
fncir-16-895481 September 23, 2022 Time: 14:53 # 1

TYPE Hypothesis and Theory
PUBLISHED 29 September 2022
DOI 10.3389/fncir.2022.895481

OPEN ACCESS

EDITED BY

Susan Dymecki,
Harvard Medical School, United States

REVIEWED BY

Sebastien Bouret,
Center for the National Scientific
Research (CNRS), France
Hendrik Wildner,
University of Zurich, Switzerland

*CORRESPONDENCE

Barry D. Waterhouse
waterhouse@rowan.edu

RECEIVED 20 June 2022
ACCEPTED 30 August 2022
PUBLISHED 29 September 2022

CITATION

Waterhouse BD, Predale HK,
Plummer NW, Jensen P and
Chandler DJ (2022) Probing
the structure and function of locus
coeruleus projections to CNS motor
centers.
Front. Neural Circuits 16:895481.
doi: 10.3389/fncir.2022.895481

COPYRIGHT

© 2022 Waterhouse, Predale,
Plummer, Jensen and Chandler. This is
an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided
the original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which
does not comply with these terms.

Probing the structure and
function of locus coeruleus
projections to CNS motor
centers
Barry D. Waterhouse1*, Haven K. Predale1,
Nicholas W. Plummer2, Patricia Jensen2 and
Daniel J. Chandler1

1Department of Cell Biology and Neuroscience, Rowan University, Stratford, NJ, United States,
2Neurobiology Laboratory, Department of Health and Human Services, National Institute
of Environmental Health Sciences, National Institutes of Health, Raleigh, NC, United States

The brainstem nucleus locus coeruleus (LC) sends projections to the

forebrain, brainstem, cerebellum and spinal cord and is a source of the

neurotransmitter norepinephrine (NE) in these areas. For more than 50 years,

LC was considered to be homogeneous in structure and function such that

NE would be released uniformly and act simultaneously on the cells and

circuits that receive LC projections. However, recent studies have provided

evidence that LC is modular in design, with segregated output channels and

the potential for differential release and action of NE in its projection fields.

These new findings have prompted a radical shift in our thinking about LC

operations and demand revision of theoretical constructs regarding impact

of the LC-NE system on behavioral outcomes in health and disease. Within

this context, a major gap in our knowledge is the relationship between

the LC-NE system and CNS motor control centers. While we know much

about the organization of the LC-NE system with respect to sensory and

cognitive circuitries and the impact of LC output on sensory guided behaviors

and executive function, much less is known about the role of the LC-

NE pathway in motor network operations and movement control. As a

starting point for closing this gap in understanding, we propose using an

intersectional recombinase-based viral-genetic strategy TrAC (Tracing Axon

Collaterals) as well as established ex vivo electrophysiological assays to

characterize efferent connectivity and physiological attributes of mouse LC-

motor network projection neurons. The novel hypothesis to be tested is that

LC cells with projections to CNS motor centers are scattered throughout

the rostral-caudal extent of the nucleus but collectively display a common

set of electrophysiological properties. Additionally, we expect to find these

LC projection neurons maintain an organized network of axon collaterals

capable of supporting selective, synchronous release of NE in motor circuitries

for the purpose of coordinately regulating operations across networks that
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are responsible for balance and movement dynamics. Investigation of this

hypothesis will advance our knowledge of the role of the LC-NE system in

motor control and provide a basis for treating movement disorders resulting

from disease, injury, or normal aging.

KEYWORDS

locus coeruleus, norepinephrine, motor centers, viral vector track tracing, TrAC

Overview

The goal of this report is to identify major unanswered
questions regarding locus coeruleus (LC) regulation of signal
processing in motor control circuits of the mammalian brain
and to propose a methodology for pursuing these questions.
This path of inquiry is an extension of recent studies that
challenge the conventional view of the LC as a broadly
projecting, homogeneous cluster of norepinephrine (NE)-
containing cells with little input or output specificity. The
revised hypothesis is that LC maintains an intrinsic organization
which respects the cognitive, sensory, and motor functions of
its efferent targets. Here we postulate that this ordered structure
extends to the relationship between LC and supraspinal motor
networks. A closer examination of the organization of LC
connections to motor centers in the brain will provide a platform
for determining the consequences of activation or suppression
of LC-motor circuit projections on motor behavior in normal
animals and animals whose movements are compromised by
disease, injury, or aging.

