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Abstract

The species in ecosystems are mutually interacting and self sustainable stable for a certain period. Stability and dynamics
are crucial for understanding the structure and the function of ecosystems. We developed a potential and flux landscape
theory of ecosystems to address these issues. We show that the driving force of the ecological dynamics can be
decomposed to the gradient of the potential landscape and the curl probability flux measuring the degree of the breaking
down of the detailed balance (due to in or out flow of the energy to the ecosystems). We found that the underlying intrinsic
potential landscape is a global Lyapunov function monotonically going down in time and the topology of the landscape
provides a quantitative measure for the global stability of the ecosystems. We also quantified the intrinsic energy, the
entropy, the free energy and constructed the non-equilibrium thermodynamics for the ecosystems. We studied several
typical and important ecological systems: the predation, competition, mutualism and a realistic lynx-snowshoe hare model.
Single attractor, multiple attractors and limit cycle attractors emerge from these studies. We studied the stability and
robustness of the ecosystems against the perturbations in parameters and the environmental fluctuations. We also found
that the kinetic paths between the multiple attractors do not follow the gradient paths of the underlying landscape and are
irreversible because of the non-zero flux. This theory provides a novel way for exploring the global stability, function and
the robustness of ecosystems.
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Introduction

Ecosystems are the ones in which their living and nonliving

components interact with and depend on each other linking

together the exchange of energy, material, information. The

structure and the function of the ecosystems are determined by the

interplay of both cooperation and competition [1,2]. Ecosystems

are able to regulate themselves to maintain certain stability.

Therefore, the stability is one of the most fundamental and

essential features of the ecological systems. The study of stability is

direct relevant to the existence of every species. The stability is

influenced by many factors, such as the structure within the

components and the features of the environment. The studies of

the stability of ecosystems are significant for uncovering the

underly ecological law of species and populations [1,2].

The ecosystems are complex and involve many kinds of

interactions among the elements. The inherent interactions are

often non-linear and intricate. These systems can be described by

a set of nonlinear differential equations [3,4]. These nonlinear

interactions lead to complex dynamics. There have been many

investigations on the stability of ecosystems [3–11]. Most of the

works have been focused on the local linear stability analysis. The

global stability of the ecological systems is still challenging in

general. Furthermore, the link between the global characterization

of the ecological systems and the dynamics of the elements is still

not clear.

The past researchers also explored the dynamical system with

the approach of Lyapunov function which was developed to

investigate the global stability. The analytical Lyapunov function

for predation model was first proposed by Volterra in 1931 [4].

Since then, significant efforts have been devoted to find the

analytical Lyapunov function [5–8,10,11] for ecological equations.

However, it is still challenging to find the Lyapunov function of the

ecological models with the general nonlinear response terms, even

though a few highly simplified ones were worked out [5,8]. So far

there is no general and universal approach for finding the

Lypunov function. One has to work case by case. There is even no

guarantee if a Lyapunov function exists for a more complex

system. Furthermore the Lyapunov function and the stability of a

predation model with a solution of limit cycle have hardly been

discussed. Here we would like to suggest an universal and

straightforward approach to explore the Lyapunov function and

therefore the global stability of the general ecological systems.

In the earlier studies, people have aimed at macroscopic

properties based on the deterministic models. However, both

external and intrinsic fluctuations of mesoscopic and even macro

scale systems are unavoidable. The environmental fluctuations can

influence the ecological behaviors. The intrinsic fluctuations

emerge when the size of system is finite. It is widely agreed that

the analysis of the global stability is important for a full

understanding of the robustness of ecological systems under
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fluctuations [5–7,11–13]. As mentioned, it is challenging to

explore global stability with deterministic dynamics. The proba-

bility (P) description is necessary due to the presence of

fluctuations of the real systems. The probability description has

the advantage of quantifying the weights in the whole population

state space and therefore is global. The potential landscape U
linked with the probability P by U*lnP can address global

properties of ecosystems, such as the global stability, function and

robustness.

Here we developed a potential and flux landscape theory to

explore the global stability and dynamics for ecosystems [14–19].

We found that the underlying intrinsic potential landscape is a

global universal Lyapunov function for the ecosystem dynamics

and therefore topology of the landscape provides a quantitative

measure for the global stability of the ecosystems. We also found

the dynamics of the ecosystems is determined by the gradient of

the potential landscape and additional curl flux force from

breaking down of the detailed balance.

We applied our theory to three important ecosystems:

predation, competition, mutualism and a realistic lynx-snowshoe

hare model. Lotka-Volterra model for two species interactions is

the famous ecological model proposed by Lotka [3]and Volterra

[4] respectively. Over the years, this model has attracted attentions

for exploring the dynamical process of the ecology. In the

ecosystems, the relationship between species can be grouped into

two categories: the negative antagonism interaction(2) and the

positive mutualism interaction(+). We show the different modes in

Figure 1. Predation shows the relationship (+/2) which one

species SA is disfavored, while the other species SB benefits in

Figure 1A; Competition shows the relationship(2/2) which each

species SA or SB is influenced negatively by the other one in

Figure 1B; Mutualism shows the relationship (+/+) which both

species SA and SB benefit from interactions of the other in

Figure 1C [2,6,11].

For the predation, predators sustain their lives by the

consumption of preys. Without the presence of prey, predators

can not survive. Preys can sustain their lives and grow without

predators. The presence of the preys controls the predators’

growth. This forms a predator-prey(predation) system [2–4]. The

system can have one stable state or stable limit cycle. Competition

between species often occurs when they are using the same

resources. Competition can promote the ecological characteristics

of species differentiation and produce certain biological structure

of community. The system can have multi-stable states. Mutualism

means that two different species biologically interact with each

other and lead to benefit each individuals. The system can also

have multi-stable states. These relations above demonstrate the

complexity of biological communities,their stable structures, and

the ecological balance [2,6,11]. These models are important for

population biology because of its applications to the real biological

world.

Limit cycle attractor shown in Figure 1D(Mexican hat

shape)and multiple attractors shown in Figure 1E emerge from

these three cases: predation, competition and mutualism.

Figure 1D and Figure 1E show the potential landscapes closely

associated with the probability distribution for the underlying

ecosystem. The lower potential landscape means the higher

probability and therefore more stable states. The closed ring valley

is a continuous attractor for oscillation while the discrete basins

represent the stable attractors on the potential landscapes. We

found the quantitative criterion for stability in terms of barrier

height between basins of attraction. The barrier height from the

top of the Mexican hat to the ring valley of limit cycle attractor

(the potential maximum along the limit cycle) in Figure 1D or

between each two attractors(from the saddle point to the minimum

of each basin) in Figure 1E quantitatively determine the global

stability of these ecosystems. The curl flux is essential for driving

the oscillation on the valley ring and maintaining the coherence.

