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Exosomes are small membranous vesicles that contain proteins, lipids, genetic material,

and metabolites with abundant information from parental cells. Exosomes carry

and deliver bioactive contents that can reprogram the functions of recipient cells

and modulate the tumor microenvironment to induce pathological events through

cell-to-cell communication and signal transduction. Tumor-derived exosomes (TDEs)

in head and neck squamous cell carcinoma (HNSCC) are involved in most aspects

of cancer initiation, invasion, progression, immunoregulation, therapeutic applications,

and treatment resistance. In addition, HNSCC-derived exosomes can be used to

obtain information on diagnostic and therapeutic biomarkers in circulating blood and

saliva. Currently, the biology, mechanisms, and applications of TDEs in HNSCC are still

unclear, and further research is required. In this review, we discuss various aspects of

exosome biology, including exosomal components, exosomal biomarkers, andmolecular

mechanisms involved in immunoregulation, cancer metastasis, and therapy resistance.

We also describe recent applications to update our understanding of exosomes

in HNSCC.

Keywords: exosomes, head and neck squamous cell carcinoma, tumor microenvironment, biomarkers, therapy

resistance

INTRODUCTION

Head and neck cancer (HNC) is one of the most widespread malignancies worldwide. Although
continual progress has been made in the treatment of HNC, the 5-year overall survival rate
of advanced HNC remains low at approximately 50% (1, 2). HNC frequently develops from
mucosal surfaces of the mouth, including the oral cavity (tongue, lip, buccal, gingiva, and
palate), oropharynx, larynx, and perioral skin carcinoma (3). More than 90% of HNCs are head
and neck squamous cell carcinoma (HNSCC). The exact etiology of HNSCC remains unclear;
however, tobacco and alcohol consumption are major risk factors for HNSCC, as demonstrated
in epidemiological studies. Mucosal human papilloma virus (HPV) is also related to a subset of
HNSCCs;∼25.9% of HNSCCs are HPV positive, whereas the prevalence of HPV in oropharyngeal
squamous cell carcinoma (SCC) is 34.1%, which is higher than that in oral SCC (4).

Exosomes, which were first discovered in 1983, are 30–150 nm mature double membrane
multivesicular bodies (MVBs) originating from the endosomal pathway (5). Exosomes exist
in the extracellular space and in liquids, such as blood, urine, and saliva (6). Exosomes are
associated with many physiologic aspects of the disease via intercellular communication and
signal transduction, indicating that exosomes have potential clinical applications as biomarkers
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and therapeutic targets. Tumor-derived exosomes (TDEs)
contain a cytomembrane, proteins, nucleic acids, lipids, and
other substances from parental tumor cells (7). Moreover,
exosomes are known to be involved in nearly all stages of
cancer (8–11). Growing evidence has demonstrated that TDEs
participate in the development, progression, and treatment of
cancer by mediating intercellular communication and signal
transduction (12, 13). The bioactive components of HNSCC-
derived exosomes, such as microRNAs, transcription factors, and
oncogenic proteins, play key roles in mediating tumorigenesis,
tumor microenvironment reprogramming, immune tolerance,
promoting metastasis, and therapy resistance. For example,
intracellular annexin 1 (ANXA1) regulates epidermal growth
factor receptor (EGFR) activity and alter the release of
EGFR-containing TDEs in HNCs (14). Exosomes produced
by hypoxic oral SCC cells deliver viral miR-21 to normoxic
cells, inducing the epithelial-mesenchymal transition (EMT)
to promote cell migration and invasion (15). Another study
showed that exosomal nuclear factor-κB-activating kinase-
associated protein 1 (NAP1) derived from oral cancer promotes
the cytotoxicity of natural killer (NK) cells via activation
of the interferon regulatory factor (IRF-3) signaling pathway
in recipient cells (16). In addition, miR-34a-5p in cancer-
associated fibroblast (CAF)-derived exosomes in oral SCC
stimulates the proliferation and metastasis of oral cancer cells
through the AKT/glycogen synthease kinase-3β/β-catenin/Snail
signaling cascade (17). A recent study demonstrated that
thrombospondin 1 derived from oral SCC exosomes is also
involved in the polarization of macrophages to M1-like tumor-
associated macrophages and promotes the invasion of cancer
cells (18). HNSCC-derived exosomes containing EphrinB1 may
manipulate the tumor microenvironment through induction of
tumor innervation (19). Additionally, Sento demonstrated that
oral SCC-derived exosomes promote tumor growth by activating
the phosphatidylinositol 3-kiase (PI3K)/AKT, mitogen-activated
protein kinase (MAPK)/extracellular signal-regulated kinase
(ERK), and c-Jun N-terminal kinase-1/signal transducer and
activator of transcription (STAT) 2 pathways (20). Emerging
evidence has supported the vital role of TDEs in the development,
progression, and treatment of HNSCC.

In this review, we summarize many aspects of exosome
biology and functions in HNSCC.

