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The deeply rooted, intricate relationship between the Schistosoma parasite and the

human host has enabled the parasite to successfully survive within the host and

surreptitiously evade the host’s immune attacks. The parasite has developed a variety of

strategies in its immunomodulatory armamentarium to promote infection without getting

harmed or killed in the battlefield of immune responses. These include the production

of immunomodulatory molecules, alteration of membranes, and the promotion of

granuloma formation. Schistosomiasis thus serves as a paradigm for understanding

the Th2 immune responses seen in various helminthiases. This review therefore aims to

summarize the immunomodulatory mechanisms of the schistosome parasites to survive

inside the host. Understanding these immunomodulatory strategies not only provides

information on parasite-host interactions, but also forms the basis in the development of

novel drugs and vaccines against the schistosome infection, as well as various types of

autoimmune and inflammatory conditions.
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INTRODUCTION

Immunomodulation is a tactic employed by parasites to successfully invade their human hosts.
As an adaptive survival skill, helminths employ a great diversity of immunomodulatory strategies
for evading immune detection, suppressing cellular immunity, and eluding host immune attacks
(1, 2). These promote their longevity inside the host to further continue their life cycle and
facilitate transmission.

Unlike the rapidly multiplying protozoan parasites, some of which use antigenic variation as
an effective evasion strategy in escaping immune recognition (3), the chronicity of helminthic
infections has led helminths to act against the host immune responses by downmodulating the
latter’s intensity and effectiveness. Schistosoma parasites have been shown to induce the Th2
response that is shown to be more favorable to important biological processes inside the host such
as migration and egg excretion (4). During its intra-mammalian life cycle, Schistosoma needs to
conquer a war zone consisting of the host’s innate and adaptive immune responses. The life stages
of the parasite that will have to contend with the host’s immune system are the penetrating cercariae,
the migrating schistosomula, the adult worms, and the eggs produced by the adults in copula.

During schistosome infection in the mammalian host, cytokines play major roles in the
regulation of immune and inflammatory responses against invading parasites. These effector
molecules, particularly those produced by the immune cells, not only mediate both physiological
and pathological consequences at the onset of immune response, but also control the degree
and duration of such a response. The schistosome parasites are therefore equipped with
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immunomodulatory armamentarium acting as counter-defenses
to protect themselves from the destruction brought about by
host immune attacks. This review aims to provide a summary of
these immunomodulatory strategies that might be crucial for the
survival of the schistosomes within their definitive host.

INFILTRATING HOST TERRITORY

The skin is the largest organ of the body and consists of a
complex network of different cell types that maintain several vital
processes including immune responses for disease prevention.
The schistosome cercariae begin their invasion by infiltrating the
skin- the host’s primary defense. During invasion, the parasite
needs to ensure its survival by orchestrating immune regulation
within the skin. The percutaneous entry of the schistosomula
elicits an inflammatory response characterized by infiltration of
polymorphonuclear cells (PMNs) and mononuclear cells (5, 6).
Localized production of pro-inflammatory cytokines including
interleukin (IL)-1b, IL-6, IL-12, and tumor necrosis factor (TNF)-
α (7, 8) is supposed to promote this pro-inflammatory Th1
response. However, invasion by the schistosome paradoxically
leads to predominantly Th2 immunity. This skewing of
the immune response arises from the production of certain
immunoregulatory mediators. IL-10, produced by keratinocytes,
macrophages, dendritic cells (DCs) and B1 lymphocytes, is one
of these key immunomodulatory cytokines elaborated in the
skin in response to the cercarial invasion (9). In addition, a
major molecule from the secreted protein of the cercaria known
as Sm16 has been shown to modulate innate immunity by
preventing macrophage classical activation and delaying antigen
processing (10). Sm16 is also capable of blocking the activation
of IL-1 receptor-associated kinase 1 (IRAK-1) gene, which is
important in the production of nuclear factor kappa-light-chain
enhancer of activated B cells (NF-κB) (11). NF-κB is known
to be a key player in the regulation of immune responses to
infection (12).

