and then stim-
ulated in 1 ml of complete RMPI media at 37◦C and 5% CO2.
Following stimulation, cells were immediately washed in 1 ml
of ice-cold PBS and lysed with radioimmunoprecipitation assay
(radioimmunoprecipitation assay [RIPA] buffer) containing Halt
Protease and Halt Phosphatase inhibitor cocktails (ThermoFisher
Scientific). A cell scraper was used to collect cell lysate from
adherent differentiated cells, and nonadherent undifferentiated
cells were collected directly into Eppendorf tubes. Lysates were
placed on ice for 15 min and then sonicated twice for 10 s
for complete lysis. A Bradford assay determined protein concen-
trations using detergent-compatible protein assay reagents (Bio-
Rad Laboratories). The resulting supernatants were immediately
stored at −80◦C.

For gel electrophoresis, lysate samples were mixed in 2× Tris-
glycine buffer (BioLegend). Premade Tris-glycine gels (10%) (Ther-
moFisher Scientific) were loaded with 40 μl of sample or 3 μl of
BLUeye protein ladder (FroggaBio). The gels were run for 150 min
at 125 V and then transferred for 60 min at 100 V onto Immo-
bilon PVDF (Bio-Rad Laboratories). In fresh 5 ml of Tris buffered
saline (TBS) intercept blocking buffer (Li-Cor), cells were incu-
bated overnight at 4◦C with mouse anti-phosphotyrosine (PY20)
(BioLegend) and rabbit Focal Adhesion Kinase (FAK) protein (3285)
(Cell Signaling Technology). Membranes were washed three times
with 5 ml TBS + 0.1% Tween 20 (BioShop) for 5 min. In fresh 5 ml
of TBS intercept blocking buffer, secondary donkey anti-rabbit
680RD and donkey antimouse 800CW (Li-Cor) were incubated at
room temperature for 1 h. Membranes were imaged at 700 and
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800 nm using an Odyssey Fc (Li-Cor). Blots were then stripped and
reprobed overnight with rabbit anti-pTyr397 FAK (700255) (Ther-
moFisher Scientific) and mouse β-actin mouse (A2228) (Sigma
Aldrich). Data were analyzed on Image Studio Lite, version 5.2 (Li-
Cor). Raw blots can be found in Supplemental Fig. 3.

For detection of CK2 phosphorylation, undifferentiated THP-1
cells were treated with 5 μM SGC-CK2-1 inhibitor for 12, 24, or
48 h. Cell lysates were collected, and gel electrophoresis occurred
as described above. CK2 phosphorylation was detected by rab-
bit EIF2S2-pS2 [41] (gifted by Dr David Litchfield, University of
Western Ontario, London, ON, Canada) and normalized to mouse
β-actin (A2228) expression. Secondary antibodies and imaging
occurred as described above.

Bioluminescence
THP-1 NF-kB-Luc2 cells were seeded at 6 × 104 cells/well of an
opaque flat 96-well plate (Corning) in 100 μl of RMPI complete
media. Selected plates were differentiated with 100 nM PMA for
48 h, washed once with HBSS, and then rested in serum-free
RPMI complete selection media for 24 h. Next, all the media
were removed, replaced with 100 μl of RMPI complete media
containing 150 μg/ml D-luciferin (Syd Labs), and treated with
various conditions. The undifferentiated plates were immediately
treated with 150 μg/ml D-luciferin and various conditions. Plates
were incubated in a Cytation 5 imager (Agilent Technologies) at
37◦C and 5% CO2 for 24 h, and bioluminescence was read every
hour for 24 h.

CD11d structure modeling
The computational CD11d structure (AF-Q13349-F1-v4) was
downloaded from the AlphaFold Creative Commons archive
[42, 43]. PyMOL software (Molecular Graphics System, Version
3.0 Schrödinger, LLC.) was then used to visualize the predicted
CD11d tertiary structure, and the I-domain (residues 148–336) was
isolated. Finally, the adaptive poisson-boltzmann solver (APBS)
electrostatics PyMOL plugin was used to visualize the surface
distribution of electrostatic charges.

Statistical analysis
Statistical analyses were performed using GibStat or GraphPad
Prism, Version 9. All data were presented as the mean plus/mi-
nus the standard error of the mean. Statistical significance was
detected at P < .05. Biological replicates were denoted by N,
whereas technical replicates were denoted by n. One-way and two-
way ANOVAs were performed with appropriate post hoc tests for
multiple comparisons as noted in the figure legends.