BIOGENESIS, FEATURES, AND
COMPONENTS OF EXOSOMES

Inward Budding and MVB Formation
Different types of vesicles, including extracellular vesicles (EVs),
MVBs, and exosomes, have been described and often labeled
interchangeably in many previous studies. Although these
different types of vesicles share overlapping features, they have
distinct morphologies, properties, biogenesis mechanisms, and
functional roles. Plasma membrane components and enclosing
cytosolic components are incorporated into the invaginating
membrane, resulting in the formation of early endosomes
(21). Exosomes typically originate from inward budding from

the membrane and are then released into the extracellular
space via activation of Ca2+-dependent or Rab-GTPases (22).
Briefly, exosomes are generated from early endosomes, mature
into MVBs, and are then secreted into the extracellular space
upon fusion with the plasma membrane. First, exosomes
start as early endosomes, which are formed by endocytosis
of the plasma membrane. The biogenesis of exosomes and
sorting of functional cargo is precisely regulated by certain
mechanisms involving multiple factors. The most commonly
described pathway for exosomes biogenesis is the endosomal
sorting complex required for transport (ESCRT) machinery.
Four types of ESCRTs (ESCRT-0–III) are involved in regulating
MVB formation, vesicle budding, and protein cargo sorting
(23). The ESCRT mechanism is initiated and sequestrated by
ubiquitinated proteins to domains of the endosomal membrane
via ubiquitin binding subunits of ESCRT-0 in the endosomal
membrane, then interacting with the ESCRT-I and ESCRT-
II complexes inducing membrane deformation into buds.
Finally, the ESCRT-III complex separates from the MVBs
membrane (23–25). However, the machinery that drives the
load of protein cargo into ESCRT-dependent exosomes is
still unclear.

Cells also utilize ESCRT-independent pathways, involving
insphingosine-1-phosphate, ceramide, tetraspanin-enriched
microdomains, and sphingomyelinase, for exosome production
and release (26–28). These ESCRT-independent mechanisms
may participate in promoting domain-induced budding, sorting
of bioactive molecules into exosomes, segregation of cargo
within the endosomal membrane, and exosome formation.

The ESCRT-dependent and -independent mechanisms of
exosome release are based on the cell origin. In addition,
membrane proteins of lysosomes and late endosomes may be
important for the biogenesis and secretion of exosomes (29).

Regulated Secretion and Intercellular
Interactions
Exosome secretion is involved in various signaling pathways.
For example, the key regulatory role of RAB family proteins in
trafficking intracellular exosomes was demonstrated by Colombo
et al. (30). Another report showed that the Wnt pathway is
particularly important for the dysregulation of exosome release
in cancer cells (31). Additionally, the secretion of exosomes is
mediated through exocytosis-associated molecular motors and
cytoskeletal proteins (32). Spontaneous secretion of exosomes
usually occurs at the steady state; however, some conditions are
known to stimulate exosomes. Indeed, cell intrinsic signals are
known to enhance the release of high levels of TDEs from cancer
cells via activation of oncogenic signaling pathways or regulation
of membrane fusion machinery (33). In addition, evidence
suggests that microenvironmental conditions enhance exosome
release from cancer cells (15, 34). Exosomes are then released into
the extracellular environment through exocytosis or degraded by
fusing with lysosomes. As previously described, Rab GTPases are
essential regulators of exosome secretion. Furthermore, several
studies have shown that soluble N-ethylmaleimide-sensitive
component attachment protein receptor complexes, which are
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involved inmembrane fusionmachinery, may affect the secretion
of exosomes (35–37).

Ultimately, exosomes are internalized by recipient
cells through receptor-mediated endocytosis, pinocytosis,
phagocytosis, or fusion with the cell membrane, resulting in
delivery of molecular and genetic components into the recipient
cells (30). Exosomes target recipient cells after secretion into
the extracellular space and then induce changes in downstream
signaling pathways. The specificity of target recipient cells
is dependent on the type of ligand/receptor pairs present on
exosomes and recipient cells; and a study provides further insight
that glycans are key players in the process of exosomes uptake
(38). A schematic representation of exosome biogenesis and
secretion pathways is shown in Figure 1.

FEATURES AND COMPONENTS OF
EXOSOMES

Typical exosomes exhibit a particular biconcave or cup-like
shape and are observed as spheroids under transmission electron
microscopy (39). Exosome contents are rich in nucleic acids,
cytosolic/endosome proteins, and cytoskeleton components,
which have unique biological activities (40). The components
of TDEs are distinct from those of exosomes released from

healthy cells. TDEs deliver functional cargo, including oncogenes
and oncogenic proteins that can exert biological activities.
The functional cargoes, such as protein cargo, RNA cargo,
and DNA cargo, of TDEs in the tumor microenvironment
have an important role in promoting cancer progression
and metastasis (Figure 1) (33). Protein cargoes, including
different oncoproteins, immunomodulatory molecules, and
growth factors, act as mediators of tumorigenesis. TDEs also
contain abundant nucleic acids, such as microRNAs (miRNAs),
mRNA, long noncoding RNAs, and DNAs, which deliver genetic
information (41–43).