We studied stability and robustness of ecosystems against

parameters and fluctuations. We also explored how the non-

equilibrium free energy links with the different phases and phase

transitions of the ecosystem with respect to the changes of

parameters. These explained how the stability and robustness

of ecosystem change under different conditions. Quantification of

pathway is important for understanding the dynamics of

ecosystem. We developed the path integral method to quantify

the kinetic pathway of ecosystems. We found that the paths do not

Figure 1. The schematic diagram for the ecological models. (A)Predation model. (B)Competition model. (C)Mutualism model. The potential
landscape U is linked with the probability P by U*lnP in species space. (D) Limit cycle attractor. The barrier height from the maximum inside the
closed ring to the potential maximum along the ring can quantify the stability of the limit cycle attractor. (E) Multiple attractors. There are four stable
states: survival alone state A of species SA, survival alone state B of species SB, coexisting state C, and both extinct state O. s1 is the saddle points
between the attractors A and O while s2 is the saddle points between the attractors A and C. The barrier heights from the saddle points to the
potential minimums of the basins can quantify the stability of each attractor.
doi:10.1371/journal.pone.0086746.g001

The Potential and Flux Landscape Theory of Ecology

PLOS ONE | www.plosone.org 2 January 2014 | Volume 9 | Issue 1 | e86746



follow gradient of the underlying potential landscape and are

irreversible because of the non-zero flux.

Results and Discussion

The potential landscapes and fluxes of ecosystems:
predation, competition and mutualism

We quantified the underlying potential landscape of the

ecosystems through the exploration of the underlying dynamics

of probability. We solved the Fokker-Planck diffusion equation

describing the probability dynamics to obtain the population

potential landscape U related to the steady state probability

distribution Pss through {lnPss and steady state probability flux

J. We explored the Hamilton-Jacobi equation in zero noise limit

to quantify the intrinsic potential landscape w0 with Lyapunov

properties and the associated intrinsic flux velocity. The details are

in the Materials and Methods section. We will discuss how to

apply the landscape theory of intrinsic potential landscape w0, the

population potential landscape U and the probability flux J to

explore the global stability and dynamics of the three ecosystem

models.

The population potential landscape U (the top row) and

intrinsic potential landscape w0 (the bottom row)for predation,

competition and mutualism model are shown respectively in

Figure 2. The negative gradient of the population potential

landscape {+U on the top row and the intrinsic potential

landscape {+w0 on bottom row are represented by the black

arrows while the steady state probability flux Jss=Pss on the top

row and the intrinsic flux velocity on the bottom row are

represented by the purple arrows. The arrows at the bottom of

each sub-figures are the projection of the direction of the

according arrows. The flux with purple arrows are almost

orthogonal to the negative gradient of U with black arrows shown

on the bottom plane of Figure 2A, Figure 2B and Figure 2C. The

flux velocity with purple arrows are orthogonal to the negative

gradient of w0 with black arrows shown on the bottom plane of

Figure 2D, Figure 2E and Figure 2F.

Figure 2A and Figure 2D show the non-equilibrium population

potential landscape U and intrinsic potential landscape w0 for

predation model when the parameters are a~1:5, b~0:1,

d~0:2, D~3|10{5. The mathematical model and the range

of the parameters are discussed in Materials and Methods section.

We can see when the fluctuations characterized by the diffusion

coefficient are small, the underlying potential landscape has a

distinct closed irregular and inhomogeneous closed ring valley or

Mexican hat like shape shown in Figure 2A. We can clearly see the

population potential landscape is not uniformly distributed along

the limit cycle path or the closed ring. The intrinsic potential

landscape w0 has a homogeneous closed ring valley along

deterministic oscillation trajectories which has a constant value

of w0 shown in Figure 2D. The non-equilibrium intrinsic potential

landscape w0 with Lyapunov properties can characterize the global

topography of the oscillation landscape of predation model. This

figure shows the potential is lower along the oscillation path or on

the ring. The potential landscape is higher with a mountain inside

the oscillation ring and outside the oscillation ring. The system is

attracted to the closed oscillation ring by the landscape’s gradient-

potential force +U or the +w0. The flux driving the system

maintains the periodical continuous oscillation dynamics. Both

landscape and flux are necessary to characterize the non-

equilibrium predation ecosystems. This oscillation shows that

when the number of predators increases, more preys will be

consumed. Then due to the shortage of food, the number of the

predator will go down. The reduction of the predators makes the

preys multiply, then the number of predators increases again for

the rich preys.

Figure 2B and Figure 2E show the non-equilibrium population

potential landscape U and intrinsic potential landscape w0 for

competitive model when the parameters are a1~a2~0:1,
L1~L2~0:3, a~1:0, D~0:01. We can see the underlying

population potential landscape and intrinsic potential landscape

both have four distinct basins which have been discussed in the

Materials and Methods section. The basins are around the four

stable states. These four stable states are: survival alone state A of

species SA, survival alone state B of species SB, coexisting state C,

and both extinct state O. These figures show the potential

landscape is relatively higher (and probability is relative lower) on

the extinct state (the state O) of these two species because the lower

critical points L1,L2 for species are small. The potential landscapes

of the survival alone state A and B are lower(more stable) than that

of the coexisting state C. It shows that the coexisting state is less

stable than the species survival alone states for they have

competitive relation. The forces from negative gradient of the

potential landscape are more significant away from the attractors

and less significant near the basins. Therefore the system is

attracted by the gradient of the landscape towards the four basins.

The directions of the flux are curling among the basins.

Figure 2C and Figure 2F show the non-equilibrium population

potential landscape U and intrinsic potential landscape w0 for

mutualism model when the parameters are a1~a2~0:1,
L1~L2~0:5, a~1:0, D~0:01. The underlying population po-

tential landscape and intrinsic potential landscape both have

distinct four basins. The basins are around the four stable states.

These figures show the potential landscape is the highest (and

probability is lower) on the extinct state O of these two species.

The potential landscape of mutualism coexisting state C is lowest

than those of species survival alone state A and B, and the extinct

state O. It shows that the coexisting state is more stable than the

species alone state for the two species having the relationship of

mutualism. The directions of the flux are curling among the four

basins. And the system is also attracted by the gradient of

landscape towards the four basins.

Quantitative measure of global stability for predation
We now study the stability and robustness of the ecosystems.

The stability is related to the escape time from the basins. Since

the system is characterized by the basins of attractor with large

weights, the easier it is to escape, the less stable the system is. We

will essentially explore the average time escaping from a basin of

attraction.

We define the barrier height of U for predation model as:

Ba~Ufix{Umax. Umax is the population potential maximum

along the limit cycle attractor. Ufix is the population potential

landscape at the local maximum point inside the limit cycle. And

the barrier height of w0 for predation model is defined as:

Dw0~w0fix{w0max. w0max is the intrinsic potential maximum

along the limit cycle attractor. w0fix is the intrinsic potential

landscape at the local maximum point inside the limit cycle. The

escape time t can be solved by the formula [20]:

F:+tzD:+2t~{1. It represents the average time the system

spent from one position to another position [18].

We showed the change of population potential landscapes for

increasing diffusion coefficient D (Figure S1 in File S1). In

Figure 3A, the barrier heights associated with escape time from the

limit cycle attractor Ba becomes higher when the diffusion

coefficient characterizing the fluctuations decreases. In Figure 3B,

we see a direct relationship between the escape time t from the

The Potential and Flux Landscape Theory of Ecology
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limit cycle attractor [17,18] and barrier height for non-equilibrium

ecosystems. As the barrier height for escape becomes higher, the

escape time becomes longer. Therefore, the limit cycle attractor

becomes more stable since it is harder to go from the valley ring to

outside. The robustness and stability in the oscillatory predation

system need small fluctuations and large barrier height. Figure 3C

shows the heat dissipation rate HDR~
Ð

(J:(F{+:D))dN~Ð
J:FdN (see the Materials and Methods section 1 for details)ver-

sus different diffusion coefficients. We can see the heat dissipation

rate decreases when the diffusion coefficient decreases. This

implies that when the fluctuations deduce, the associated heat

dissipation rate becomes smaller. We have explored that less

fluctuations lead to more robust and stable oscillation with higher

barrier height. Therefore, the less dissipation can lead to less

fluctuations and a more stable ecosystem with longer escape time.