Results
Creation of humanized anti-CD11d clones
Initial anti-CD11d therapeutic antibodies were obtained from
mice and tested as a treatment for acute SCI by modulating the
migration of leukocytes into the lesion area. An original murine
217 L monoclonal antibody was produced that targeted the ligand-
binding α-I domain of human CD11d. The murine 217 L clone
bound both human and rat CD11d-expressing leukocytes [34].
In rodent trials of SCI, rats treated with 217 L anti-CD11d had
significantly improved biochemical and behavioral recoveries [2].
A humanized anti-CD11d therapeutic clone (anti-CD11d-1) was
created by combining the CDR of the murine 217 L clone and
the scaffolding of a human IgG4 framework. Additionally, four

variants of the murine 217 L CDR sequence (anti-CD11d-2, anti-
CD11d-3, anti-CD11d-4, anti-CD11d-5) were produced and sub-
sequently combined with the same human IgG4 framework. In
total, five humanized IgG4 antibodies targeting human CD11d
were produced and verified for specificity [18, 35] (Fig. 1A). The
performance of the humanized anti-CD11d clones on human
blood samples was tested by flow cytometry. The anti-CD11d-2
clone bound human monocytes and neutrophils at the greatest
percentage and mean fluorescence intensity (MFI; Fig. 1B–E). The
humanized anti-CD11d clones compare well with historical data
of the original 217 L clone (mouse anti-human CD11d mAb) bind-
ing to human leukocytes as described previously by Bao et al. [7].
The anti-CD11d 1–5 clones and the IgG4 isotype control exhibited
the same minimal nonspecific binding to Jurkat T cells that do not
express CD11d (Fig. 1F) as T cells positive for the αβ T-cell recep-
tor do not express CD11d [44]. Subsequently, anti-CD11d-2 was
used to identify the expression levels of CD11d among monocyte
subsets. The nonclassical CD14+ CD16+ monocytes exhibited the
highest level of surfaced expressed CD11d as reflected by having
the greatest MFI among the three defined subsets (Fig. 1G and H).

Functional screen of humanized anti-CD11d
clones in a neurotrauma rat model
We have previously published extensive research on the perfor-
mance of murine antihuman (217 L) and hamster anti-mouse
CD11d clones (205C) in multiple neurotrauma rodent models
[2–5]. The previously published articles demonstrated that anti-
CD11d reduced leukocyte infiltration into the central nervous sys-
tem (CNS) by histological detection, myeloperoxidase (MPO) assay
neutrophil detection, and ED-1 western blot macrophage detec-
tion [2–5]. Additionally, anti-CD11d treatment increased myelin
sparing post-injury [2, 3, 5] and improved locomotor recovery
[2, 3, 5]. Mechanistically, these anti-CD11d-driven improvements
in recovery can be explained by a reduction in the presence of
free radicals in the CNS and a subsequent reduction in oxida-
tive/nitrosative damage [25, 45]. To screen for the preservation
of therapeutic function following antibody humanization, a neu-
trophil infiltration assay for MPO activity and a BBB locomo-
tor test were performed on a selection of the humanized anti-
CD11d clones. Following an experimental clip compression injury
at T4, rats were treated with one of the following monoclonal
antibody preparations: human IgG4 isotype control, murine 217 L
anti-CD11d, and the five humanized anti-CD11d variants (anti-
CD11d-1, anti-CD11d-2, anti-CD11d-3, anti-CD11d-4, anti-CD11d-
5) (Fig. 2A). Spinal lesion homogenates were collected and assayed
for MPO activity as a surrogate marker of neutrophil infiltration
(Fig. 2B). MPO activity was significantly reduced in anti-CD11d
treated rats when compared to MPO activity in the isotype con-
trol–treated rats. Importantly, there was no significant difference
in the MPO activity between the original murine 217 L–treated rats
and the five humanized anti-CD11d variants (Fig. 2B). A locomotor
assessment using the BBB open-field locomotor assessment [39]
was then performed to determine behavioral recovery following
SCI. Due to resource constraints, one humanized antibody was
selected to screen for preserved functionality. The anti-CD11d-3
clone was chosen for use in the rat locomotor testing because
it induced the greatest reduction in rat MPO levels among the
humanized clones. SCI rats that received anti-CD11d-3 treatment
had significantly higher BBB open-field locomotor scores than the
IgG4 isotype control–treated rats (Fig. 2C). These results were very
similar to our previous SCI reports performed with the mouse
217 L monoclonal antibody [2, 46] (Fig. 2C).