Excretory-secretory (ES) products from the cercaria likewise
stimulate inhibitory molecules like prostaglandins. Studies
have shown that schistosomula can induce prostaglandin E2
(PGE2) production in the human keratinocytes (13). This over-
expression of PGE2 in the skin plays an important role in
the production of IL-10 through a cyclooxygenase 2-dependent
pathway (14). In addition, PGE2 is also a potent vasodilator (15)
aiding the passage of the schistosome into the circulation. In
fact, in a murine model for Schistosoma mansoni, PGE2 has been
documented to be the main immunoregulatory molecule in the
skin (13).

Langerhans cells (LCs) are considered the first-line fighters
in the skin considering their location in the outer layers as
compared with other types of DCs (16). LCs are known to
induce immunological tolerance (17, 18), and their suppressive
effects arise from IL-10 production and CD4+ regulatory T cells
induction (19). When the skin is invaded by pathogens such as
schistosomes, keratinocytes and LCs produce pro-inflammatory
cytokines such as TNF-α and IL-1b stimulating the actin-
dependent migration of the LCs (20). Another prostaglandin,

now produced as a component of the schistosomula’s ES
proteins, prostaglandin D2 (PGD2) together with PGE2 leads
to increased production of IL10 (21). The anti-inflammatory
IL-10 downregulates the production of both IL-1b and TNF-α,
thus inhibiting the migration of epidermal LCs to the site of
invasion (21). Overall, this disruption in themovement of antigen
presenting cells (APCs) from the site of exposure to the draining
lymphoid tissue is a vital immunomodulatory strategy adopted
by the Schistosoma parasites (21).

Mast cells (MCs) are another key player in the immune
response against parasitic infections. MCs are abundant near
cutaneous and mucosal body surfaces where early immune
surveillance occurs. The schistosome parasite has been shown to
release ES proteins that can induce mast cell degranulation (22).
One of these molecules is likely to be the schistosome homolog of
the human translationally controlled tumor protein (TCTP) that
has been shown to degranulate both basophils andmast cells (23).
Binding of histamine from activated mast cells to H2 histamine
receptors induces IL-10 production inmaturing DCs (24, 25) and
inhibits the production of Th1 promoting cytokine IL-12, which
in turn is a powerful inducer of interferon- γ (IFN-γ) (26). This
results in matured DCs polarizing naive CD4+ T cells toward the
Th2 phenotype (24).

Parasites can also regulate the host’s immune response by
inducing apoptosis of host cells (27). A 23 kDa protein called
S. mansoni apoptosis factor (SMAF) has been characterized as a
component of the cercarial ES products that can trigger apoptosis
in the CD4+ lymphocyte population via Fas–FasL interaction.
The same study suggests that the CD4+ cell apoptosis modulates
the host’s immune response and allows the schistosome parasite
to evade immune surveillance (28).

Studies have also shown that ES products from the
schistosomula stimulate APCs toward Th2 immune responses.
ES-activated DCs trigger CD4+ cells to produce regulatory
cytokines IL-4, IL-5, and IL-10-, all indicative of a Th2 response
(29). Furthermore, these DCs also lose the ability to produce
Th1-promoting cytokines including IL-12, IL-23, and IL-27 (30).
It thus appears that immunomodulatory molecules in the ES
products could modify the APCs to promote Th2 responses over
the Th1 phenotype (31).

CAMOUFLAGING OF THE MIGRATING
SCHISTOSOMULA

Skin-stage schistosomules are susceptible to both humoral
and cellular immune responses. However, the significant
morphological and biochemical changes occurring in the
developing schistosomula render them resistant to the
host immunological defenses (32), as seen in the lung
schistosomulum (33, 34). These changes include shedding
of the cercarial membrane and formation of the heptalaminate
surface membrane (35). This unique outer-surface tegumental
membrane might be an adaptation to resist host immune
effectors such as complement activation and antibody-dependent
cell-mediated cytotoxicity (ADCC) (36, 37). Different immune
evasion strategies have been proposed to explain the inefficient
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host immune response against the exposed schistosome
tegument (37). These include rapid tegument turnover, masking
with acquired host antigens, and poor immunogenicity of
exposed antigens (38).