Locus coeruleus was first identified in the human brainstem
by J. Reil more than 200 years ago (Reil, 1809). Over a
century later histochemical (Carlsson et al., 1962; Dahlström
and Fuxe, 1964), immunohistochemical, and autoradiographic
(Jones et al., 1977; Jones and Moore, 1977) techniques were used
to identify NE as the small molecule transmitter synthesized
in all LC neurons and to establish the broad projection of LC
axons throughout the forebrain, brainstem, cerebellum, and
spinal cord of all mammalian species. Since these early studies
there has been sustained interest in determining the role of
the LC-NE system in brain function and behavior. Initially, it
was thought that this tightly clustered group of NE-containing
cells was a rostral extension of the sympathetic chain and that
its role, like its counterparts in the periphery, was to release
NE broadly and indiscriminately throughout the CNS as an
“alarm” signal (Grant et al., 1988) in response to “fight or
flight” conditions. Currently, a far more complex view of the
role of the system in brain function and behavior has emerged;
one that posits LC regulation of behavioral state and state
dependent signal processing (Berridge and Waterhouse, 2003)
by way of NE-mediated neuromodulatory actions on cells,
circuits, and neural networks within the CNS. Most of this work

has focused on LC-NE modulation of sensory (Waterhouse
et al., 1990; Bouret and Sara, 2002; Devilbiss and Waterhouse,
2004; Devilbiss et al., 2006; Linster et al., 2011; Martins and
Froemke, 2015; Hirschberg et al., 2017; Kane et al., 2017; Navarra
et al., 2017; Glennon et al., 2019), affective (McCall et al., 2015;
Borodovitsyna et al., 2020) and cognitive (Bouret and Sara, 2004;
Sara and Bouret, 2012; Cope et al., 2019; Bari et al., 2020; Carlson
et al., 2021) circuit operations, with almost no attention paid
to the impact of the LC-NE system on motor circuits, motor
networks, and movement generation.

The potential for this system to regulate motor function
according to the behavioral demands of the organism is
significant (Freedman et al., 1977; Moises et al., 1979, 1980, 1981,
1983; Moises and Woodward, 1980; Watson and McElligott,
1983, 1984; Bickford et al., 1985, 1992, 1999; Bickford, 1993;
Nelson et al., 1997; Clayton et al., 2004). For example, early
work in anesthetized rat showed that local NE administration
via microiontophoresis or electrical stimulation of LC could
augment cerebellar Purkinje cell responses to putative amino
acid transmitters and afferent synaptic inputs while not
having a direct effect on spontaneous firing rate (Freedman
et al., 1977; Moises et al., 1979, 1981, 1983; Moises and
Woodward, 1980). The facilitating actions of NE on Purkinje
cell responses to GABA were further shown to be the result of
beta receptor activation and cyclic AMP-mediated regulation
of GABA A receptor function (Sessler et al., 1989; Cheun
and Yeh, 1992, 1996). Also in cerebellum, Woodward and
colleagues demonstrated the ability of locally applied NE to
gate visual input signals to Purkinje cells that were not initially
responsive to these inputs and at higher doses to sharpen the
visual receptive fields of these cells (Woodward et al., 1991b).
Collectively these studies revealed neuromodulatory actions of
NE and LC activation at the cellular level but left open the
questions of how such effects could influence: (1) the responses
of ensembles of Purkinje neurons to sensorimotor inputs, (2)
the responses of the cerebellar circuitry as-a-whole to such
information, and (3) the contributions of output from the
cerebellum to motor behavior as LC activity waxes and wanes
across the waking state.