https://academic.oup.com/abt/article-lookup/doi/10.1093/abt/tbae031#supplementary-data
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Figure 1. Creation of humanized anti-CD11d monoclonal antibodies. (A) Conceptual diagram of the components that were combined to create the
humanized anti-CD11d clones. The murine 217 L clone CDR sequence was isolated and inserted into a human IgG4 framework. Four variants of the
217 L CDR sequence were subsequently made and inserted into the same human IgG4 framework. (B) Percent-bound and (C) quantified MFI flow
cytometric analysis of anti-CD11d clone binding to primary human neutrophils (N = 5). (D) Percent-bound and (E) quantified MFI flow cytometric
analysis of anti-CD11d antibodies binding to primary human monocytes. (F) Nonspecific binding of the anti-CD11d clones (shaded histogram) and
IgG4 isotype control antibody (white histogram with black outline) to CD11d− Jurkat T cells. (G) Gating strategy identifying primary human monocyte
subsets. (H) MFI analysis of CD11d expression among primary human monocyte subsets as determined by the humanized anti-CD11d-2 clone (N = 4).
Error bars represent standard error. Significance was calculated by one-way ANOVA and Tukey’s multiple comparisons test (∗P < .05), (∗∗P < .01),
(∗∗∗P < .001), and (∗∗∗∗P < .0001).
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Figure 2. Humanized anti-CD11d clones improve biochemical and behavioral recovery in a rat SCI model. (A) Conceptual diagram of spinal
cord compression injury and treatment with therapeutic anti-CD11d antibodies. (B) Spinal cord lesion homogenates from SCI rats treated with either
anti-CD11d 1–5 or IgG4 isotype control antibody were assayed for myeloperoxidase as a surrogate for neutrophil infiltration (N = 6). Note an uninjured
control was only performed for the 24-h timepoint. Error bars represent standard error. Significance was calculated by one-way ANOVA and Tukey’s
multiple comparisons test (∗P < .05), (∗∗P < .01), (∗∗∗P < .001), (∗∗∗∗P < .0001). (C) BBB open-field locomotor scores in anti-CD11d-3 treated rats (N = 9)
and IgG4 isotype control-treated rats (N = 10). Error bars represent standard error. Two-way ANOVA and Newman–Keuls post hoc test demonstrated a
significant treatment effect (P = .0029), a significant effect of time (P < .0001), and a significant interaction of treatment and time (P = .0006). The only
time that is not significant is at 1 week when a difference is not expected. From 2 to 10 weeks, they are all significant at either P < .01 or P < .05. Note that
there were no data obtained in week 9. This statistical analysis was performed on only the BBB scores from the anti-CD11d-3-treated and IgG4-treated
rats. The 217 L–treated rats were a smaller group of rats added in to illustrate the degree of recovery was similar to the anti-CD11d-3-treated group.
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Binding affinity of the humanized anti-CD11d-2
clone
The anti-CD11d-2 clone was determined to bind to the greatest
percentage of human leukocytes (Fig. 1B) and thus we investigated
its distinct binding dynamics. A THP-1 model was chosen to study
the anti-CD11d binding dynamics because past genetic studies
have demonstrated that PMA stimulation of THP-1 cells can dra-
matically increase the expression of CD11d mRNA [17]. Additional
CD18 co-expression, however, is required for the transportation of
functional CD11d/CD18 to the cell surface [18]. Flow cytometry
was used to confirm upregulation of cell surface CD11d/CD18
expression following PMA differentiation of THP-1 cells (Fig. 3A).
The increase in cell surface expression of CD11d/CD18 in PMA-
differentiated THP-1 Luc2 cells was also verified with immunocy-
tochemistry (Fig. 3B).

Establishing PMA-differentiated THP-1 cells as an endogenous
CD11d/CD18 model permitted the characterization of anti-
CD11d-2 binding affinity. The Bmax for anti-CD11d-2 was found
to be 85.5 ± 3.13% (mean ± SEM). The corresponding Kd was 3.55
× 10−11 ± 0.872 × 10−11 M (mean ± SEM) (Fig. 3C). Treatment with
Mn2+ forces the activate β2 integrin conformation, whereas EDTA
treatment forces the inactive confirmation [47, 48]. The binding
dynamics of anti-CD11d-2 were not significantly different in the
presence of Mn2+ or EDTA (Fig. 3C).