Danger-associated molecular patterns (DAMPs) are tissue-
derived distress signals released during stress or injury. One
such DAMP is extracellular ATP involved in purinergic
signaling (39). Extracellular ATP has been shown to induce
the degranulation of neutrophils and the production of pro-
inflammatory cytokines in macrophages and monocytes (40).
Ecto-enzymes, such as alkaline phosphatase, phosphodiesterase,
and ATP diphosphohydrolase, have been found to be expressed
in the tegument of schistosomula (41–43). These ecto-enzymes
might catalyze the conversion of ATP to adenosine and
effectively degrade DAMPs released by host cells in response to
intravascular schistosome migration, interfere with purinergic
signaling, thus preventing pro-inflammatory responses, and
subsequently lowering host immunity against the parasite (44).

Aside from their role against the pro-inflammatory ATP,
these ecto-enzymes also inhibit blood coagulation in the tissue
vicinity (45). Platelets themselves have been shown to damage
the schisosome parasite (46). The catabolism of ATP and
ADP through the ecto-enzymes characterized in S. mansoni,
including the tegumental ecto-apyrase ATP diphosphohydrolase
(SmATPDase-1) (47), alkaline phosphatase (SmAP) (48), and
phosphodiesterase (SmNPP5) (49), may lead to the inhibition of
platelet aggregation and thrombus formation around the worm.
Moreover, activated platelets and immune cells release inorganic
polyphosphates (polyPs) (50, 51). polyPs are essential for the
activation of factor XII, which triggers the kallikrein-mediated
kininogen pathway, thus producing high levels of bradykinin,
increasing vascular permeability, and promoting inflammatory
responses (52). SmAP has been shown to hydrolyze polyPs in
vitro thereby possibly preventing their action against the parasite
(48). This SmAP-mediated cleavage of polyPs may therefore
contribute to the survival of the intravascular stages of the
schistosome parasite, including the schistosomula and the adult
pairs within their hostile habitat (48).

Lung schistosomula need to resist immune damage
as they have been shown to activate complement (53)
and bind antibodies on their surface membrane (54).
Therefore, the structural and biochemical modifications of
the schistosomulum’s surface membrane tend to produce
immunological camouflage that either prevent antibody binding
or effectively reduce antigen expression (32). Furthermore,
caveolin-like molecules and membrane fractions characteristic
of detergent-insoluble glycosphingolipid-enriched membrane
domains (DIGs) or detergent-resistant membranes (DRMs) have
been observed on the surface membrane of the schistosome
(55), thus indicating the presence of lipid-rafts (56) that might
serve as an additional protection for the parasite. Lipid rafts
are presumed to enable signal transduction by selectively
concentrating intracellular signaling molecules in which protein
kinases, scaffolding molecules, and substrates are in close
proximity (57). In schistosomes, the lipid rafts have been shown
to possess specialized signaling domains such as protein kinase
C (PKC) and extracellular signal-regulated kinase (ERK) (58).

PKC and ERK are important mediators known to regulate
diverse processes in eukaryotes such as growth, development
and differentiation, cell cycle, motility, apoptosis, and survival
(59, 60).

Moreover, genes associated with immune evasion and stress
responses, such as the potent anti-inflammatory Sm-16 and
paramyosin, are over-expressed in lung schistosomula (61). Sm-
16 might play a crucial role in the interaction of the parasite with
immunoreactive lung microvasculature endothelial cells during
the passage of the schistosomulum through the lung (62). On the
other hand, paramyosin, found on the tegumental surface of the
schistosomula, aids in immune evasion through its receptor that
is capable of adsorbing antibodies onto the parasite surface at the
latter’s Fc regions (62, 63).