We also explored the effects of the rate parameters representing

interaction strengths between species on the robustness. We

showed the change of population potential landscapes for

increasing parameters a,b,d (Figure S2 in File S1, Figure S3 in

File S1 and Figure S4 in File S1). We show the effects of rate

parameters a,b,d on the robustness through barrier height in

Figure 4A, Figure 4D and Figure 4G; the escape time t in

Figure 4B, Figure 4E and Figure 4H; the dissipation rate

in Figure 4C, Figure 4F and Figure 4I with D~3|10{5. For

the small parameter a, the relative death rate or the interaction

strength for the prey is very small, the prey and the predator both

are near their carrying capacities. The stable point is N�1 ~N�2 ,

where the population of the predator is equal to the population of

the prey. The system is attracted to its stable coexisting state.

When the relative death rate or the interaction strength increases

to a certain specific range, the system can reach a limit cycle state

since it is a negative feedback system. When the parameter a

continues to increase beyond the range of limit cycle, the death

rate or the interaction strength of the preys increases, the preys

decrease. The lack of food leads to the reduction of the predators.

So the system reaches a stable state that both predator and preys

have low population. The Ba versus a increases first, then

decreases as shown in Figure 4A. Figure 5A shows barrier height

Dw0 of the intrinsic potential landscape(w0) has the same tendency

with that of the population landscape. It implies the system first

becomes more stable, and then less stable when the parameter a

increases in the range of limit cycle. The system has an optimal

stability in this range. This is due to the fact that both decreasing

and increasing a from optimal stability of the limit cycle will

promote the formation of mono-stability and make the limit cycle

less stable. Figure 4B shows the average escape time versus the

barrier height Ba. When the barrier height for escape becomes

higher, the escape time becomes longer. Figure 4C shows the

dissipation rate increases with the increasing parameter a. It

implies that the system will consume more energy to keep order

Figure 2. The potential landscapes for the predation, competition and mutualism models. Top row: The population potential landscape
U ((A) predation model. (B) competition model. (C) mutualism model.) Purple arrows represent the flux velocity(Jss=Pss) while the black arrows
represent the negative gradient of population potential({+U ). Bottom row: The potential intrinsic energy landscape w0 . ((D) predation model. (E)
competition model. (F) mutualism model.). Purple arrows represent the intrinsic flux velocity(V~(Jss=Pss)D?0) while the black arrows represent the
negative gradient of intrinsic potential({+w0).
doi:10.1371/journal.pone.0086746.g002
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when the system stays at limit cycle oscillation state than when it

stays at one stable state with the transition point a~1:109.

Figure 5D shows the intrinsic free energy(see the Materials and

Methods section 2 for details) versus a. We can see clearly the non-

equilibrium free energy is continuous versus parameter a, the first

derivative of the free energy is discontinuous at the transition point

a~1:109 from a stable state to a limit cycle oscillation state. It is a

signal of non-equilibrium thermodynamic phase transition anal-

ogous to equilibrium statistical mechanics. The non-equilibrium

free energy for ecosystem can measure and predict the global

phases transitions and can be use to investigate the global natural

stability and robustness of the ecosystem.

When the parameter b which represents the ratio of the linear

growth rate of the predator to that of the prey is small, the system

stays at the specific range of limit cycle state. When the parameter

b continues to increase, the growth rate of the predator increases,

so the prey decreases and therefore it will lead the predator to

decrease. So the system will stay at a stable state where the

predator and prey both keep relative lower population. The Ba
versus b decreases shown in Figure 4D. Figure 5B shows barrier

height of the intrinsic potential landscape(w0) has the same

tendency with the population potential landscape. This implies

that the limit cycle attractor becomes less stable when the ratio of

the linear growth rate of the predator increases. Figure 4E shows

the average escape time versus the increasing parameter b has the

same tendency with the barrier height versus the increasing

parameter b. Figure 4F shows that the dissipation rate decreases

with the increasing parameter b. Figure 5E shows the free energy

versus b. The first derivative of the non-equilibrium free energy is

discontinuous at the transition point b~0:1899 from a limit cycle

oscillation state to a stable state.

The predation term
aN1N2

N1zd
which is the response of the

predator to the change in the prey density, shows the saturation

effect. When the parameter d which represents the relative

saturation effect rate of the prey is small, the system stays at the

specific range of the limit cycle state as saturation point of

predation is very low. When the parameter d continues to

increase, the response term and the death rate of the preys

decreases, so the preys and the predators are in a relative lower

population stable state. The barrier height Ba decreases as d

increasing shown in Figure 4G. Figure 5C shows barrier height of

the intrinsic potential landscape(w0) has the same tendency with

the population landscape. This implies that the limit cycle

attractor of this system becomes less stable when the saturation

point of predation increasing. Figure 4H shows the average escape

time versus the increasing parameter d has the same tendency with

the Ba versus the increasing parameter d. Figure 4I shows that the

dissipation rate decreases with the increasing parameter d . The

system becomes less stable. Figure 5F shows the free energy versus

d . The transition point d~0:2715 shows the system transits from a

limit oscillation state to a stable state.

We also can use the phase coherence to quantify the robustness

and the stability of a cycle [17,18,21]. Coherence f represents the

degree of the regularity in time sequence of cycle motion of species

variables in the ecosystem. The vector M(t)~n1(t)e1zn2(t)e2 is

set with e1~(0,1) and e2~(1,0) as the unit vectors, as well as n1

and n2 represent the population of each species at time t. w(t) is

the phase angle between M(t) and M(tzt). Then the f is defined

as f~(2
P

i h(w(ti))w(ti))=(
P

i Dw(ti)D){1 [17,18,21]. (h~1 if

ww0, and h~0 if wƒ0) The larger value of coherence close to

1 means the more periodic while the smaller value of coherence

close to 0 means the less periodic. In Figure 6A, f decreases when

the diffusion coefficient increases. This means larger fluctuations

will reduce the coherence and the robustness of the

oscillations.Figure 6B, Figure 6C and Figure 6D show the f
versus the parameter a,b,d. We found that they have nearly the

same tendency with the barrier height versus the parameters a,b,d
shown in Figure 4A, Figure 4D and Figure 4G. It implies that the

higher barrier height lead the system to have more coherent

periodic oscillation, and therefore the system is more stable.