Many researchers have analyzed the functions of miRNAs in
exosomes, and various specific miRNA cargoes and extracellular
components have been detected in exosomes. These observations
highlight the specificity of exosomal miRNAs, distinct miRNA
signatures of exosomes, and various functions of exosomal
miRNAs. A series of experiments have analyzed the function
of the miRNAs in exosomes since their initial description
(44). It has been reported that there was a selection of specific
miRNA cargoes and extracellular exports in exosomes (30).
These observations highlight the specificity of exosomal
miRNAs, distinct miRNA signatures of exosomes, and various
functions of exosomal miRNAs. Exosomal miRNAs are
associated with a variety of pathological activities, including
tumorigenesis, invasion, progression, angiogenesis, metastasis,

FIGURE 1 | A schematic representation of biogenesis and components of the HNSCC-derived exosomes. Invagination of the plasma membrane form early

endosomes, followed by budding of payload into the endosomal membrane to form multivesicular endosomes (MVBs). Maturation of the late endosome through

fusion with the plasma membrane and release of exosomes. Some of the late endosome fuse with lysosomes for lysosomal degradation. The HNSCC-derived

exosomes contain various cellular ingredients, such as nucleic acids, lipid, and proteins, which act as key molecules of signaling transduction.
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and chemoresistance. However, not all exosomal miRNAs
are implicated in tumor-supportive mechanisms. miRNAs
of exosomes are highly functional, with roles in intercellular
communication and tumor microenvironment regulation,
indicating that exosomal miRNAs play important roles in
diagnostic and therapeutic applications.

In addition, exosomes contain ceramides, lipids,
sphingolipids, cholesterol, and glycerophospholipids. Because
exosomes originate from the fusion of endocytic compartments
with the plasma membrane, the protein, lipid, and double lipid
layer compositions can be used to identify exosomes. The most
commonly identified markers are ALIX and tetraspanins, such as
CD9, CD63, CD81, and CD82 (23).

FUNCTIONS OF EXOSOMES IN HNSCC

Exosomes have been identified as bioactive and informative
nano-sized MVBs that influence many aspects of the
development and progression of HNSCC. Here, we discuss
recent findings of the mechanisms through which HNSCC-
derived exosomes modulate the immune response, tumor
microenvironment, cell-to-cell communication, and tumor
invasion. We also describe exosomes as potential biomarkers
and discuss their applications in cancer therapy and
therapy resistance.

EXOSOMES AS POTENTIAL BIOMARKERS

In the clinical setting, some relevant biomarkers have been
shown to influence treatments for patients with HNSCC. Several
reports have shown that liquid biopsies, including biopsies of
circulating tumor DNA, circulating tumor cells, and exosomal
miRNAs, can have potential clinical applications in HNC
(45). Moreover, HPV status is a prognostic factor in HNSCC;
patients with HPV positivity have better responsiveness to
chemotherapy and radiotherapy and are more susceptible to
immune surveillance. In addition, miRNAs are independent
prognostic markers for patients with HPV-negative HNSCC
(46), and EGFR overexpression is associated with poorer
prognosis and outcomes in HNSCC (47). However, further
studies are needed to establish biomarkers for staging HNSCC
and facilitating therapeutic decision-making.

Exosomes modulate various pathological activities to promote
cancer cell growth, invasion, and distant metastasis. TDEs
also carry valuable genomic and proteomic information and
can provide information regarding alterations in genomic and
proteomic profiles of exosomes from patients with cancer
in response to anticancer therapies (48). Such proteomic
and genetic components are well-protected within the lipid
bilayer and can be preserved without significant loss of
functional profiling. Therefore, exosomesmay serve as promising
markers for monitoring cancer progression and therapeutic
responses (49).

TDEs can be obtained from blood or saliva of patients with
HNSCC, indicating that TDEs may represent a real-time, non-
invasive, clinically relevant biomarker of cancer progression,

and treatment responses (45, 50–53). For example, the number
of exosomes in the plasma has been shown to be a prognosis
indicator for HNSCC. Gimzewski reported that elevated exosome
numbers, exosome sizes, and interexosomes were detected in
the saliva of patients with oral cancer (54). In addition, patients
with HNSCC with advanced-stage disease and shorter overall
survival usually exhibit elevated levels of exosomes in the
plasma, indicating that plasma exosomes in HNSCC may have
applications in monitoring tumor progression (52, 54). One
previous study demonstrated that TDE signatures could serve
as candidate biomarkers for early cancer diagnosis, monitoring,
and surveillance in HPV-16-associated oropharyngeal (55).
Moreover, a non-invasive method involving Fourier-transform
infrared spectroscopy of salivary exosomes was shown to have
high sensitivity and specificity in the diagnosis of oral cancer (56).