Nitric oxide (NO) plays a very important role both in the
mammalian hosts and in helminths with respiratory pathology
(64). It is a key messenger in the pathogenesis of inflammation by
acting as a signaling molecule during T cell-mediated immunity
(65). IFN-γ up-regulates inducible nitric oxide synthase (iNOS)
leading to the production of NO (66). This cytokine is produced
by the immune effector CD4+ T cells as an immune response
against the schistosomula in the lungs (66). In an experimental
study comparing the susceptibilities of different stages of larvae to
killing by NO, lung schistosomula obtained 1 week after infection
were not killed in vitro by NO generated either from a chemical
NO donor or from activated cells (67). At this period, the
schistosomula has been shown to undergo anaerobic metabolism
(68), thus negating the aerobic metabolism-dependent effects of
NO against the parasite (67). During transformation of cercaria
into schistosomulum, the parasite rapidly shifts from carbon
dioxide production via the Krebs cycle to lactate production
using glycolysis (69), and from consumption of stored glycogen
to dependence on host glucose as fuel (70). Furthermore,
schistosomula have higher levels of mRNAs associated with
anaerobic glucose metabolism (70) and lower expression of
respiratory enzymes (71). As the schistosomes develop into
adults, however, they regain a significant capacity to produce
energy via aerobic metabolism (70).

Once the schistosomulum becomes successful in evading the
host’s immune response, it goes into the portal veins and matures
into an adult over a period of 1–3 weeks. The male and female
adult schistosomes pair up, adhere to the veins, bring forth
300–3,000 eggs, and escape host immunity for many years.

SURVIVAL OF THE ADULT PAIRS IN THE
VASCULAR SYSTEM

The major task of the adult schistosomes is to produce eggs
while surviving within the vascular system of the host. The
circulatory system is home to various immune defenses including
immune cells, phagocytes, complement proteins, and antibodies.
However, the adult schistosomes are capable of avoiding the
immune recognition system by coating their outer tegument with
antigens from the hosts. Several studies have shown that the
adult Schistosoma parasites were covered with immunoglobulins,
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β2 microglobulin, complement components, and other host
antigens (72–75).

The complement system is an essential component of innate
host immunity, and therefore schistosomes should protect
themselves from complement-dependent cytotoxicity. To avoid
complement-mediated auto-hemolysis, host erythrocytes are
provided with a 70-kDa glycosylphosphatidylinositol (GPI)-
anchored protein known as decay accelerating factor (DAF),
which inhibits C3 convertases in both the classical and alternative
pathways of the complement system (76). An in vitro experiment
showed that adult schistosomes were capable of abstracting
DAF or CD55 from host erythrocytes, which then serves as a
valuable defense against the action of the complement system
(77). The adult schistosomes are also provided with inhibitors
of human complement activation on their tegument such as
the trispanning orphan receptor of S. haematobium (Sh-TOR),
a receptor that can bind specifically to human complement C2
(78). Finally, paramyosin is a known inhibitor of the complement
membrane attack complex. It has been discovered that earlier
known complement inhibitor SCIP-1 (34) is just a surface-
exposed form of paramyosin (79). Paramyosin might therefore
have some significance in the immunomodulation by inhibiting
the activation of the terminal pathway of the complement
system (79).

SKEWING OF IMMUNE RESPONSE

Following schistosomule migration, a Th1 immune response is
elicited as characterized by a marked increase in IL-1 and IFN-
γ induced by the worm antigens (80). The Th1 response persists
for approximately 5 weeks. However, as the parasites mature, the
immune response is skewed into the Th2 type (30). Experimental
single-sex infections in mice models have shown that both male
and female worms individually induce IL-4 production by CD4+

T cells and promote a Th2 response even before eggs are laid (31).
Toll-like receptors (TLRs) are a family of pattern recognition

receptors expressed in cells of the innate immune system such
as macrophages and DCs (81). Activation of TLRs induces Th1
immune response with a predominant production of IFN-γ by
the CD4+T cells (82), in addition to Th1 promoting cytokines
IL-12, IL23, and IL27 secreted by APCs (83). In S. mansoni,
the TLR2 and TLR4 of DCs have been shown to recognize the
schistosome specific phosphatidyl serine-containing lipid antigen
lysophosphatidylserine (lyso-PS) (84), and lacto-N-fucopentose
III (LNFPIII), respectively, in the worm’s ES (85). These TLR-
mediated signaling reduces the ability of the DCs to produce IL-
12 and promotes a polarization toward a Th2 immune response
instead of the Th1 type. Ligation of LNFPIII and the TLR4
in DCs by Schistosoma induces phosphorylation of mitogen-
activated MAP kinase (MAPK) ERK (85). On the other hand,
the schistosomal lyso-PS has been shown to induce activation
of DCs promoting Th2 and regulatory T cell development via
a TLR2-dependent mechanism (84). TLR2 ligation stabilizes
the MAPK ERK, and stimulates the transcription factor c-
Fos, thereby suppressing IL-12 production, and promoting
polarization toward Th2 immune responses (86).