All the anti-CD11d antibodies in our study bind to the CD11d
I-domain. The AlphaFold computational CD11d I-domain was
analyzed to postulate anti-CD11d-2 epitope locations (Fig. 3D). A
conserved α7-helix and a conserved negatively charged metal-
ion-dependent adhesion site (MIDAS) motif were clearly visual-
ized. The α7-helix, which elongates upon divalent cation binding
to the MIDAS motif, was located opposite the proposed CD11d
ligand binding site [1] (Fig. 3D).

No inflammatory signaling detected by the
humanized anti-CD11d-2 clone
Upon binding, antibodies have the potential to act as a ligand
and trigger a signaling cascade. We investigated the ability
of anti-CD11d-2 to induce pro-inflammatory signaling upon
binding CD11d/CD18 by evaluating Nuclear factor kappa B (NF-κB)
expression in a THP-1 model system. First, both undifferentiated
and differentiated THP-1 Luc2 cells activated a robust NF-
κB response following lipopolysaccharide (LPS) treatment.
Next, PMA-differentiated THP-1 Luc2 cells also induced NF-
κB expression in response to VCAM-1 binding—a native CD11d
ligand. Undifferentiated THP-1 cells, however, did not respond
to VCAM-1 (Fig. 4A). Using VCAM-1 as a positive control, plates
were then coated with anti-CD11d-2 or IgG4 isotype control
antibodies. Differentiated Luc-2 THP-1 cells were subsequently
added to the plates, and NF-κB expression was quantified over
a 24-h period. No significant differences were found in peak NF-
κB expression between all concentrations (1, 3, 5, and 10 μg/ml)
of anti-CD11d-2, IgG4 isotype control, or empty untreated wells
(Fig. 4B).

Outside-in integrin signaling via tyrosine phosphorylation was
not observed following the binding of soluble anti-CD11d-2 to
CD11d/CD18. Well-described β2 integrin signaling consists of sub-
stantial tyrosine phosphorylation, including key signal transduc-
tion by FAK following ligand binding [49, 50]. Confluent layers
of adherent PMA-differentiated THP-1 cells were stimulated with
soluble anti-CD11d-2 or IgG4 isotype control antibody for 1 h.
Western blot analysis then quantified general tyrosine phos-
phorylation and FAK phosphorylation at Tyr397. No significant

difference in tyrosine phosphorylation between anti-CD11d-2,
IgG4 isotype control, or untreated wells was observed (Fig. 4C).

Inhibition of CK2 phosphorylation modulates β2
integrin expression
Establishing anti-CD11d-2 as a refined total CD11d/CD18 detec-
tion tool allowed us to further investigate the unique expression
profile of CD11d/CD18. A potential CD11d CK2 phosphorylation
site—unique within the set of known β2 integrins—is located
on its terminal cytoplasmic tail [1]. We hypothesized that the
prospective CD11d CK2 site may contribute to the unique CD11d
expression profile. Using anti-CD11d-2 as a CD11d/CD18 detec-
tion reagent, we quantified β2 integrin expression in a THP-1
model following PMA differentiation and CK2 inhibition. PMA
differentiation upregulated β2 integrin expression and caused the
THP-1 cells to shift from CD11a dominance to CD11b-d domi-
nance (Fig. 5). Next, CK2 phosphorylation in THP-1 cells was inhib-
ited with a CGS-CK2-1 inhibitor [51] and verified by western blot
analysis (Supplementary Fig. 1A). Unexpectedly, inhibiting CK2
phosphorylation during PMA differentiation downregulated gen-
eral β2 integrin expression but maintained the switch to CD11b-
d dominance. A surface staining experiment was repeated with
CK2 inhibition post-PMA differentiation, and the results were
analogous (data not shown). Undifferentiated THP-1 cells were
unaffected by CK2 inhibition (Fig. 5). The observed changes in β2
expression were detected by combined cell surface and intracellu-
lar staining as determined by flow cytometry. Total cell β2 integrin
detection was decreased, indicating that protein expression was
modulated, not integrin localization. CD18 expression was down-
regulated to levels observed in undifferentiated cells (Fig. 5). No
difference in total vs surface level expression was observed in all
the measured CD11 integrins except for CD11d, which did have
a significantly higher level of total expression when compared to
surface-level expression. Interestingly, the significant difference
between total and surface-level expression of CD11d persisted
with CK2 inhibition (Fig. 5).