The holistic impact of LC output and NE release on
cerebellar operations, specifically, and supraspinal motor
centers, in general, remains speculative at this time given our
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current limited understanding of the anatomy and physiology of
LC projections to motor centers. For example, under conditions
requiring rapid, forceful yet precise movement, output from
the LC-NE system may be required to optimize operations
at cellular, circuit and network levels, thereby improving the
flow of information through the motor network and ultimately
facilitating the execution of reflexive and goal-directed motor
behavior. Ample evidence also implicates the LC-NE system in
motor dysfunction (Feeney et al., 1993; Von Coelln et al., 2004;
Rommelfanger et al., 2007; Rommelfanger and Weinshenker,
2007; Vazey and Aston-Jones, 2012; Liu et al., 2013; Osier and
Dixon, 2016; Vermeiren and Deyn, 2017; McPherson et al., 2018;
Sternberg and Schaller, 2019; Yin et al., 2021). Nevertheless,
the details of LC-interactions with CNS motor centers and
subsequent influences on motor behavior are lacking. In the
context of the new view of the modular design of the LC-
NE system, our contention is that segregated channels of LC
output coordinately regulate neuronal responsiveness and signal
transfer in motor centers across the brain, thereby improving
motor neuron, motor circuit and motor network operations and
ultimately leading to improved motor function as behavioral
circumstances dictate. Such actions would parallel the recently
demonstrated facilitating effects of NE on signal processing
and performance of sensory guided behaviors [see review –
(Waterhouse and Navarra, 2019)]. It is important to note that
segregated operation of the LC-NE system does not preclude
a mode of operation where inputs to LC drive output to all
its terminal fields simultaneously such as might occur in the
transition from sleep to waking and generalized arousal.

To address the above issue a recently developed viral-
genetic method TrAC (Tracing Axon Collaterals) (Plummer
et al., 2020) is available to examine, in detail, the structural
features and physiological attributes of LC-NE neurons that
project to specific motor centers in the rodent brain (see
Figure 1). This approach allows for determination of the
full extent of the distribution of axon collaterals from LC
cells to motor centers and non-motor centers throughout the
CNS. As such, a major goal going forward is to address
a larger issue which has been the subject of considerable
speculation for many years but, until now, has eluded
rigorous experimental testing, i.e., are axonal projections
from LC cells ubiquitously and non-selectively distributed
across the brain and spinal cord or are they organized
according to the functional properties of their efferent targets.
In addition, using TrAC the soma and dendritic arbors
of LC projection cells are revealed. Thus, the intranuclear
distribution of LC-motor network projection cells and the
distribution of their dendritic fields in the peri-coerulear
space where afferent inputs arrive, can be examined. In
addition, ex vivo electrophysiology can be employed to
determine the physiological properties of these cells. Overall,
this combined experimental strategy has the potential to

provide new information about how it may be possible for
the LC-NE system to coordinately regulate activity in neural
circuits that are modality specific but broadly distributed
across the CNS. Additional work in behaving animals can be
designed to assess how output from LC affects performance
in motor tasks that require coordination, balance, and manual
dexterity.

New theoretical framework for
evaluating locus coeruleus
influences on motor network
operations

Our laboratory and many others [see reviews – (Woodward
et al., 1991a; Berridge and Waterhouse, 2003; Aston-Jones
and Cohen, 2005a; Uematsu et al., 2017; Waterhouse and
Navarra, 2019)] have established a neuromodulatory role
for the LC-NE system such that LC activation and NE
release promote enhancement of individual and ensemble
neuronal responses to afferent inputs, thereby facilitating
signal transfer through neural circuits and neural networks
that receive LC projections. Based on prior anatomical
and physiological data such effects have been presumed
to occur uniformly and simultaneously throughout all LC
terminal fields as LC output rises and falls across different
behavioral states. New data argue for a more heterogeneous,
modular organization and operation of LC (Chandler and
Waterhouse, 2012; Chandler et al., 2014a, 2019; Hirschberg
et al., 2017; Uematsu et al., 2017; Poe et al., 2020). In
light of these findings four major questions have emerged
regarding the structure and physiology of the LC efferent
pathway. First, are LC axon collateral networks organized
according to terminal field function? The nucleus gives rise
to a brain-wide network of NE-containing fibers; however,
the branching patterns and distribution of LC axons have
not been elucidated for any brain region. Second, are
the dendritic arbors of LC cells with preferred projection
targets distributed within discrete sub-regions of the peri-
coerulear space? Prior studies in rodents have demonstrated
a topographic ordering of inputs to the peri-coerulear space
indicating the potential for selective afferent regulation of
subsets of LC cells whose dendrites populate this space.
The question here is whether LC cells projecting to motor
centers of the forebrain exhibit a preferred peri-coerulear
distribution of their dendrites, thereby positioning them to
receive inputs from specified afferent pathways. Third, do
subsets of LC neurons with preferred projection targets
exhibit unique electrophysiological properties and excitability
thresholds such that differential, asynchronous release of NE
across different LC terminal fields is possible? Fourth, how
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does activation or inactivation of sub-populations of modality-
specific LC cells impact performance of cognitive, sensory, or
motor behavioral tasks? While some information is available
regarding the anatomical organization and electrophysiological
characterization of sub-sets of LC cells that project in a
coordinated fashion to cognitive and sensory regions of the
spinal cord and forebrain (Simpson et al., 1997; Chandler
et al., 2014a,b; Hirschberg et al., 2017; Wagner-Altendorf et al.,
2019), the relationship between the LC-NE system and motor
circuits of the mammalian brain has largely been ignored.
The absence of this information prevents us from gaining
a full appreciation for the role of the LC-NE system in
motor control and movement. In a more global sense the
question is, what anatomical and physiological features of
LC neurons allow for specificity or, alternatively, uniformity
of action across broadly distributed regions of the CNS that
receive projections from the LC-NE system? A more complete
understanding of the anatomical organization and physiological
attributes of LC efferent projections to motor networks would
greatly benefit theoretical constructs of LC-NE influences on
behavioral outcomes, in general, and motor functions, in
particular.