At 5–6 weeks post-infection, the adult female schistosomes
start to release eggs after pairing with the male worm.
The schistosome eggs evoke a host immunity that is more
robust compared with the ineffective response mounted against
invading cercariae and adult worms (87). Eggs of S. haematobium
have been shown to elicit an immediate, initial response within
24 h upon release, marked by the induction of pro-inflammatory
mediators such as TNF-α, on one end, and that of anti-
inflammatory cytokines that include CCL11 (88). Schistosome
eggs, viable or dead, are remarkably capable of inducing Th2
responses (89). This Th2 phenotype is characterized by the
proliferation of Th2 cells, eosinophils, and basophils; elevated
production of immunoregulatory cytokines IL-4, IL-5, and IL-
13; and polarization of antibodies toward the IgG1 and IgE
isotypes, and of macrophages toward M2 phenotype (90, 91).
The ES proteins, such as the dimeric glycoprotein alpha-1 (α1)
or IL-4 inducing principle of schistosome eggs (IPSE), and the
hepatotoxic egg glycoprotein omega-1 (ω1), thus play important
roles in the immunomodulation of the CD4+ effector responses
(92–95). Specifically, the ribonuclease activity of ω1 protein in
the ES of S. mansoni eggs is found to be essential in inducing
Th2-type response in DCs (94).

JOURNEY OF THE SCHISTOSOME EGGS

Schistosome eggs exit the host either by traversing the intestinal
wall into the intestinal lumen via mesenteric vessels for S.
mansoni and S. japonicum, or through migration into the vesical
lumen of the bladder for S. haematobium (96). This egg expulsion
however is mostly host-dependent as the schistosome eggs lack
any motility mechanisms (97). As egg passage into the intestine
is not guaranteed, about half of all the deposited eggs accidentally
go to the liver (98). In order to continue transmission, the
schistosome parasites employ strategies to ensure successful egg
transit into the environment (98–101). Extravasation in the
blood vessels is promoted by angiogenesis, endothelial activation,
and fibrinolytic activity induced by schistosome eggs. The
eggshell contains the enzymes enolase and glyceraldehyde-3-P-
dehydrogenase (102) that act as surface binding receptors to
plasminogen (103, 104). It was proposed that once it has reached
the intestine, the schistosome induces granuloma formation to
promote egg excretion, while at the same time preventing severe
immunopathology that may otherwise affect egg release (105).
It was previously noted that schistosome egg excretion is an
exquisite, immune-dependent process (106).

The polarization of Th cells determines the macrophage
phenotype and granuloma formation. M2 macrophage
phenotype or alternatively activated macrophages are needed
in effective granuloma formation and confer protection against
excessive damage of the eggs during their movement across
the intestinal tissue (105). M2 phenotype is promoted by IL-
4/IL-13 release from Th2 cells in S. mansoni infection (106).
This has been proven by the impaired granuloma formation
during schistosome infection in T cell derived IL-4 and IL-13
deficient mice inhibiting the egg release into the intestinal lumen
(107, 108). These mechanisms may suggest that Th2 immune
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responses collaborate with egg-derived proteases in promoting
egg release from intestinal tissues.