Discussion
The development of humanized anti-CD11d monoclonal antibod-
ies builds on more than two decades of in vivo research that details
improvement by murine clones in recovery from neurotrauma
in rodent models [2–5]. In a SCI rat model, the humanized anti-
CD11d clones were screened and maintained their therapeutic
benefit. Thus, at least from the perspective of preclinical animal
data, the humanized recombinant CD11d monoclonal antibodies
function in vivo as expected in comparison to our previously
published data using murine monoclonal antibodies [2, 26].

Anti-CD11d-2 binds human CD11d/CD18 at the greatest
percentage and MFI; therefore, we took a special interest in
determining its binding dynamics. Performing additional binding
dynamics in the presence of Mn2+ or EDTA provides evidence that
anti-CD11d-2 binds CD11d regardless of integrin conformation
(Fig. 3C). No crystallized CD11d structure is currently available
for analysis. Instead, we used a predicted CD11d structure by
AlphaFold to postulate on the anti-CD11d-2 epitope location
(Fig. 3D). The α7-helix is known to elongate upon divalent cation
binding [1, 52]. Given that anti-CD11d-2 binds regardless of the
presence of divalent cations, we hypothesize that the anti-CD11d-
2 epitope is located on the ligand binding surface opposite to
the α7-helix. Promiscuous conformation binding allows anti-
CD11d-2 to bind inactive and active CD11d/CD18 on peripheral
blood leukocytes and active CD11d/CD18 on tissue-recruited

https://academic.oup.com/abt/article-lookup/doi/10.1093/abt/tbae031#supplementary-data
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Figure 3. Humanized anti-CD11d-2 binding dynamics in a THP-1 model. (A) Flow cytometry analysis gated on live THP-1 cells differentiated with
100 nM PMA for up to 72 h (N = 3). (B) Immunohistochemistry of 100 nM PMA–differentiated THP-1 Luc2 cells for 72 h and then stained in the presence
of human TruStain FcX block. Images are a representation of multiple fields of view (n = 5) across several independent repeats (N = 3). (C) Binding
dynamics of anti-CD11d-2 to endogenous CD11d on 100 nM PMA–differentiated THP-1 cells as determined by flow cytometry (N = 3). Blocking and cell
surface staining occurred live to allow for conformation change in HBSS, HBSS + 1 mM EDTA, or HBSS + 1 mM Mn2+. Cells were subsequently fixed for
analysis. The binding curve is presented using a break in the x-axis. Error bars represent standard error. Significance was calculated by one-way
ANOVA and Tukey’s multiple comparisons test (∗P < .05), (∗∗P < .01), (∗∗∗∗P < .0001). (D) Predicted computational CD11d I-domain (residues 148–336)
from AlphaFold (AF-Q13349-F1-v4). The ribbon diagram highlights the predicted α7-helix, MIDAS motif, and ligand binding site. The electrostatic
diagram highlights the negatively charged MIDAS motif for divalent cation binding. Both the ribbon diagram and electrostatic diagram are of the same
position in space.
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Figure 4. Absence of humanized anti-CD11d-2 inducing pro-inflammatory β2 integrin signaling. (A) NF-κB expression was detected by a luciferase
assay in THP-1 Luc2 cells. Following a 48-h culture in the presence or absence of 100 nM PMA, THP-1 Luc2 cells were collected and blocked with 5%
HSA. Blocked THP-1 Luc2 cells were dropped onto untreated wells, LPS (25 ng/ml) containing wells, or VCAM-1 (5 μg/ml) coated wells. The plates were
incubated and NF-κB expression was measured in triplet every hour for 24 h (N = 3). (B) Luciferase NF-κB assay following anti-CD11d-2 stimulation in
4-h PMA differentiated THP-1 Luc2 cells. Cells blocked by 5% HSA were dropped onto plates coated with VCAM-1 (5 μg/ml) or various concentrations
(μg/ml) of antibodies. The plates were incubated and NF-κB expression was measured in triplet every hour for 24 h (N = 3). Peak NF-κB expression was
calculated as the mean value between 4- and 8-h poststimulation and normalized to VCAM-1 (N = 3). Significance was calculated by one-way ANOVA
and Tukey’s multiple comparisons test (P < .05), (∗∗∗∗P < .0001). (C) Western blot analysis of 72-h 100 nM PMA–differentiated THP-1 cells stimulated
with soluble anti-CD11d-2 (μg/ml) or IgG4 isotype control (μg/ml). Blots were performed in duplicate and normalized to untreated wells (N = 3). The
representative images are from the same blot that was probed first for P-Tyr and FAK (Supplemental Fig. 3A), then re-probed for P-FAK and β-actin
(Supplemental Fig. 3B). Monochrome cropped singlet rows of the same columns are displayed for each protein target. Error bars represent standard
error. Significance was calculated by one-way ANOVA and Tukey’s multiple comparisons test (P < .05).