Non-coding RNAs from plasma exosomes have been
extensively studied as potential biomarkers in HNSCC because
they are derived from whole tumor cells and may therefore
represent whole cellular RNAs (57, 58). Several studies have
reported that cancer cells can selectively pack selected miRNAs
into exosomes, and these selective exosomal miRNAs then
act as tumor suppressors or oncogenes in HNSCC (59–61).
Additionally, a hypoxic microenvironment can stimulate oral
SCC to generate miR-21-rich exosomes, which are associated
with lymph node metastasis (15). Serum exosomal miR-21
and homeobox transcript antisense RNA (HOTAIR) are also
significantly associated with the clinical characteristics of
laryngeal SCC (59). In a previous study, elevated CAF-derived
exosomal miR-196a levels were shown to be correlated with
cisplatin resistance in HNSCC through targeting cyclin-
dependent kinase (CDK) N1B and inhibitor of growth family
member 5 (ING5), indicating that this miRNA may serve as a
promising predictor of cisplatin resistance and poor survival
in HNSCC (60). A study by Zhou and colleagues revealed
that there were significant differences in expression between
exosomal miRNAs and cellular miRNAs in laryngeal SCC
(61). Furthermore, oral cancer-derived salivary exosomal
miR-512-3p and miR-412-3p may serve as potential biomarkers
(62). In another example, Inazawa and colleagues found
that exosomal miR-1246 induces cell motility and invasion
through directly targeting differentially expressed in normal
vs. neoplastic/MAPK-activating death domain-containing 2D
in oral SCC (63). Collectively, these results suggested that
exosomal miRNAs could serve as excellent diagnostic and
prognostic biomarkers.

Analysis of exosomal proteins is a novel tool for developing
exosomes as potential biomarkers for HNSCC. More than
80% of HNSCCs exhibit overexpression of EGFR in the
membrane, and hyperactivity EGFR plays an important role in
tumorigenesis development and drug-resistance mechanisms by
activating various signaling pathways, including the PI3K/AKT,
RAS/MEK/ERK, and Janus kinase (JAK)/STAT pathways, in
HNSCC. A recent study showed that EGFR can be secreted
from cells via the transport of exosomes and that these EGFR-
containing exosomes have the ability to regulate autocrine VEGF
production in endothelial cells (64). Exosomal EGFR mediates
metastasis and tumor immunity in lung cancer (65). ANXA1,
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a tumor suppressor in HNSCC, regulates EGFR activity and
exosomal phospho-EGFR release, revealing that exosomal EGFR
and phospho-EGFR may be prognostic biomarkers in HNSCC
(14). Additionally, the levels of exosomal EGFR and phospho-
EGFR are reduced after cetuximab treatment, indicating that
exosomes can serve as biomarkers to monitor cetuximab
treatment (66).

Analysis of exosome protein profiles showed that the
characteristics and functions of exosomes from HPV-positive/-
negative HNC differed significantly. HPV-positive exosomes had
low p53 levels and did not contain cyclin D1, but did harbor p16,
E6/E7, and the T-cell inhibitory protein PTPN11 (67). A recent
study revealed that proteome analysis of salivary extracellular
vesicles may yield prognostic biomarkers for oral SCC (68).

The microenvironment of HNSCC is highly
immunosuppressive, and the programmed cell death (PD)-
1/PD-ligand 1 (PD-L1) pathway plays an important role
in HNSCC. High levels of PD-L1 are associated with poor
outcomes in various types of cancer, including HNSCC. PD-1
checkpoint inhibitors were found to be safe and effective in
platinum-refractory recurrent or metastatic HNSCC (69, 70).
Furthermore, a study by Whiteside and colleagues indicated
that PD-L1+ exosomes in the plasma were related to immune
suppression and disease progression. Additionally, blocking
PD-L1+ exosome signaling to PD-1+ T cells attenuated immune
suppression in patients with HNSCC (71). In another study,
Ferris reported that JAK2/STAT1 signaling was involved in
EGFR-mediated immune evasion in HNSCC and that therapies
targeting this signaling pathway may be beneficial for blocking
PD-L1 upregulation in HNSCC (72). Moreover, elevated heat-
shock protein 90 levels in TDEs have been reported to serve as
potential biomarkers for clinical stage and prognosis in patients
with oral cancer (73). A recent study showed that plasma-
derived exosomes were associated with disease progression of
HNSCC after separation into CD3+ and CD3− fractions (74).
Furthermore, HNSCC-derived exosomes have been shown to

exhibit synergistic interactions with invadopodia, indicating
that exosomes play key roles in promoting cancer invasion (35).
TDEs inducing transcriptome reprogramming can cause cancer-
associated pathologies in HNSCC, including angiogenesis,
immunoregulation, and metastasis; these functional differences
in HNSCC may serve as candidate markers (75).

A growing body of evidence has shown that the characteristics
of TDEs and exosomal components (e.g., exosomal miRNAs,
exosomal proteins) may serve as potential noninvasive
biomarkers for the detection, monitoring, and treatment of
HNSCC (Figure 2). However, methods for TDE isolation and
separation are complicated and time-consuming, and additional
studies of TDEs as non-invasive biomarkers are needed.