IMMUNOMODULATION IN THE
GRANULOMA FORMATION

Unlike in intestinal granulomata, where schistosome eggs have
the ability to exit into the gut lumen, the eggs in the hepatic
granuloma remain trapped, with the granuloma becoming
fibrotic over time. Secretions from the trapped eggs are known to
stimulate the CD4+ T cells initially to release Th1-type cytokines
IL-2 and IFN-γ facilitating delayed-type hypersensitivity reaction
and early granuloma formation (90). This immune response
gradually shifts to the Th2 phenotype with the production of
IL-4, IL-5, IL-10, and IL-13 (90, 109–113). It has been shown
that hepatosplenic schistosomiasis, a severe form of the disease,
is associated with increased levels of Th1 cytokines TNF-α
and IFN-γ, and decreased levels of Th2 cytokine IL-5 in a
study done using peripheral blood mononuclear cells from
patients (114). This proves that the outcome of the disease
is dependent on the type of immune response elicited by the
parasite within the host. In addition, S. mansoni eggs were
shown to secrete chemokine binding protein (smCKBP) that is
believed to block certain chemokines from inducing granuloma
formation while preferentially altering the cellular features of the
granuloma (115). Both in vitro and in vivo experiments have
demonstrated that smCKBP tends to prevent the interaction of
chemokines such as CXCL8 with specific cellular receptors, as
well as the activation and migration of immune cells such as
neutrophils (115).

Granuloma formed during prolonged Th1 response and a
dampened Th2 response have been shown to display decreased
size and fibrosis owing to downregulation of inflammation
and of collagen deposition (116). This phenomenon might be
attributed to the dominance of neutrophils infiltrating the lesion
during the initiation of granuloma formation (117). Neutrophils
are recruited by egg-specific proteins (118) to the core of
the granuloma leading to a neutrophil-mediated inflammatory
response that causes tissue damage (117). In addition, intact
live eggs and soluble egg antigen (SEA) can trigger the release
of neutrophil extracellular traps (NETs) within the core of
the granuloma, potentially limiting the pathogenic effects of
parasite eggs (119). NETs are web-like structures consisting of
de-condensed chromatin and histones produced by activated
neutrophils and are thought to be involved in pathogen trapping,
including parasites such as Plasmodium falciparum (120) and
Strongyloides stercoralis (121). A previous study has shown that
eggs trapped within themesh of NETs remain viable and were not
killed, as opposed to the effect of NETs as seen in other pathogens
(119). This might suggest that NETs only serve to immobilize or
restrict the movement of the schistosome eggs, without adversely
affecting their viability.

At a later stage of the disease, neutrophils secrete granule
proteins that can degrade collagen, the major component of
fibrotic granulomas, thus limiting the size of the granulomas.
S. japonicum granuloma has neutrophils that accumulate within

the core as early as 8 days post-deposition (122, 123), and at
the periphery as granuloma matures (124). This implies that
neutrophils have different roles in the granuloma formation
depending on the time of their recruitment and their location
within the lesion.

Although CD4+ T cells generally dictate the granulomatous
response to the eggs, other immune cells like CD8+ T cells, B
cells, M2 macrophages and eosinophils are also as important in
the regulation of granuloma formation (125–128). Eosinophil
infiltration in the granuloma is mediated by IL-5 and IL-13
(112, 127, 129, 130). This Th2-driven eosinophil infiltration in
the granuloma stands in contrast with the early Th1 granuloma,
which is dominated by neutrophils. Aside from the destructive
actions directed against miracidia within trapped eggs upon their
degranulation (131), eosinophils are also responsible for the
polarization of the immune response to Th2 type by producing
IL-4 and IL-5 (132). Granuloma in S. mansoni has been noted
to have more eosinophils than neutrophils, which is in contrast
to the neutrophil dominated granuloma seen in S. japonicum
(133). The number of eosinophils in S. mansoni infection were
60.60 ± 0.47%, and 44.30 ± 0.23% of all the granuloma cells
in the acute and chronic experimental infections, respectively,
using murine models for both hepatic and intestinal infection
(134). In an earlier experiment done using murine models
for lung granuloma, results showed about 70% of the cellular
population in S. mansoni granuloma are eosinophils at 16 days
post-deposition (125).

CD4+ T cells are the primary source of IL-13 (135), the
dominant Th2 cytokine responsible for the development of liver
fibrosis (136). Together with IL-4, IL-13 induces macrophage
expression of arginase, which then cleaves L-arginine to form
L-ornithine (136). Ornithine aminotransferase then converts L-
ornithine to proline, which is important in collagen production
and fibrosis development (137). IL-13 also triggers the trans-
differentiation of hepatic stellate cells (HSCs), one of the main
sources of hepatic collagen, and plays an important role in
schistosome-induced fibrogenesis (138).