https://academic.oup.com/abt/article-lookup/doi/10.1093/abt/tbae031#supplementary-data
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Figure 5. Modulation of β2 integrin expression by CK2 inhibition. Flow cytometric analysis of β2 integrin expression in THP-1 cells treated with
combinations of 100 nM PMA and CGS-CK2-1 inhibitor (5 μg/ml) for 48 h. Surface level and internal level integrin expression were recorded to
determine the surface level only (white) and total (grey) β2 integrin expression. Error bars represent standard error, (N = 3). Significance between
surface and total expression within a treatment group was calculated by a two-way ANOVA and Tukey’s multiple comparisons (∗∗P < .01), (∗∗∗P < .001),
(∗∗∗∗P < .0001). Additional total β2 integrin expression analysis was then performed between treatment groups. Error bars represent standard error,
(N = 3). Significance in levels of total expression between treatment groups was calculated by one-way ANOVA and Tukey’s multiple comparisons
(∗∗P < .01), (∗∗∗P < .001), and (∗∗∗∗P < .0001).
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leukocytes. Differences in conformational binding activity may
explain the observed differences in human peripheral blood
leukocyte binding among the anti-CD11d clones and why anti-
CD11d-2 binds the greatest percentage of cells (Fig. 1B).

The use of anti-CD11d-2 as a novel CD11d detection tool rein-
forces previous knowledge regarding the basal CD11d expression
profile. The monoclonal and dual conformation binding nature of
anti-CD11d-2 provides a refined tool for total CD11d detection.
Consistent with the literature [1], we noted that both periph-
eral monocytes and neutrophils expressed CD11d/CD18 when
detected by ant-CD11d-2. The level of CD11d/CD18 expression
was consistently low across neutrophils and monocytes except
for nonclassical CD14+CD16+ monocytes that expressed high
levels of CD11d on the cells’ surface. Nonclassical CD14+CD16+

monocytes were a small proportion of total monocytes, which
explains why previous studies found the overall monocyte pool
to express low levels of CD11d [8, 53]. The same previous studies
were also divided regarding the level of CD11d expression on non-
classical CD14+CD16+ monocytes [8, 53]. Our data using the anti-
CD11d-2 detection tool support the conclusion that nonclassical
CD14+CD16+ monocytes express relatively greater CD11d levels
[53] instead of lower levels of expression [8]. Resolving the con-
flicting data permits future investigation into the mechanism by
which CD11d/CD18 may influence the unique role and migration
patterns of nonclassical CD14+CD16+ monocytes.

We further investigated the dynamics of anti-CD11d-2 to
determine if any inflammatory signaling was induced upon
binding human CD11d/CD18. A previous study described the
release of IL-8, IL-1β, and MCP-1 by THP-1 cells when exposed to
plates coated with ICAM-3 or murine anti-CD11d clones [8]. To our
knowledge, however, the mechanistic pathway for a CD11d/CD18
signaling cascade has not been described. In the absence of any
literature on a known CD11d/CD18 outside-in signaling pathway,
NF-κB expression and tyrosine phosphorylation were selected
as broad measures of inflammatory signaling within a THP-1
cell model. Well-described β2 integrin signaling cascades involve
tyrosine phosphorylation and can induce NF-κB expression [49,
50, 54]. Here we demonstrated that only differentiated THP-1
cells can induce NF-κB expression following VCAM-1 binding
(Fig. 4A). Determining the contribution of CD11d/CD18 alone
(which induces signaling upon binding VCAM-1) is limited by the
multitude of integrins that may also bind VCAM-1. Of note, α4β1
(VLA-4) interacts with VCAM-1 to contribute to the induction
of NF-κB expression [55, 56]. Future studies may parse out the
individual contributions of CD11d/CD18 interactions toward NF-
κB expression and identify a CD11d/CD18 signaling cascade upon
binding of VCAM-1. In the context of our current study, VCAM-1
served as a positive control for integrin-induced NF-κB expression
to compare against the humanized anti-CD11d-2 clone on ligand-
coated plates. Designed as an IgG4 antibody, anti-CD11d-2 did
not induce a significant inflammatory response upon binding
CD11d/CD18. There was an observed absence in NF-κB expression
following plate-coated anti-CD11d-2 binding and no observed
FAK outside-in signaling following soluble anti-CD11d-2 binding.
Thus, in addition to being a refined detection tool for human
CD11d/CD18, anti-CD11d-2 has the capacity to be pursued as an
effective therapeutic antibody that blocks CD11d binding without
inducing its own inflammatory signaling cascade.