Quantifying the global stability of competition
ecosystems

For competition and mutualism models, we introduced the

effective barrier heights for simplicity. The effective barrier heights

are similar to the effective resistance of parallel circuits. They can

measure the effect of average barrier on a single basin. We defined

the effective barrier heights for state i in population potential U

as: Bai~
(Usij{Ui) � (Usik{Ui)

(Usij{Ui)z(Usik{Ui)
where fi,j,kg[ffA,O,Cg,

fB,O,Cg,fC,A,Bgg. When the system has four stable states:

survival alone state A of species SA, survival alone state B of

species SB, coexisting state C, and both extinct state O. Usij is the

population landscape value of saddle point between state i and

state j. UA, UB, UC and UO are the values of population landscape

at state A, B, C and O. When the coexisting state C vanishes,

we defined the Bai~
(Usij{Ui) � (Usik{Ui)

(Usij{Ui)z(Usik{Ui)
where fi,j,kg[

Figure 3. The barrier height of population landscape, escape time and dissipation rate versus the diffusion coefficient for
predation model. (A) The barrier height of the population landscape U versus the diffusion coefficient D. (B) The escape time versus the barrier
height of population landscape. (C) The dissipation rate versus the diffusion coefficient D.
doi:10.1371/journal.pone.0086746.g003
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ffA,O,Bg,fB,O,Agg, We also defined the effective barrier heights

in intrinsic potential as: Dw0i~
(w0ij{w0i) � (w0ik{w0i)

(w0ij{w0i)z(w0ik{w0i)
where

fi,j,kg[ffA,O,Cg,fB,O,Cg,fC,A,Bgg when the system has four

stable states A,B,C,O. When the coexisting state C vanishes, we

defined the Dw0i~
(w0ij{w0i) � (w0ik{w0i)

(w0ij{w0i)z(w0ik{w0i)
where fi,j,kg[

ffA,O,Bg,fB,O,Agg. w0ij is the intrinsic landscape value of

saddle point between state i and state j. w0A, w0B, w0C and w0O are

the intrinsic potential landscape values of state A, B, C and O.

We showed the change of population potential landscapes for

increasing diffusion coefficient D (Figure S5 in File S1). Figure 7

shows diffusion effect on the competition model. In Figure 7A, as

the diffusion coefficient characterizing the fluctuations decreases,

the barrier heights BaA(B) and BaC are higher when the

parameters are a1~a2~0:1,L1~L2~0:3,a~1:0. Figure 7B

shows the escape time versus the barrier height BaA. We can

see the system is harder to escape from the basins of attraction as

the fluctuation decreases, and the barrier height also increases.

Figure 7C shows the dissipation rate for different diffusion

coefficients. We can see the heat dissipation rate decreases when

the diffusion coefficient decreases and the fluctuations of the

systems become smaller.

We showed the change of population potential landscapes for

increasing parameters a1,L1,a (Figure S6 in File S1, Figure S7 in

File S1 and Figure S8 in File S1). Figure 8A, Figure 8B and

Figure 8C show the effects of rate parameter a1 on this system at

D~0:001. When a1, the competitiveness of SB on SA decreases,

the competitiveness of species SB becomes weaker while that of

species SA becomes stronger, so the barrier height BaA increases

while BaB decreases. With the parameter (a1) further weakened

the competitiveness of the species SB, the two species can achieve

their coexisting state C. The coexisting state C becomes more

stable as the competitiveness of B on A decreases shown in

Figure 8A. Figure 9A shows barrier height of the intrinsic potential

landscape(w0) has the same tendency with that of the population

landscape. This implies the two species can coexist stably as the

mutual competitiveness is reduced. The logarithm of escape time

lntA from basin A has positive correlation with barrier height BaA

shown in Figure 8B. The escape time increases when the

associated barrier height becomes higher.

Figure 8D, Figure 8E and Figure 8F show the effects of rate

parameter L1 on competition system with D~0:001. When L1

increases, the lower critical number or density of species SA

becomes larger, so the survival alone state A of species SA becomes

less stable and shallower while the other survival alone state B
becomes more stable and deeper (The barrier height BaB

increases,BaA and BaC decrease as L1 increases shown in

Figure 8D. The escape time lntA from basin A has positive

correlation with BaA shown in Figure 8E. Figure 9B shows barrier

height of the intrinsic potential landscape(w0) has the same

Figure 4. The barrier height of the population landscape, escape time and dissipation rate versus the rate parameters for predation
model. (A) The barrier height of the population landscape versus a. (B) The escape time versus barrier height of the population landscape for
changing a. (C) The dissipation rate versus a. (D) The barrier height of the population landscape versus b. (E) The escape time versus barrier height of
the population landscape for changing b. (F) The dissipation rate versus b. (G) The barrier height of the population landscape versus d . (H) The escape
time versus barrier height of the population landscape for changing d . (I) The dissipation rate versus d .
doi:10.1371/journal.pone.0086746.g004
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Figure 5. The barrier height of intrinsic potential landscape and free energy versus the rate parameters for predation model. The
barrier heights of intrinsic potential landscape versus parameters a (A), b (B), d (C). The free energy versus a (D), b (E), d (F).
doi:10.1371/journal.pone.0086746.g005

Figure 6. The coherence for predation model. (A)The coherence versus the diffusion coefficient. (B) The coherence versus the parameter a. (C)
The coherence versus the the parameter b. (D) The coherence versus the the parameter d .
doi:10.1371/journal.pone.0086746.g006

The Potential and Flux Landscape Theory of Ecology

PLOS ONE | www.plosone.org 7 January 2014 | Volume 9 | Issue 1 | e86746



tendency at those of the population landscape.), and the coexisting

state C generally vanishes(The barrier height BaC decreases). It

implies that when the lower critical number or density of species

SA becomes larger, the species SA will extinct easily. The

competitiveness for species SB becomes larger, so it will live more

stably.

Figure 7. The barrier height of the population landscape, escape time and dissipation rate versus the diffusion coefficient for
competition model. (A) The barrier height of the population landscape U versus the diffusion coefficient D. (B) The escape time versus the barrier
height of the population landscape. (C) The dissipation rate versus the diffusion coefficient D.
doi:10.1371/journal.pone.0086746.g007

Figure 8. The barrier height of the population landscape, escape time and dissipation rate versus the rate parameters for
competition model. (A) The barrier height of the population landscape versus a1 . (B) The escape time versus barrier height of the population
potential landscape. (C) The dissipation rate versus a1 . (D) The barrier height of the population potential landscape versus L1 . (E) The escape time
versus barrier height of the population potential landscape. (F) The dissipation rate versus L1 . (G) The barrier heights of the population landscape
versus a. (H) The escape time versus barrier height of the population potential landscape. (I) The dissipation rate versus a.
doi:10.1371/journal.pone.0086746.g008
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Figure 8G, Figure 8H and Figure 8I show the effects of rate

parameter a which means the relative birth rate of species SB on

this system with D~0:001. When a increases, the relative birth

rate of species SB becomes larger, so the survival alone basin B of

species SB becomes more stable and deeper. The other survival

alone state A and the coexisting state C also become more stable

and deeper (The barrier height BaA increases shown in Figure 8G

and the escape time lntA becomes longer shown in Figure 8H.

They are positively correlated.Figure 9C shows the barrier height

of the intrinsic potential landscape(w0) has the same tendency with

that of the population landscape.) It implies that when the birth

rate of B becomes larger, the species SB will be more stable. This

can lead the coexisting state C and the survival alone state A to

become more stable.

Figure 8C, Figure 8F and Figure 8I show the heat dissipation

rates increase then decrease when the parameter a1,L1,a increase.