The granuloma both functions as a major pathology in
schistosomiasis disease and as a protective barrier between
the egg and the liver tissues. Although the Th1-dominated
immune response gives rise to granulomas with smaller sizes
and less fibrosis, the switch to the Th2 phenotype confers some
protective effects to the host (139). The granuloma functions to
sequester egg secretions that can otherwise cause damage to liver
tissue (139).

THE DUAL ROLE OF TGF- β

Th17 serves as a unique CD4+ T cell subset and is characterized
by IL-17 production as an adaptive host mechanism in cases
where both Th1 and Th2 immune responses are inappropriate
for protection against the pathogen (140). IL-17 is a pro-
inflammatory cytokine often seen in the pathogenesis of
autoimmune diseases. In S. japonicum, SEAs are believed to
induce a Th17 response (141) linking it to severe hepatic
inflammation in schistosomiasis (142, 143). The association
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FIGURE 1 | Summary of proposed immunomodulatory strategies of the schistosome in evading the host immune responses. Skewing of Th1 to Th2 immune

response is very much evident during cercarial penetration ① through IL-10 production induced by prostaglandin E2 (PGE2) and prostaglandin D2 (PGD2), prevention

of macrophage classical activation by Sm16 and disorientation of the antigen presenting cells (APCs); lodging of the adult schistosome pairs in the veins ③ through

the interactions between lacto-N-fucopentose III (LNFPIII) and toll like receptors (TLRs); and egg deposition in the intestinal and liver tissues ④ through the

immunomodulatory effects of the egg’s excretory-secretory proteins (ES) to CD4+ effector responses including α1 and ω1. In addition, the cercariae ① are able to

evade innate immunity in the skin by preventing migration of Langerhans cells (LCs), mast cell degranulation promoted by the translationally-controlled tumor protein

(TCTP) homolog in schistosomes, and Schistosoma mansoni apoptosis-inducing factor (SMAF)-mediated host cell death. Schistosomula’s ② tegumental remodeling

and the presence of lipid rafts covering the parasite render them undetectable to immune responses during migration. Once the adult schistosomes ③ settle in the

mesenteric veins, they become capable of evading the host complement system through the abstraction of erythrocytes’ decay-accelerating factor (DAF) as seen in in

vitro studies, the binding of human complement C8 and C9 to the schistosome’s paramyosin, and the attachment of C2 to the trispanning orphan receptor of

Schistosoma haematobium (Sh-TOR). Ecto-enzymes on the tegument of intravascular stages including the ② schistosomula and ③ adults cleave extracellular ATPs

that otherwise serve as damage-associated molecular patterns (DAMPs) as well as ADPs and inorganic polyphosphates (polyPs), thereby interfering with host

pro-inflammatory and prothrombotic purinergic signaling. Eggs from the schistosomes in copula ④ express proteases that may aid in egg egress in addition to Th2

immune responses. Granuloma formation with schistosome-induced fibrogenesis tends to limit tissue destruction brought about by egg deposition. However, disease

severity is largely determined by Th17/Treg balance mediated by transforming growth factor-β (TGF-β).

between Th17 and the severity of the disease is also seen in
S. mansoni infection as an exacerbation of granuloma in mice
models is primarily directed by a Th17 response (144, 145). The
role of IL-17 in granuloma formation is further proven by a

decrease in the size of granulomata when anti-IL-17 neutralizing
antibodies were given to infected mice (142).

Th17 differentiation is induced in mice exposed to
transforming growth factor-β (TGF-β) and IL-6 (146–148).
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As TGF-β is also known to induce differentiation of CD4+
T cells into forkhead box protein 3 (FoxP3)-expressing
regulatory T cells (Tregs) (149), the pivotal role of TGF-β in
the progress of the disease makes it one of the most important
cytokines that determines disease outcome. Th17 cells promote
inflammation through the production of IL-17, IL-22, and
IL-23, and neutrophil recruitment (150), whereas Tregs produce
the anti-inflammatory cytokines IL-10 and TGF-β (151).
Surprisingly, Tregs can be transformed into Th17 cells in the
presence of IL-6 (152). Interestingly, Th17 cells appear to be
resistant to Tregs’ suppressive effects (153, 154). Thus, the
delicate balance maintained between anti-inflammatory Tregs
and pro-inflammatory Th17 cells is a prime determinant in
disease severity. The imbalance of Th17/Treg has been shown
to be closely associated with immunopathological damage and
egg granuloma formation in mouse models infected with S.
japonicum (155).