ROLES IN REGULATING THE TUMOR
MICROENVIRONMENT

Immune Cells
The tumor microenvironment is formed by stromal cells and
is associated with malignant progression (76). Moreover, TDEs
play important roles in regulating the tumor microenvironment
of HNC (77). The immunological activities of exosomes are
related to many aspects of immune regulation, including antigen
presentation, immune activation, immune surveillance, and
immune suppression. Tumor-infiltrating myeloid-derived
suppressor cells (MDSCs), tumor-associated macrophages
(TAMs), and regulatory T cells (Tregs) are known mediators
of the immunosuppressive microenvironment and limit
the efficacy of immune therapy in HNC (78). Exosomes
that contain immunosuppressive molecules can facilitate
immunosuppression in cancer, which helps cancer cells escape
from immune responses, thereby promoting tumorigenesis
(79, 80). Additionally, exosome-associated bioactive proteins
and RNAs have been shown to regulate the immune system
(81, 82). Exosomes may mediate immune suppression through

FIGURE 2 | HNSCC-derived exosomes act as biomarkers. Exosomal biomarkers screening of diagnostics, prognosis, or therapeutics in HNSCC.
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directly/indirectly inhibiting the functions of T cells and NK
cells and then altering the number or activity of immune
suppressor cells, including MDSCs, Tregs, and HLA-DR cells
(83). Exosomes are also involved in different soluble factors such
as check-point receptor ligands (PD-L1), inhibitory cytokines
(IL-10 and TGF-β1), death receptor ligands (FasL), ectoenzymes,
and prostaglandin E2 responsible for antitumor immunity in
the tumor microenvironment (84, 85). In lymphocytes and NK
cells, exosomes are associated with disease stage and activity in
patients with HNC, suggesting that plasma exosomes may be
related to HNC progression (86). In cancer, exosome signaling
may affect the immune system by inhibiting the maturity of
antigen-presenting cells and TDEs that carry and transfer
tumor antigens to antigen-presenting cells, thereby inducing
T cell- or NK cell-dependent immune responses (87). In a
similar study, TDEs containing FasL and tumor necrosis factor
α were found to induce T-cell apoptosis, thereby establishing
an immunosuppressive tumor microenvironment to support
tumor progression (88). TDEs derived from multiple HNCC cell
lines induce a suppressive phenotype in CD8+ T cells through
galectin-1, indicating that tumor-derived immunosuppressive
exosomes may be potential therapeutic targets for preventing
T-cell dysfunction and enhancing antitumor immune responses
(89). As previously mentioned, the levels of oral SCC-derived
FasL+ microvesicles are correlated with tumor burden, and
the FasL+ microvesicles are involved in mediating apoptosis
in activated T lymphocytes via receptor and mitochondrial
pathways (51). A recent study showed that CD4+CD39+ Tregs
produce adenosine by exposure to CD39+CD73+ exosomes
from plasma in patients with HNSCC, thereby supporting
tumor immune escape (90). Additionally, a recent study showed
that oxygen pressure regulates the tumor microenvironment
by altering exosomal miRNAs, which subsequently regulate
the miR-21/phosphatase and tensin homolog (PTEN)/PD-L1
axis (91).

HPV-Positive and -Negative Exosomes
The molecular and functional profiles of exosomes from HPV-
positive and -negative HNSCC are different. An early study
demonstrated that HNSCC-derived exosomes have different
effects on the immune system in HPV-positive and -negative
HNSCC. However, there are no differences in suppressive
CD4+ and CD8+ T cells between HPV-positive and -negative
exosomes, although the responses of human monocyte-derived
dendritic cells (DCs) and mature DCs to exosomes are
different. HPV-positive exosomes promote DC maturation,
whereas HPV-negative exosomes suppress DC maturation.
HPV-negative exosomes suppress the expression of antigen
processing machinery, whereas HPV-positive exosomes do not
(67). HPV-positive exosomes that promote DC maturation may
also stimulate antitumor immune responses, thereby improving
clinical outcomes in patients with HPV-positive HNSCC (67).
HPV has been shown to utilize host exosomes for cell-cell
communication and to induce EGFR expression and AKT
signaling in recipient cells. One study found that exosomal NAP1
derived from oral cancer cells can promote the activation of

NK cells by increasing the expression and phosphorylation of
IRF-3 (92).

Fibroblasts
CAFs are particularly important for regulating tumor
progression. Mesenchymal stem cells reprogrammed by
TDEs mediate pro-angiogenic activity and convert stromal cells
into CAFs; these cells are a major component of the tumor
microenvironment and play key roles in promoting tumor
progression (93). HNC-derived CAFs are innately resistant
to cisplatin. Indeed, a study by Zhang showed that exosomal
miR-196a derived from HNC causes cisplatin resistance by
targeting CDKN1B and ING5, highlighting the roles of CAF-
derived exosomal miR-196a in promoting cell proliferation and
inhibiting cell apoptosis in the HNC microenvironment (60).
Moreover, high expression of microfibril associated protein 5 in
CAF-derived exosomes may contribute to the proliferation and
metastasis of oral SCC via activation of the MAPK and AKT
signaling pathways (94). Additionally, TDEs have been shown to
deliver caveolin-1 to the tumor microenvironment to mediate
the EMT and CAFs in tongue SCC (95). In a similar study,
CAF-derived exosomal miR-34a-5p was found to be associated
with oral cancer cell proliferation and metastasis in oral SCC
(17). Thus, TDEs are emerging as potent mediators of the tumor
microenvironment in HNSCC (Figure 3).