The flux makes a significant contribution to the heat dissipation

rate HDR~
Ð

J:FdN~
Ð

J:(J=PzD+U)dN. The contribution

of the term D+U is numerically much smaller than that of term

J=P because the values of D+U are small in less fluctuations and

their directions are near orthogonality to the flux. When the

parameters are given specific values: a1~a2~0:1,
L1~L2~0:3, a~1:0, the system stays at a symmetrical landscape

topography, so the depths of the basin A and basin B have the

same value. These two basins both have large areas of dominant

flux. As the three parameters increase or decrease, the system

becomes less symmetrical in landscape topography, one area of the

basin A or B becomes more dominant. Since the area of the

dominant flux becomes less, the heat dissipation rate becomes less

and the system consume less energy. Figure 9D shows the phase

transition from four stable states to three stable states nearby

a1~0:1. The first derivative of the non-equilibrium free energy is

discontinuous at this point, which is a signal of thermodynamic

phase transition. Figure 9E shows the phase transition from four

stable states to three stable states nearby L1~0:3. Figure 9F shows

the free energy increases as a increases, and has no phase

transition.

Due to competitive exclusion principle, the two species

competing for the same resources are impossible to coexist in

the same area. So we can see the landscape for larger a1(a2) can

not have the coexisting state, but it can have two stable states for

living alone. The system will eventually select one stable state

according to the initial condition (the slightest advantage for one

species)and the fluctuations in the environment. If they coexist in

the same area, there must have differences on the ecological

factors, such as habitat, diet, activity time or other characteristics

among the competitive species.

Quantifying the global stability of the mutualism
ecosystems

We showed the change of population potential landscapes for

increasing diffusion coefficient D (Figure S9 in File S1). Figure 10

shows diffusion effect on the mutualism model. In Figure 10A, as

the diffusion coefficient characterizing the fluctuations decreases,

the barrier heights BaA(B) and BaC becomes higher when the

parameters are a1~a2~0:1, L1~L2~0:5, a~1:0. Figure 10B

shows the escape time versus the barrier height BaA. We can see

clearly that the higher the barrier height is, the longer the escape

time is. The system is harder to escape from the basins of

attraction as the barrier height increases. Figure 10C shows the

heat dissipation rate for different diffusion coefficients. We can see

the dissipation or the entropy production rate decreases when the

diffusion coefficient decreases.

We showed the change of population potential landscapes for

increasing parameters a1,L1,a (Figure S10 in File S1, Figure S11

Figure 9. The barrier height of intrinsic potential landscape and free energy versus the rate parameters for competition model. The
barrier heights of intrinsic potential landscape versus a1 (A), L1 (B), a (C). The free energy versus a1 (D), L1 (E), a (F).
doi:10.1371/journal.pone.0086746.g009
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in File S1 and Figure S12 in File S1). Figure 11A, Figure 11B and

Figure 11C show the effects of rate parameter a1 on mutualism

system at D~0:002. We can see when the value of a1, the

mutualism ability is small, there are four stable states. Here we also

included the lower critical number or density, so the system can go

to their mutual extinction state. The coexisting state C is deeper

than the other two states A and B which represent the species

living alone shown in Figure 11A. Figure 12A shows that the

barrier height of the intrinsic potential landscape(w0) has the same

tendency with that of the population landscape. This implies an

obvious rule, mutual benefit can help the species to live and

reproduce. As a1 increases, the cooperative effect on species SA

becomes stronger, the coexisting state C become more stable and

the escape time lntC becomes longer as the barrier height BaC

increases shown in Figure 11B. It implies that when the

cooperative effect increases, the system will go to the coexisting

stable state. With the increasing of the cooperative effect, the

species can coexist in larger population than their respective

carrying capacity.

Figure 11D, Figure 11E and Figure 11F show the effects of rate

parameter L1 on mutualism system with D~0:002. When L1

increases, the lower critical number or density of species SA

becomes larger, so the survival alone basin A of species SA

becomes less stable and shallower while the other survival alone

state B becomes more stable and deeper (The barrier height BaB

increases, BaA and BaC decrease as L1 increases shown in

Figure 11D. The escape time lntC from basin C has positive

correlation with BaC shown in Figure 11E.) When the lower

critical number of species SA becomes larger further, the species

SA will become extinct easily. Figure 12B shows barrier height of

the intrinsic potential landscape(w0) has the same tendency with

that of the population landscape.

Figure 11G, Figure 11H and Figure 11I show the effects of rate

parameter a which means the relative birth rate of species SB on

mutualism system with D~0:002. When a increases, the relative

birth rate of species SB becomes larger, so the survival alone basin

B of species SB becomes more stable and deeper (The barrier

height BaB increases slightly.) The other survival alone state A and

the coexisting state C also becomes more stable and deeper shown

in Figure 11G. The escape time lntC becomes longer according to

the tendency of BaC shown in Figure 11H. It implies a rule that

the increase in population growth of species SA can lead to the

result of greater number of species SB, and vice versa. Figure 12C

shows the barrier height of the intrinsic potential landscape(w0) has

the same tendency with that of the population landscape.

Figure 11C, Figure 11F and Figure 11I show the heat

dissipation rates decrease then increase when the parameter

a1, L1, a increase. When the parameters a1~a2~0:1,
L1~L2~0:5, a~1:0, the system stays at a symmetrical landscape

topography that the depths of the basin A and basin B have the

same value. In this case, these two basins both have less

contribution to the HDR since the flux in coexisting basin C is

much larger than those in basin A or B. As the three parameters

increase or decrease, one area of the basin A or B becomes

generally more dominant than that of the symmetric landscape

topography in addition to the area of basin C. Since the area of

dominant flux expands, the heat dissipation rate becomes larger

and the system needs to consume more energy.

Figure 12D and Figure 12F shows that the free energy increases

as a1 and a increase.Figure 12E shows the free energy increases as

L1 decreases. We can see there is no discontinuous changes in the

first derivative of the free energy since there is no phase transition

phenomenon.

Quantifying the kinetic paths for the non-equilibrium
ecosystems

We showed the kinetic paths for the ecosystems on the

landscapes(see the Materials and Methods section 3 for details).

Figure 13A and Figure 13B show the kinetic paths on the intrinsic

potential landscape w0 for competition model (We use the

parameters a1~0:25, a2~0:1, L1~L2~0:3, a~1:0 which has

no coexisting state C in order to see the paths clearly here.) and for

mutualism (a1~a2~0:1, L1~L2~0:5, a~1:0) model respec-

tively. Figure 13C and Figure 13D show the kinetic paths on the

population potential landscape U for competition model and

mutualism model with D~0:01. We can see the paths by purple

line from state A and state B are quite different from the paths by

black line from state B to A in Figure 13A and Figure 13C. The

paths from A to C (from B to C) by purple line and the paths from

C to A (from C to B)by black line are shown in Figure 13B and

Figure 13D. We can see these pathways do not follow the gradient

paths on both the intrinsic potential landscape and the population

potential landscape due to the non-zero flux. The pathways do not

necessarily pass the saddle point which is not similar with the

equilibrium system. The forward and backward kinetic paths are

irreversible which provides a clear signature of the non-equilib-

rium system. We can explore the detailed dynamical mechanism

of ecosystems by quantifying the kinetic paths.