Outstanding questions and
experimental strategies

Do locus coeruleus efferent
projections maintain a unique
relationship with motor-related
terminal fields through distribution of a
functionally ordered network of axon
collaterals?

Early studies revealed moderate to dense distributions
of NE-containing fibers in rodent primary and secondary
motor cortices, motor thalamus, brainstem motor centers and
cerebellum (Bloom et al., 1971, 1972; Siggins et al., 1971; Hoffer
et al., 1973; Lindvall et al., 1974; Levitt and Moore, 1978,
1979; Morrison et al., 1978; Nelson et al., 1997). The LC was
identified as a major source of these fibers (Siggins et al., 1971;
Hoffer et al., 1973; Steindler, 1981). Many early demonstrations
of LC-NE modulatory effects on synaptic transmission and
neuronal responsiveness to putative transmitter application
were carried out in cerebellum (Freedman et al., 1977; Moises
et al., 1979, 1983; Moises and Woodward, 1980). Later this
work was extended to sensory circuits throughout the brain and
hippocampus (Segal and Bloom, 1974a,b, 1976a,b; Waterhouse
et al., 1980, 1982, 1986, 1990; Kasamatsu and Heggelund,
1982; Holdefer and Jacobs, 1994; Manunta and Edeline, 1997;
Waterhouse and Navarra, 2019). It is now well established
that output from the LC-NE system can regulate sensory

FIGURE 1

TrAC (Tracing Axon Collaterals) permits fluorescent labeling of
genetically defined neuron populations based on axonal
projections. (Top) Neurons with a history of En1 and Dbh
expression constitute the locus coeruleus and an adjacent
portion of dorsal subcoeruleus. (Center) In mice heterozygous
for En1Dre, DbhFlpo, and the RC:RFLTG indicator allele, locus
coeruleus (LC)-norepinephrine (NE) neurons are labeled
constitutively with tdTomato (red fluorescence) and switch to
EGFP (green fluorescence) after Cre recombination. (Bottom)
After injection of a retrograde CAV2-Cre virus (left schematic),
EGFP labels LC-NE neurons projecting to the injection site (right
image) as well as all their axon collaterals in other brain regions
(middle image), scale bars = 100 µm. Adapted from
Plummer et al. (2020).

signal processing; i.e., increased neuronal responsiveness to
sensory-driven inputs, altered feature extraction properties of
sensory neurons, and facilitation of the transfer of sensory
information through ascending sensory networks (Rogawski
and Aghajanian, 1980a,b; Waterhouse et al., 1990; McLean
and Waterhouse, 1994; Devilbiss and Waterhouse, 2004, 2011;
Devilbiss et al., 2006). More recent studies show that LC-NE
actions at the level of individual cells and local circuits can
influence the outcome of sensory guided behaviors (Jiang et al.,
1996; Escanilla et al., 2010; Linster et al., 2011; Martins and
Froemke, 2015; Navarra et al., 2017) and prefrontal cortex
dependent executive functions (Arnsten and Li, 2005; Berridge
et al., 2006, 2011; McGaughy et al., 2008; Berridge and Devilbiss,
2011; Chandler et al., 2014b; Spencer et al., 2015; Cope et al.,
2019; Glennon et al., 2019). However, despite longstanding
evidence of LC-NE innervation across motor regions of the
brain, there is a major gap in our understanding of how NE
release affects signal processing in these circuits and ultimately
exerts control over motor activities. This gap is even wider
when considered relative to our increasingly sophisticated
understanding of the influence of the LC-NE system on
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sensory processing and executive function. Determination of
the anatomical relationships between LC and supraspinal motor
centers in rodent brain is a critical first step in closing this gap.