ROLES OF TDES IN REGULATING CANCER
PROGRESSION AND METASTASIS

Many studies have evaluated the roles of TDEs in cancer
initiation and progression. Numerous molecules in TDEs
have been implicated in the initiation and progression of
cancer cells or the tumor microenvironment (96). Indeed,
TDEs can transform epithelial cells into cancerous cells,
thereby initiating tumorigenesis. Studies have shown that
TDEs reprogram the functions of recipient cells and facilitate
premetastatic niche transformation to promote metastasis
through cell-cell communication or autocrine signals.
Additionally, TDEs facilitate tumor progression by delivery
of factors necessary for sustaining tumor growth via utilizing
autocrine or juxtacrine signaling (97). Furthermore, many
studies have shown that RNA from TDEs can promote
metastasis (57). The shuttling of miRNA molecules may
cause tumorigenesis, tumor progression, and mRNA entry
into recipient cells, resulting in protein translation and
metastasis (44). The EMT has been implicated in cancer
cell progression and metastasis, and TDEs deliver functional
complexes by membrane fusion with recipient cells and binding
of the recipient cell membrane receptors to promote the
EMT (98).

Exosomes derived from hypoxic oral SCC cells promote
cell migration and invasion by delivering miR-21 to normoxic
cells in HNSCC (15). Nakashima conducted a study indicating
that miR-200c-3p had invasive capacity in the human oral
SCC microenvironment (99). Moreover, CAFs contribute
to the proliferation and metastasis of oral cancer cells via
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FIGURE 3 | A macroscopic view of the functions of HNSCC-derived exosomes in the tumor microenvironment. Exosomes reduce tumor immunosurveillance by

interfering with the immune system: (a) inhibit the functions of immune cells; (b) suppress the activity of Tregs, MDSCs; (c) interference the differentiation of DC;

(d) TAMs polarization. HNSCC-derived exosomes mediated metastasis via stimulating proliferation of endothelial cells, EMT, CAFs, and promote angiogenesis as well

as re-programming of the stromal compartment. Also HNSCC-derived exosomes influence cancer progression, promoting cancer cell growth, and invasive behavior

of cancer cells and development of therapy resistance.

exosome-mediated paracrine miR-34a-5p signaling (17). Several
studies have reported the heterogeneity of transforming growth
factor (TGF) β signaling in oral cavity SCC. TGFβ expressed
on the surface of TDEs can differentiate fibroblasts into
myofibroblasts, thereby promoting tumor progression and
metastasis in oral cavity SCC (100). Additionally, exosomes
target different organs via variations in integrin molecules
expressed on the surface. Released exosomes can be delivered
to distant organs to promote oncogenic activity by constructing
a suitable premetastatic tumor microenvironment for tumor
migration. Thus, TDEs contribute to the development of this
premetastatic niche and induce metastatic potential in recipient
cells. A recent study showed that exosomes can transport
EGFR to the liver to remodel the liver microenvironment
(101). TDEs can transfer oncogenic EGFR to endothelial cells,
triggering upregulation of vascular endothelial growth factor
(VEGF) and autocrine VEGF in endothelial cells exposed
to cancer cell-related MVs (64). Moreover, oral cancer cell-
derived MVs promote endothelial cell angiogenesis through the
Shh/RhoA signaling pathway (102). Additional experiments have
demonstrated that exosomal miR-150 promotes tumorigenesis
by upregulating VEGF, and another study showed that
HNSCC-derived exosomes stimulate angiogenesis in vitro

and in vivo through functional reprogramming of endothelial
cells (103). These studies suggest that exosomal miRNA could
affect the biology of endothelial cells; then the exosomal
miRNA induces angiogenesis in HNC through different
regulation pathways.

TDEs modulate the immune response in tumor
microenvironment interactions implicated in cancer progression.
Oral SCC-derived exosomes induced M1-like TAMs polarized
and promoted tumor metastasis (18). And tumor released
exosomes containing EphrinB1 potentiate induce axonogenesis
will promote tumor innervation in HNSCC (19). And the
delivery of miRNA-21-abundant exosomes promote EMT-
mediated M2-like polarization of TAMs may promote tumor
progression of HNSCC (104). Another study demonstrated that
exosomes derived from irradiated HNSCC cells can modify
cancer cell movement and promote migration of recipient
cells through AKT-signaling (105). In an additional series of
experiments, exosomes were recruited to the plasma membrane
of invadopodia, and knockdown of Rab27a decreased exosome
secretion and extracellular matrix digestion associated with
maturing invadopodia (35). The mechanisms through which
TDEs regulate cancer progression and metastasis are illustrated
in Figure 3.