Figure 10. The barrier height of the population landscape, escape time and dissipation rate versus the diffusion coefficient for
mutualism model. (A) The barrier height of the population landscape U versus the diffusion coefficient D. (B) The escape time versus the barrier
height of the population landscape. (C) The dissipation rate versus the diffusion coefficient D.
doi:10.1371/journal.pone.0086746.g010

The Potential and Flux Landscape Theory of Ecology

PLOS ONE | www.plosone.org 10 January 2014 | Volume 9 | Issue 1 | e86746



Quantifying the global stability and dynamics for Canada
lynx and snowshoe hare population cycle

The lynx-snowshoe hare cycles show the typical predator-prey

behaviors which many researches have tried to do realistic

modeling on [2,22,23]. The modeling equations describing the

behavior of lynx-snowshoe hare cycles were proposed and there

exists limit cycles under much wider scope of parameters with

consideration of the Holling-type II functional responses for lynx

and Holling-type III functional responses for general predators,

such as coyote and great horned owl in the boreal forest [2,22–24].

Here we use a model of lynx-snowshoe hare cycles shown as

[22–24]:
dH

dt
~rH(1{H=k){

cH2

H2zg2
{

aHL

Hzm
,

dL

dt
~sL(1{

qL=H), where H and L are the population density of hares and

lynx. r is the growth rate of hares, k is the carrying capacity, c is

the maximum killing rate of general predation, g is the half-

saturation constant for general predation [22–24]. a is the

maximum killing rate of lynx, m is the half-saturation constant

for lynx’ predation [22–24].

We can not ensure which oscillation is more robust by only the

analysis of the local stability of differential equations. Therefore,

we have explored the stochastic dynamics of this model and

quantified the global stability using our landscape and flux theory.

Figure 14A shows the population potential landscape with the

basic set of parameters [22]. Figure 14B shows the sensitivity of

each parameter with respect to the landscape topography through

the barrier heights which can be used to quantify the robustness

and global stability of the lynx-snowshoe hare cycles. The

parameters decrease by {20%,{10%,{5% and increase by

5%, 10%, 20% of their own values. The color bars which are not

displayed for each parameter, such as the disappearances of black

and red bars for parameter r, indicate the disappearance of the

periodical oscillations for that value of certain parameters. We can

see the changing of r have significant impact on the robustness of

the oscillation while the changes of the parameter c and g have less

significant impacts on the robustness of the oscillation. We showed

a more detailed analysis of the robustness for changing parameter

r in Figure 14C. There exists an optimal value r in Figure 14C.

The optimal value of r leads to a more robust and stable ecological

Figure 11. The barrier height of the population landscape, escape time and dissipation rate versus the rate parameters for
mutualism model. (A) The barrier heights of the population landscape versus a1 . (B) The escape time versus barrier height of the population
landscape for changing a1 . (C) The dissipation rate versus a1 . (D) The barrier height of the population landscape versus L1 . (E) The escape time versus
barrier height of the population landscape for changing L1 . (F) The dissipation rate versus L1 . (G) The barrier height of the population landscape
versus a. (H) The escape time versus barrier height of the population landscape for changing a. (I) The dissipation rate versus a.
doi:10.1371/journal.pone.0086746.g011
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oscillation of hares and lynx. The barrier heights from the

potential landscape topography can be used to quantify the global

stability and the robustness of the oscillations. We can explore

which set of parameters will lead the ecosystem to have more

robust oscillation with higher barrier heights. This will help to

design strategy to preserve the ecosystems.

Conclusion

Stability and dynamics are crucial for understanding the

structure and function for ecology. Ecological stability is

commonly defined as Lyapunov stability to describe the global

stable behavior of ecosystem upon perturbations.Unfortunately, in

general, Lyapunov stability cannot be assessed because explicit

Lyapunov function can hardly be found. In this study we have

illustrated a general method to explore the Lyapunov global

stability of the ecosystem through the quantification of the

underlying intrinsic landscape. It can be used to explore more

general complex ecosystem where the situation can only be studied

case by case before. We found the dynamics of the ecosystems is

not only determined by the gradient of the potential landscape but

also by an additional curl flux force from breaking down the

detailed balance. This provides a new way to explore the general

dynamics in non-equilibrium regime for ecosystems.

We considered three important ecological systems with the

interactions between two species: the predation model, the

competition model, the mutualism model and a realistic lynx-

snowshoe hare model. Multiple attractors and limit cycle attractor

with a distinct Mexican hat shape emerge from these cases. We

found the quantitative measure for global stability through barrier

height. The non-equilibrium free energy can reflect the global

phases of the underlying ecosystems and the transition regions

between the global phases. We quantified the pathways of

ecosystem which do not follow the gradient path on the landscape

and are irreversible. We quantified the kinetic speed from one

stable state basin to another of the ecosystems and linked with the

underlying landscape topography through the barrier height

between the basins of attractions.

For ecosystems, the stability is directly related to the survivals of

every species. We showed the effects of parameters representing

the interactions among species on the global natures such as

landscape topography represented by barrier height, kinetics speed

represented by escape time and the thermodynamic dissipation by

the entropy production or heat dissipation rate in these

ecosystems. Therefore we can quantify the change of the stability

by increasing or decreasing the interaction parameters, respec-

tively. These results can help us to design more stable ecosystems.

The ecosystem dynamics shares some common global features

as the biochemical systems such as gene-gene regulations, in terms

of the underlying landscapes, the global stability and dynamics,

kinetic rate and pathways. There are also significant differences

between these two types of systems. First of all, the ecosystems and

gene-gene regulation systems are at completely different level, one

is on the population species and the other is within the cell.

Second, their components have different sensitivity against

changes. On the one hand, it is relatively easier to mutate the

genes and harder to mutate the species. On the other hand, it is

relatively easier to change the link between the species due to the

sensitivity of ecosystems to the environment rather than the gene-

gene regulations. Third, the ecosystems depend more sensitively to

the outside input than the gene-gene regulations.

It is worth mentioning here that the landscape ecology is an

emerging subfield in ecology. The landscape ecology models

concentrate on spatial heterogeneity with space probabilistic

methods [25,26]. Although these methods and our theory all

focus on the dynamical evolution in probability, we concentrate on

the probability landscape and flux in the population space rather

than in the geographical space as in the landscape ecology models.

Figure 12. The barrier height of intrinsic potential landscape and free energy versus the rate parameters for mutualism model. The
barrier heights of intrinsic potential landscape versus a1 (A), L1 (B), a (C). The free energy versus a1 (D), L1 (E), a (F).
doi:10.1371/journal.pone.0086746.g012
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The realistic models are usually more complex. The models

often have more parameters controlling the dynamical behaviors

of the ecosystem. We can apply our potential and flux landscape

framework to quantify the stability of those systems irrespect to

how complicated the underlying processes dictated by the

differential equations may be. Furthermore, we can explore the

set of parameters for more stable system by the underlying

landscape topography quantified by the barrier heights. Thus the

parameter-control can be realized to achieve the ecological

stability and ecological decision makings.

For a mutualism model like honeybee and flowering plants, the

local analysis of the differential equations can only give the

existence of the stable states and local stability but not the global

robustness of the stable states. The honeybee and flowering plants

can coexist in a wide range of their dynamical parameters. Our

potential and flux landscape framework can give in which

conditions the honeybee and flowering plants can more robustly

coexist. We can also quantify the changes of the robustness of

ecosystem through the changes in controlling parameters for the

underlying landscape topography.