CK2 inhibitors have long been known to modulate inflamma-
tory responses [57]. Downregulation of all β2 integrins following
CK2 inhibition, however, was an unexpected result (Fig. 5). The
use of an analogous CK2 inhibitor (CX-4945) in glioblastoma cells
was previously shown to downregulate the β1 and α4 genes that

form α4β1 and α4β7 integrins [58]. A proposed mechanism of
integrin downregulation in glioblastoma cells was the inhibition
of NF-κB activation [58]. Remodeling of β2 integrin expression
by CK2 inhibition may result in functional changes to myeloid
cell localization. A previous study found that CK2 knock-out
mice have increased monocyte and neutrophil recruitment when
infected with Listeria monocytogenes [59]. Integrin density is key in
determining if a leukocyte will favor tissue migration or tissue
retention. Adhesive forces are required for cell migration, but
excessive adhesive forces induce cell immobility. Mathematic
models have described the relationship between adhesive forces
and cell mobility [60, 61], which are then observed in CD11d and
CD11b models [62–64]. The partial downregulation of β2 integrins
by CK2 inhibition may be sufficient to switch the adhesive forces
from favoring cell immobility to cell migration. Future studies
may investigate if CK2 inhibition can encourage leukocyte migra-
tion among pathophysiologies in which excessive CD11b/CD18
and/or CD11d/CD18 expression causes immobilization and harm-
ful leukocyte accumulation. Future avenues also exist to deter-
mine the cause of the discrepancy between total and surface-level
CD11d expression that was not resolved by the actions of CK2
phosphorylation.

The goal of anti-CD11d therapy is to modulate the waves
of leukocytes that extravasate into target tissues through
CD11d/CD18 and VCAM-1 interactions. Our laboratory has
extensively investigated the validity of acute anti-CD11d therapy
in rodent neurotrauma models [2–5]. Temporary use of a blocking
clone can target and prevent the extravasation of initial pro-
inflammatory leukocytes immediately following neurotrauma
without affecting the subsequent recruitment of wound-healing
leukocytes [65]. Looking beyond neurotrauma, CD11d blockade
may also have a therapeutic role in acute inflammatory lung
pathologies. The isolated deletion of CD11d alone can provide
remarkable improvements in lung pathology and overall survival
within a murine sepsis model [66]. Going beyond VCAM-1-
mediated extravasation, anti-CD11d therapeutics have the
potential to modulate tissue retention/migration mediated by
CD11d/CD18 and extracellular matrix interactions. A small
peptide inhibitor of CD11d interactions reduced macrophage
retention in adipose tissue, which is observed in atherosclerosis
and diabetes [6]. Indeed, CD11d−/− mice demonstrate a reduced
disease burden in a murine atherosclerosis model [10]. Multiple
avenues of investigation, therefore, exist to apply a temporary
CD11d blockade with humanized anti-CD11d monoclonal
antibodies and achieve a therapeutic goal.

Conclusion
In conclusion, we present five humanized anti-CD11d monoclonal
antibodies. When screened, anti-CD11d-3 maintained its thera-
peutic functionality in a rodent neurotrauma model. A high affin-
ity anti-CD11d-2 clone bound both conformations of CD11d/CD18
and did not produce an inflammatory response during in vitro
assays. Anti-CD11d-2 was then used to detect a surprising pan-
β2 integrin downregulation following inhibition of CK2 phospho-
rylation and a mismatch between total and surface-level CD11d
expression. Future studies may use the humanized anti-CD11d
clones as tools to propel CD11d/CD18 research when investigating
the therapeutic role of CD11d/CD18 blockade in neurotrauma,
sepsis, and atherosclerosis.
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