Frontiers in Oncology | www.frontiersin.org 7 September 2019 | Volume 9 | Article 894

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Xiao et al. Exosomes in HNSCC

THERAPEUTIC APPLICATION

Exosomes are cell-derived nanoparticles that have unique
properties, such as low immunogenicity, strong ability to cross
physiological barriers, good biodistribution and bioavailability,
and reduced immunogenicity. Thus, TDEs may have important
roles as potential vehicles for anticancer drugs. In addition,
exosomes can be remodeled through their parental cells or
supplemented with desired biological activity (106). Exosomes
have been designed as promising therapeutic agents in the
treatment of various cancers (107–109). Because patients with
metastatic HNSCC have a poor prognosis and do not typically
respond well to traditional therapies, efficient targeted delivery
of conventional chemotherapeutic drugs may be facilitated by
innovative approaches to engineering drug delivery systems, such
as exosomes.

Drug carrier exosomes have been isolated from various types
of cells, including HEK-293 cells, immature DCs, macrophages,
and cancer cells. Different therapeutic agents, including proteins,
small interfering RNAs (siRNAs), miRNAs, and targeted drugs,
can be incorporated into exosomes via electroporation, chemical-
based transfection, modification of parental cells, or direct
incubation, thereby increasing bioactivity and achieving targeted
delivery in patients. The James Graham Brown Cancer Center
initiated a phase I clinical trial to test the therapeutic effects
of plant exosomes in HNC (NCT01668849). In various types
of cancer, exosomes have been shown to shuttle miRNAs
and soluble proteins as therapeutic molecules into recipient
cells and tissues (107, 110). A hypoxic microenvironment
promotes the generation of miR-21-rich exosomes by oral SCC
in a hypoxia-inducible factor (HIF)-1a- and HIF-2a-dependent
manner, and thesemiR-21-rich exosomes thenmediatemigration
and invasion behaviors. Restoration ofmiR-21 expression in HIF-
1a- and HIF-2a-depleted exosomes rescues oral SCC migration
and invasion (15). Moreover, hypoxic TDEs mediate MDSC
function through the miR-21/PTEN/PD-L1 axis in oral SCC
(91). These findings indicate the therapeutic value of exosome
inhibition for oral SCC treatment.

Anti-EGFR nanobodies anchored on extracellular vesicles via
glycosyl phosphatidylinositol may improve the targeting ability
of extracellular vesicles, highlighting the potential applications
of these extracellular vesicles as a drug delivery system and
new tool in EGFR-expressing tumor cells (111). The blood-
brain barrier restricts drugs from entering into the brain, which
can reduce the therapeutic effects of brain cancer treatments.
Brain endothelial cell-derived exosomes can deliver anticancer
drugs across the blood-brain barrier for the treatment of brain
cancer. Additionally, exosome-based drug carriers can mediate
permeability across the blood-brain barrier, enabling the drug to
target cancer cells (112).

The main rational approaches for inhibiting exosome-

mediated tumor-promoting potential have focused on blocking
exosome release and suppressing the communication of tumor

cells with recipient cells. TDEs are known to be abundantly
secreted from cancer cells, making them potential targets for

anticancer therapy. Direct targeting of the exosome release
process has also been studied for the treatment of cancer.

Exosome-delivered transient receptor potential polycystic 2
(TRPP2) siRNA markedly suppresses TRPP2 expression and
inhibits the EMT, suggesting that exosome-TRPP2 siRNA may
be an effective RNA-based gene therapy in the treatment of HNC
(113). Invadopodia also enhance exosome secretion; accordingly,
silencing the expression of invadopodia may suppress TDE
biogenesis and release (114). Another potential strategy for
exosomal dysregulation is the inhibition of exosome uptake.
Treatment with heparin blocks the uptake of exosomes by
oral SCC cells, thereby attenuating exosome-induced cancer
progression to inhibit the growth and progression of oral SCC
cells (20). However, the use of these reagents for eliminating
exosomes is currently limited to research use only because these
reagents may also induce off-target effects. Further studies are
needed to explore the translational implications of exosome-
targeted reagents.

Owing to the potential presence of TDEs and the unique
biomarkers associated with these vesicles, TDEs may also
have applications as vaccine immunotherapies (115). Antigen-
presenting exosomes from B lymphocytes and DCs containing
MHCI/II complexes could stimulate CD4+ and CD8+ T cells as
therapeutic HPV vaccines (116). Additionally, HPV oncogenes
play vital roles in HPV-induced carcinogenesis, and silencing
of endogenous HPV E6/E7 expression affects both the contents
and levels of MVs released from HPV-positive cancer cells
(117). These findings indicate that inhibition of endogenous
HPV E6/E7 expression may have therapeutic applications. HPV
vaccines based on endogenously engineered exosomes for HNC
have been evaluated in several phase I clinical trials (118).
However, additional studies are required to determine the
feasibility and safety of TDEs as cancer vaccines. One of themajor
challenges in developing this approach is establishing scalable,
reproducible methods for exosome production. MSCs may have
uses in exosome production at a clinically applicable scale owing
to their ability of produce large amounts of exosomes.