We can also use our potential and flux landscape theory to

explore the interactions of multi-species as a multi-node network

[15,27]. The analysis of sensitivity from the potential landscape

can explore the effects of specific parameters or wirings to

robustness and stability of the ecosystem. We can identify the key

species or wirings that are responsible for the global stability and

function of the whole ecosystem through the potential landscape

topology.

The stability of ecosystems is a challenging issue. We have

focused on our discussion with low dimensional models in this

study. In realistic ecosystems, the global stability can seldomly be

quantified by just exploring the stability with a few differential

equations. The stability must be viewed as a multi-dimensional

problem. It is determined by many internal and external degrees

of freedom including population density, temperature, space,

age,other competitors and environmental factors. A population

dynamics P system (PDP) model as a tool for modeling and

simulating complex ecosystems was proposed with a high

computational modularity, efficiency, and the parallelism

[28,29]. We will need to go further to explore the even more

complex ecosystems with the consideration of other factors.

The methods developed in this study can be applied to more

complicated and realistic ecosystems to understand the global

stability, function and robustness.

Materials and Methods

Quantifying the non-equilibrium population and intrinsic
potential, flux, Lyapunov function and non-equilibrium
thermodynamics for general ecological systems with
finite fluctuations

The ecological systems are not in isolations since there are often

intrinsic and extrinsic environmental noises around them [30]. So

Figure 13. The paths for competition model and mutualism model. (A) The paths on the intrinsic potential landscape w0 for competition
model. (B) The paths on the intrinsic potential landscape w0 for mutualism model. (C) The paths on the population potential landscape U for
competition model. (D) The paths on the population potential landscape U for mutualism model.
doi:10.1371/journal.pone.0086746.g013
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the dynamics can be described as follows [20,31]:

dN=dt~F(N)zg:C. The vector F(N) is the deterministic force

that drives the system, where N is the vector of dynamical

variables, with each component of which representing different

species in the ecosystems. g is the noise force from the fluctuations.

The statistical nature of the noise can often be assumed as

Gaussian white noise: vCi(t)Cj(t’)w~2Ddij(t{t’) (dij~1, if

i~j; dij~0 if i=j) and vCi(t)w~0. D is the diffusion coefficient

representing the level of noise strength while G~g:gT=2 is the

scaled diffusion matrix described the anisotropy phenomenon. We

set D~DG.

Under fluctuations, the individual trajectories are stochastic and

do not have the predictive power, we should focus on the evolution

of probability distributions rather than evolution of individual

trajectories. We can explore the corresponding stochastic dynam-

ics governed by the Fokker-Planck diffusion equation [20,31] for

the temporal evolution of the probability distribution P(N,t):

LP=Lt~{+:J(N,t)~{+:(FP{D+(GP)) ð1Þ

This represents a conservation law of probability (local change is

due to net flux in or out). The diffusion equation essentially

describes the probability of finding the state N(t) in the state space

which is driven by the driving force F. The probability flux vector

J of the system in population space N is defined as:

J(N,t)~FP{D+(GP).

In steady state, LP=Lt~0, therefore +:J(N,t)~0. J=0 means

the detailed balance is broken and the ecosystem is in non-

equilibrium state. The divergence-free property implies the flux J
is rotational. From the definition of J(N,t), one can write the force

decomposition: F~{DG+UzJss=PsszD+:G. In this way, the

driving force F can be decomposed into the gradient of the

potential U , the divergence of the diffusion coefficient and the curl

probability flux. Therefore the global nature can be determined by

the non-equilibrium population potential U characterizing the

probability landscape of the whole population space, the non-

equilibrium local dynamics and their global properties can be

determined by both the gradient of the potential landscape and the

rotational curl flux [17]. This is in contrast with the zero flux case

for detailed balance of equilibrium systems, where the global

nature is determined by the equilibrium potential, and the

dynamics is determined by the gradient of the equilibrium

potential.

The steady state probability distribution under the fluctuation

and the non-equilibrium population potential of ecosystems is

quantitatively linked by: Pss(N)~exp({U)=Z, where Z is the

partition function for non-equilibrium ecosystems defined as

Z~
Ð

exp({U)dN. Then the entropy of the non-equilibrium

Figure 14. The potential landscape, barrier height of the population landscape and the sensitivity of parameters for lynx-snowshoe
hare model. (A) The population potential landscape for lynx-snowshoe hare model. (B) The barrier heights versus changing parameters. The basic
set of the parameters are: r~1:75, k~8, c~0:1, g~1:25, a~505, m~0:3, s~0:85, q~212. (C) The barrier heights versus the hares’ rate of
population growth.
doi:10.1371/journal.pone.0086746.g014
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ecosystem is given as [14,18,32–34]: S~{
Ð

P(N,t)lnP(N,t)dN,

and the energy of the non-equilibrium ecosystem is given as:

E~D
Ð

UP(N,t)dN~{D
Ð

ln½ZPss�P(N,t)dN. Therefore, the

free energy F of the non-equilibrium ecosystem can be defined as:

F~E{DS~D(

ð
P ln(P=Pss)dN{lnZ): ð2Þ

The free energy is a combination of non-equilibrium energy and

entropy, suggesting the first law of non-equilibrium thermody-

namics for ecosystems. The free energy decreases in time

monotonically until it reaches its minimum value, F~{DlnZ

[14,18,32–34]. The free energy of these non-equilibrium ecosys-

tems never increases, suggesting the second law of non-equilibrium

thermodynamics for ecosystems. We can use the free energy to

explore the global stability of non-equilibrium ecosystems with

finite fluctuations from the environments or intrinsic sources.

We also investigated the derivatives of the entropy in the

time evolution [14,18,32–34]. It can be decomposed as

follows: _SS~{
Ð

(dP=dt) lnPdN~
Ð

(J:D{1:J)=PdN{
Ð

(J:D{1:

(F{+:D))dN~ _SSt{ _SSe The first term is entropy production rate
_SSt, having the physical significance of the total entropy change of

system and environment. It is always non-negative corresponding

to thermodynamic second law. The last term is the heat dissipation

term _SSe from the environments, and it can be either positive or

negative [14,18,32–35]. The entropy of the ecosystems is not

always increasing, but the free energy of the ecosystems reduces

itself to a minimum in time. It can be used as an optimal principles

to explore the topologies and the design of ecosystems.

Quantifying the non-equilibrium intrinsic potential and
flux, Lyapunov function and global stability for general
ecosystems with zero fluctuations: deterministic
ecosystems

The essence of the stability-problem is to analyze that how a

ecosystem returns to the original state under an initial perturba-

tion. Lyapunov function is traditional used to quantify the global

stability of dynamical ecosystems. But the population potential U

we have obtained does not necessarily have the property of the

Lyapunov function. [14–18, 32–34, 36–40]. Some analytical

solutions of the Lyapunov function can be found for special

simplified ecosystem models [5,8] and they can only be analyzed

case by case. For complex real ecosystems, it is still challenging to

find a proper Lyapunov function. We show here a general

approach to obtain the Lyapunov functions for dynamical

ecosystems.