Knowledge of the input-output relationships of LC is
essential to postulating the spatial and temporal implications
of LC-mediated release of NE in LC innervated motor
networks. Motor control is a complex, multi-dimensional
process, achieved through integration of activity across a
broadly distributed network of brain and spinal cord circuits
(Brooks, 1986, The Neural Basis of Motor Control, Oxford
Press). Although nearly all CNS movement-related areas are
innervated by LC, the projections to primary motor cortex,
motor thalamus (VL nuc), red nucleus, lateral vestibular
nucleus, cerebellar cortex and deep cerebellar nuclei (lateral,
intermediate, medial) should be the initial focus of inquiry
as these regions are interconnected through well-established
input-output pathways and are engaged in maintaining balance;
planning, execution and coordination of voluntary movements;
and postural adjustments during movement sequences (see
Figure 13.2 – Brooks, 1986, The Neural Basis of Motor Control
Oxford Press). One could imagine that simultaneous NE release
across motor circuits in the forebrain via a topographically
ordered network of axon collaterals from motor selective LC
neurons would result in coordinated noradrenergic modulation
of neural operations dedicated to an ongoing motor directive.
We propose TrAC as the means to advance this idea. In brief,
a transgenic line of mice has been developed whereby LC-
NE neurons constitutively express tdTomato fluorescent label
throughout their soma, dendrites, and axonal arbors (Robertson
et al., 2013; Plummer et al., 2015, 2020). These cells can be
selectively switched to expression of EGFP following unilateral
injections of the CAV2-Cre canine adenoviral vector in targeted
regions of the central motor network, thus revealing the sub-
population of LC cells with specified projections to the injection
site (Hnasko et al., 2006).

After viral vector injections in any one of the areas of
interest, retrogradely transduced cells in LC will express EGFP in
their soma and throughout their axonal trees thus revealing the
distribution of axon collaterals from those cells to all potential
terminal fields in the brain including the site targeted for
injection. Experiments of this nature would aid in determining
the distribution and pattern of axon collateralization from
LC cells that have defined motor circuit projections. Axonal
networks associated with injections in thalamic and cortical
visual terminal fields would serve as controls for comparison.
In preliminary studies using TrAC we found labeled primary
motor cortex-projecting NE neurons (EGFP +) intermingled
among tdTomato + neurons within the ipsi- (Figures 2A–C)
and contralateral LC. The number and distribution of labeled
cells (ipsi- vs. contralateral) was similar to that observed in
previously published reports of LC projections to cortical targets
using conventional retrograde tracer techniques (Simpson et al.,
1997; Chandler et al., 2013; Plummer et al., 2020).

FIGURE 2

Labeling of locus coeruleus neurons in TrAC-LC mice following
CAV2-Cre injection in primary motor cortex (M1). (A) Coronal
schematic of mouse forebrain section showing position of
CAV2-Cre injection. (B) Bar graph showing percentage of
EGFP-labeled LC neurons, ipsilateral and contralateral relative to
the injection site (n = 4 mice). (C) Representative coronal
sections through the rostrocaudal extent of the ipsilateral LC
showing distribution of EGFP-labeled (green) and
tdTomato-labeled (magenta) cells. Scale bar, 200 µm. Adapted
from Plummer et al. (2020).

In another preliminary analysis we found that although
retrograde viral delivery of a recombinase into either medial
prefrontal cortex or primary motor cortex produced similar
numbers and distributions of retrogradely labeled LC neurons,
the collateral network of axons from LC-mPFC projecting
cells was not uniformly distributed across LC terminal fields
(Figures 3, 4). Likewise, the distribution of axon collaterals from
mPFC-projecting and M1 projecting LC-NE neurons differed
from that of LC as a whole and from each other [see Figure 5 –
(Plummer et al., 2020)].