Collectively, these studies suggest that exosome-based
strategies may have many benefits over conventional drug
regimens; however, there are some limitations and challenges
to the use of exosomes. First, because TDEs contain genetic
components from cancer cells, cancer cells may not be suitable
parental cells for exosome targeting in clinical applications.
Additionally, efficient loading of exosomes without significant
alterations to the structure and content of exosomal membranes
may be difficult. Overall, these reports indicate that exosomes
may function as exceptional gene delivery vectors that are
safe, efficient, organ-/cell-specific, and nonimmunogenic.
Nevertheless, significant efforts are required to before clinical
applications are feasible.

ANTI-CANCER THERAPY RESISTANCE

Current therapy options for HNSCC include surgery,
radiotherapy, chemotherapy, anti-EGFR-antibody treatment,
and immunotherapy (119). However, drug resistance remains
a major obstacle for achieving successful curative treatment of
cancer. Drug resistance includes endogenous drug resistance,
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innate drug resistance, and acquired drug resistance. Acquired
drug resistance is a process through which cancer cells
exposed to chemotherapy, radiation, or targeted therapy show
reprogramming of their genome to acquire resistance to the
therapy. Cancer cells may mitigate the effects of radiation and
chemotherapy through different mechanisms (120, 121).

Given the important roles of exosomes in cellular
communication and the tumor microenvironment, many
studies have indicated that exosomes are involved in anticancer
therapy resistance. In one mechanism, exosomes sequester
cytotoxic drugs in intracellular vesicles and subsequently negate
the effects of drugs within the cells (122). Owing to the nature
of exosomes as mediators of cell-cell communication in the
tumor microenvironment, these exosomes play important
roles in therapy resistance by transferring various contents,
such as miRNAs, mRNAs, DNAs, and proteins, to induce
extrinsic therapy resistance (123). Similarly, exosomes also
promote therapy resistance by transferring mRNAs, miRNAs,
and other components. In addition, TDEs mediate therapy
resistance by different mechanism, including improved DNA
repair, anti-apoptotic signaling, or delivery of transporters
to treatment-sensitive cells. As mediators of mesenchymal
stem cells and the EMT, exosomes also promote tumor
microenvironment-associated treatment resistance (123).

Exosomes derived from drug-resistant cancer cells mediate
drug resistance through direct shuttling of drugs out of the
cells (124). The AKT pathway is a frequently mutated oncogenic
pathway in HNSCC and functions as a key regulator of
radiation resistance and a major driver of cellular movement
and migration (125). Exosomes derived from irradiated HNSCC
cells trigger the AKT pathway to promote migration and
increase chemotaxis in recipient cancer cells (105). Radiation
therapy may increase the invasive and metastatic properties
of HNSCC via release of an abundance of exosomes in
hypoxic cancer tissue after radiotherapy (126–128). In patients
with melanoma receiving PD-1 blockade therapy, the level of
circulating exosomal PD-L1 correlates with tumor burden and
response to therapy (129). The PD-1/PD-L1 immune checkpoint

signaling axis exhibits remarkable responses in platinum-
refractory recurrent or metastatic HNSCC; PD-L1-containing
TDEs, which transfer functional PD-L1 and inhibit immune

responses, may be regulators and biomarkers of resistance to
PD-1 blockade therapy. In addition, exosomes derived from
cisplatin-resistant HNSCC cells deliver miR-21 to parental cells
and induce cisplatin resistance, suggesting that these exosomes
may function primarily through gene regulation (130). TDEs
have been implicated in contributing to drug resistance in
HNSCC (Figure 3).

FUTURE IMPLICATIONS

TDEs contain numerous bioactive cellular molecules and genetic
characteristics, enabling them to alter the functions of recipient
cells and the tumor microenvironment. Accordingly, TDEs play
important regulatory roles in cancer. Indeed, TDEs are involved
inmany aspects of intercellular substance transmission and signal
transfer, contributing to the initiation, development, metastasis,
treatment resistance, and immunosuppression of HNSCC. In
HNSCC, TDEs may serve as potential clinical biomarkers of
progression or responses to therapy owing to their various
functional contents (proteins, genes) and elements of the parental
cancer cells. Nevertheless, exosomes have not yet been applied
in the treatment of HNSCC. Further studies are needed to
elucidate the molecular mechanisms involved in the release
of exosomes and to explore the clinical applications of these
vesicles. Understanding how cancer cells utilize TDEs to promote
cancer growth and progression may lead to the development
of novel therapies for HNSCC. Therefore, much work is
needed to establish exosome-based therapies for the treatment
of HNSCC.
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