Currently, not much is known about how the balance between
the Th17/Treg immune responses modulates disease progression
in schistosomiasis. It is therefore worthwhile to elucidate which
mechanisms promote Treg proliferation during the chronic
phase of schistosome infection when Th2 immune responses start
to wane and lead to immune hypo-responsiveness.

CONCLUSION AND FUTURE DIRECTIONS

Schistosomiasis is a neglected tropical disease whose
transmission has been reported in 78 countries. This parasitic
disease has been a public health problem as early as 5,000
years ago upon being discovered in Egyptian mummies (156).
This long relationship between humans and the schistosome
parasites has enabled the latter to adopt various strategies
to successfully survive inside the host. Figure 1 shows the
summary of proposed immunomodulatory armamentarium
that schistosome parasites utilize in order to evade the host’s
immune responses, and thus facilitate infection. Understanding
the mechanisms behind these immunomodulatory strategies
will not only shed light on host-parasite interactions but also
be useful in the development of novel treatments against the
schistosome parasite.

Parasitic helminths like Schistosoma spp. are said to be
capable of limiting intraspecific competition inside the host via
concomitant immunity (157). Concomitant immunity is the
production of effective anti-larval immunity that does not harm
the existing adults. The adult worms might be “vaccinating”
the host with cross-reactive antigens creating a barrier against
new infection. This has been proven with an experimental study
involving monkeys infected with adult schistosomes via surgical
transplants (158). The monkeys showed resistance to cercarial
challenge even though they were not exposed to any larval
schistosome stages. However, another study has looked into
potential mechanisms causing elimination of lung schistosomula
in mice previously vaccinated with irradiated cercariae (159).
Results show that the deflection of the parasites in the alveoli

during migration was the reason many failed to mature in both
vaccinated and unvaccinated mice, as no inflammatory reactions
against the parasites have been found in the skin and lungs of
the vaccinated mice (159). A better understanding of the role of
immunomodulation in the early stage of schistosome infection
might be the key in the production of a “true” effective anti-larval
immunity against Schistosoma.

The 2-fold ability of the helminth worms to downregulate
pro-inflammatory cytokines and skew Th1 to Th2 type
immune responses has suggested their possible use in treating
other illnesses such as autoimmune and inflammatory
diseases, thus supporting the hygiene hypothesis (160).
This hypothesis states that persons who never contract
infections run the risk of developing autoimmune diseases,
as infections facilitate the development and regulation of
the immune system (161). Therefore, immunomodulatory
molecules elaborated in response to the schistosome
parasite can serve as potential tools to control overt
immune responses.

Experimental studies have demonstrated the
immunomodulatory effects of schistosome infection on
arthritis (162–164), type 1 diabetes (165–168), Graves’ disease
(169), and airway allergies (170, 171). The therapeutic potentials
of immunomodulatory molecules such as smCKBP might be
used as selective manipulators of the immune system to prevent
immune-mediated diseases (115). The schistosome-derived
carbohydrate LNFPIII might be useful in treating type 2 diabetes
as its administration in mice has improved glucose tolerance
and insulin sensitivity (172), and in psoriasis as it induces
Th2 immune response, and subsequent amelioration of skin
lesions (173). Purified cystatin from S. japonicum has been
shown to reduce inflammatory parameters and decrease the
severity of trinitrobenzene sulfonic acid (TNBS)-induced colitis
in mice, thereby demonstrating its potential therapeutic use
in inflammatory bowel diseases (174). Taking advantage of
these adaptive mechanisms of the schistosome parasite thus
offers promise in the management of various autoimmune
and inflammatory conditions. More immunomodulatory
molecules and their interactomes and mechanisms need to be
identified and characterized to develop effective drugs to achieve
this end.
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