In future work we might discover that the network of
labeled axons from injections in different motor terminal fields
is exclusive to motor circuitries across the CNS, a finding
that would further emphasize the modular structure and
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FIGURE 3

Locus coeruleus efferent fibers in TrAC-LC mice following
CAV2-Cre injection in medial prefrontal cortex. tdTomato+

fibers (magenta) and EGFP+ fibers (green) are shown in primary
motor cortex (M1), bed nuc stria terminalis (BNST), medial
geniculate (MG). Note the paucity of labeled fibers in MG, i.e.,
axon collaterals of LC cells projecting to medial prefrontal
cortex, scale bar = 100 µm. Adapted from Plummer et al. (2020).

FIGURE 4

Distribution of axon collaterals from LC neurons projecting to
mPFC. The bar graph (n = 4 mice) indicates percentage of
LC-NE axons at each brain region that originate from
EGFP + mPFC-projecting LC-NE neurons. LC-NE neurons are
represented as percent of total LC-NE inputs (sum of
EGFP + and tdTomato +) in select brain regions. mPFC, medial
prefrontal cortex; A24, ventral anterior cingulate; insular ctx,
insular cortex; M1, primary motor cortex; piriform ctx, piriform
cortex; BNST, bed nucleus of the stria terminalis; CA1, area CA1
of the hippocampus; BLA, basolateral amygdala; BMA,
basomedial amygdala; LH, lateral hypothalamus; PVN,
paraventricular hypothalamic nuc; AV, anteroventral thalamic
nuc; PV, paraventricular thalamic nuc; VL, ventrolateral thalamic
nuc; VM, ventromedial thalamic nuc; MG, medial geniculate
nuc; Sup. coll., superior colliculus; SNr, substantia nigra. Adapted
from Plummer et al. (2020).

selectivity of LC function in the context of motor control.
We would also be able to determine the proportion of LC
axons within a terminal field that arise from a specified
cluster of retrogradely labeled neurons by comparing EGFP-
vs. tdTomato-containing fibers within a given region (EGFP
labeling/EGFP + tdTomato labeling).

Because motor pathways are crossed and because of the
bi-lateral brainstem location of the LC, it will be important

FIGURE 5

Soma and dendritic fields (white arrows) of LC neurons labeled
from viral vector injection in the ipsilateral VL thalamus. Rather
than extend evenly into the peri-coerulear surround, the
dendrites from these cells are concentrated in the dorsomedial
(1), ventromedial (2), and lateral (3) zones of the peri-coerulear
space, scale bar = 100 µm.

to pay strict attention to the laterality of labeled cells and the
distribution of axon collaterals from these cells with respect
to injection site and ipsi- vs. contralateral connectivity of
motor pathways. This information will be critical for evaluating
functional impact of these projections. Counter to expectations,
it may be that axon collaterals from labeled LC cells are
distributed without regard for terminal field modality, i.e.,
distribute uniformly and non-specifically to motor as well as
non-motor areas of the brain. This observation would still be
quite useful in validating or not the recently proposed modular
design of the LC-NE system (Chandler et al., 2019).

What is the intra-nuclear distribution
of locus coeruleus cells that project to
supraspinal motor circuits?

The distribution of cells within LC that have specified
motor circuit projection targets is an important consideration
that has received little attention relative to the distribution
of LC cells which project to sensory and cognitive targets in
the brain. In a previous study using conventional retrograde
tracers (Simpson et al., 1997) we determined the intra-nuclear
location and number of LC cells that project to the trigeminal
somatosensory (whisker) pathway in rat. The study revealed a
projection bias from LC to the trigeminal pathway that favored
modulation of sensory signal transmission from one whisker
pad to the opposite sensory cortex. As such, we were able
to demonstate that LC projections to the trigeminal system
maintain a functional alignment with the trajectory of sensory
information from the periphery to the primary sensory cortex.
Do LC-motor circuit projections display similar patterns of
organization? The goal of future work is to establish or not an
efferent topographic ordering of LC cells with respect to motor
system targets that give rise to crossed and un-crossed control of
motor functions.
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Results of ongoing studies indicate differential patterns
of labeling following volumetric equivalent injections of viral
vector in VL thalamus and cerebellar medial nuc (i.e., fastigial
nuc in human), (Figure 6). Labeling in LC from both structures
is bi-lateral but distributed with an ipsilateral bias (60% ipsi –
40% contra) relative to injection site. Althougth the rostro-
caudal distribution of EGFP labeled cells is similar, output to
the medial cerebellar nuc arises from a greater number of cells
arranged in a tight cluster within the core of the nucleus. Neither
of these distributions matches the pattern of labeling observed
following volumetric equivalent injections of viral vector in
prefrontal or motor cortices (see Figure 2). The LC projection
to medial prefrontal and primary motor cortices arises from
a scattered and primarily ipsilateral distribution of cells in the
LC nucleus (Figure 2). We expected to find a similar scattered
distribution of cell bodies in LC that project to various motor
circuits. However the results from VL thalamus and medial
cerebellar nuc injections (Figure 6) reveal a more bilateral and
tightly clustered grouping of LC projection neurons to these
regions in the central core of the nucleus (compare Figures 2, 6).
This observation adds evidence in support of a heterogeneous
organization of LC with respect to terminal field projections;
in this case suggesting that different subsets of LC cells project
to cortical vs. sub-cortical (VL thalamus) vs. cerebellar targets
within the motor network.