The underlying intrinsic potential for the dynamic system can

be obtained under the weak noise limit D%1. Therefore, we can

expand the population potential U(N) according to the fluctuation

strength D, and the associate probability P(N) is as the following

form [18,35,36,38,41]:

P(N)~exp({(w0(N)=Dzw1(N)zDw2(N)z � � � ))=Z ð3Þ

where Z~
Ð

exp({U(N))dN. We can substitute the expanded

equation to the Fokker-Plank diffusion equation.Therefore we

have the D{1 order expansion of the Fokker-Plank diffusion

equation: H~F:+w0z+w0
:G:+w0~0. The equation w0 followed

is called Hamilton - Jacobi equation(HJE). We can solve the

Hamilton-Jacobi equation which is zero-fluctuation limit of the

Fokker-Planck equation to get the intrinsic potential w0 by a

numerical method - level set method using the Mitchell’s level-set

toolbox [42].

Then we can study the deterministic equation for w0(N) [18,41].

We can explore the time evolution of the w0(N) in the zero

fluctuation (D) limit:

_ww0(N)~ _NN:+w0~F:+w0~{+w0
:G:+w0ƒ0 ð4Þ

Because G is positive definite, the value of w0(N) monotonously

decreases under the deterministic evolution equation (zero

fluctuation limit). Therefore w0 is a Lyapunov function, which

can be used to quantify the global stability of the ecosystems. In

addition, w0 is related to the population potential U under weak

noise limit by U~w0=D. So w0 is linked with the steady state

probability which can quantify the global properties for ecosystem.

For the deterministic systems, we can take the zero-fluctuation

limit and follow the procedures described above to obtain the non-

equilibrium energy, entropy and free energy as well as the

corresponding non-equilibrium thermodynamics. Furthermore,

we can also recover the force decomposition for the deterministic

ecosystems in zero fluctuation limit as gradient of non-equilibrium

intrinsic potential {G:+w0 and steady state intrinsic divergent free

curl flux JssDD?0: F~{G:+w0z(Jss=Pss)DD?0:. From the Ham-

ilton-Jacobian equation above, we see that (Jss=Pss)DD?0
:+w0~0.

This means the gradient of the non-equilibrium intrinsic potential

w0 is perpendicular to the intrinsic flux under the zero-fluctuation

limit [18,36,38].

Quantifying the paths of ecosystems
Quantification of the pathways of the ecosystems gives us an

opportunity to explore the ecological dynamical process. We

assume the path probability starts from initial configuration Ni at

t~0, and end at the final configuration of Nf at time t. The path

integral formula is [43,44]:

(Nf ,tDNi,0)~

ð
DNexp½{

ð
L(N(t))dt� ð5Þ

where L is the Lagrangian of the ecosystem [43,44]:

L~
1

4
D{1( _NN{F):D{1:( _NN{F)z

1

2
(D:+):(D{1:F) ð6Þ

The path integral over DN represents the sum over all possible

paths connecting Ni at time t~0 to Nf at time t. The term

(1=4) D{1 ( _NN{F):D{1:( _NN{F) gives the weight contribution

from specific path from the underlying Gaussian noise. The term

(1=2) (D:+):(D{1:F) gives the contribution from the Jacobian

variable transformation from the Gaussian noise to the path. The

L(N(t)) represents the weight for each path. The probability of

ecosystem dynamics from initial configurations Ni to the final state

Nf is equal to the sum of all possible paths with different weights.

Not every dynamical path contributes to the same weight. We can

identify the dominant paths which give the most contribution to

the weight. This approximation is based on the fact the weight is

exponentially weighted. The sub-leading contributions are expo-

nentially small. Therefore dominant paths which give the most

contribution to the weights can emerge. We explored the

dominant kinetic paths from one state to another for ecosystems

in this study.
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The ecological dynamical models
The ecosystems can be described by a set of nonlinear ordinary

differential equations for two species interactions. We will add

some restrictions on the models to enable them to be more

reasonable and closer to the real situation [2,45], such as

avoidance of exponential growth and existence of lower critical

bound for each species.

(1)Predation Model

The general Holling type II responses for the prey to account

the nonlinearity in interactions can be added in a predation model

proposed by Murray [2]:

dN1

dt
~N1(1{N1){

aN1N2

N1zd
~F1(N1,N2)

dN2

dt
~bN2(1{

N2

N1
)~F2(N1,N2) ð7Þ

where N1 is the normalized population of prey while N2 is the

normalized population of predator.The parameter a is the relative

death rate or the interaction strength for the prey. The parameter

b is the ratio of the linear birth rate of the predator to that of the

prey. The parameter d is the relative saturation rate of the prey.

The system has two general saddle points: one is (0,0) representing

that none of the species exists. The second one (1,0) represents the

prey at their carrying capacity in the absence of predators [2]. The

second point is stable along the N1 population axis and unstable

along the N2 population axis. There is also a critical point which is

the unstable center of the limit cycle or the stable point in different

parameter ranges. The system has a stable limit cycle oscillation

when we set a~1:5, b~0:1, d~0:2.

(2) Competition Model

The realistic competitive model should have with a lower

critical bound, which means the creatures would perish once the

size of the population is below this threshold. The model is shown

as follows [45]:

dN1

dt
~N1(N1{L1)(1{N1){a1N1N2~F1(N1,N2)

dN2

dt
~aN2((N2{L2)(1{N2){a2N1)~F2(N1,N2) ð8Þ

where N1 and N2 are the normalized populations of the two

competitive species SA and SB. L1,L2 are the lower critical bounds

for species SA,SB, respectively. The ranges of L1,L2 are from 0 to

1. a1,a2 are the competitive ability for species SA,SB, respectively.

a is the relative rate of natural increase for species SB [45].

We have explored the phase analysis of the system. The two

kinds of population which are both at zero mean the two species

both are at extinct state (0,0) (Marked as O) of the system. This is

because the two groups both have lower critical density. When

there are no competitors for each species, the states: (1,0) (Marked

as A, which means the species SA exists alone.) and (0,1) (Marked

as B, which means the species SB exists alone.) that exist in

isolation are locally stable. Besides the above three states, when the

values of a1 and a2 meet certain conditions, the system can have

another local stable state which corresponds to the coexistence of

the two species (Marked as C). Here, we set a1~a2~0:1,
L1~L2~0:3, a~1:0 since it has these four states.

(3) Mutualism Model

We will consider the two mutualism species both having lower

critical bound. This realistic mutualism model can be described as

[45]:

dN1

dt
~N1(N1{L1)(1{N1)za1N1N2~F1(N1,N2)

dN2

dt
~aN2((N2{L2)(1{N2)za2N1)~F2(N1,N2) ð9Þ

where N1 and N2 are the normalized populations of the two

mutualism species SA and SB. L1,L2 are lower critical points for

species SA and SB, respectively. The ranges of L1,L2 are from 0 to

1. a1,a2 are the mutualism ability for species SA,SB, respectively. a
is the relative rate of natural increasing for species SB [45].

We have explored the phase analysis of this system. The two

kinds of population which are both at zero mean the trivial

solution (0,0) (Marked as O) of the system. This is because the two

groups having a lower critical density. When there is no mutual

helper for each species, the states: (1,0) (Marked as A, which means

the species SA exists alone.) and (0,1) (Marked as B,which means

the species SB exists alone.) that exist in isolation are locally stable.

Besides the above three points, the system has another local stable

point which corresponds to the coexistence of the two species

(Marked as C). Here, we set a1~a2~0:1, L1~L2~0:5, a~1:0
for the system has these four states completely.
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