Two issues are important when considering the results and
interpretaton of retrograde labeling in the proposed study. First,
the TrAC method alone does not allow for identification of
sub-populations of LC soma that may have different projection
targets. For example, although the intranuclear locations of LC-
cerebellar cortex projection cells may appear to be uniquely
distributed, these clusters of cells may overlap and intermingle
with cells that project to other motor or non-motor terminal
fields. Counterbalanced injections of conventional retrograde
tracers, e.g., cholera toxin beta subunit - CTB, fluorescent
dextrans, or retrogradely transported viral vectors in different
LC terminal fields would be capable of revealing within the same
animal the intranuclear locations of LC soma with different

terminal field targets. The second consideration is tissue tropism
for viral vectors, i.e., the capability of viruses to infect different
tissues. Three neuronal cell types have been described in rodent
LC based upon morphology of the cell soma; multipolar,
fusiform, and round (Loughlin et al., 1986). Although only
speculative, we assume that viral vectors used in the proposed
study have equal tropism for axons emanating from these
different LC cell types.

Do the dendritic arbors of locus
coeruleus-motor circuit projection
neurons have a preferred distribution
within the peri-coerulear space?

In rodents the LC consists of a dense core of cell bodies
surrounded by dendritic processes that extend at least 75–
100 µm and in some cases 500–600 µm into the neuropil
from the border of the nucleus (Cintra et al., 1982; Shipley
et al., 1996). These processes form a halo around the nucleus
in an area referred to as the peri-coeruelar space, a region
that is sparsely populated by cell bodies from other brain
structures (Cintra et al., 1982; Shipley et al., 1996). In rat there
are three primary zones within the peri-coerulear space into
which dendrites arising from LC neurons project; (1) rostral
medial, (2) caudal medial, and (3) dorsal lateral with respect
to the core of the nucleus (Van Bockstaele et al., 1996a,b,
1999a,b). Inputs to these zones are from central amygdala,
bed nucleus of stria terminalis, paraventricular hypothalamus,
nucleus tractus solitarius, peri-acqueductal gray, and prefrontal
cortex (Van Bockstaele et al., 1996a,b, 1998, 1999a,b, 2001; Jodo
et al., 1998; Reyes et al., 2011). Light and EM studies have
determined that inputs from these structures have preferred
targets among these three primary dendritic fields of LC cells
(Van Bockstaele et al., 1996a, 1998, 1999a,b). For example, the
dorsal lateral peri-coerulear space is targeted by afferents from
the central amygdala and cardiovascular region of the nucleus

FIGURE 6

EGFP + NE-containing cells in the ipsi- (at right) and contralateral (at left) LC nucleus following unilateral injection of retrogradely transported
viral vector in the cerebellar medial nuc, scale bar = 100 µm.
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tractus solitarius (Van Bockstaele et al., 1999a). EM studies
have further determined that afferents to this zone of the peri-
coerulear space make monosynaptic connections (excitatory
and inhibitory) with LC dendrites and as such are capable
of regulating LC output, presumably under conditions where
limbic and autonomic system signals converge to influence NE
release in the LC terminal fields (Van Bockstaele et al., 1999a,
1996b, 2001). Overall, these studies suggest that inputs to LC
are non-overlapping and topographically ordered. Despite these
findings there have been no studies capable of determining the
distribution of dendrites from LC neurons with known efferent
targets. By way of retrograde viral labeling TrAC allows for
identification of subsets of LC neurons with defined projection
targets and visualization of their dendritic arbors. An important
goal of future studies is to compare the peri-coerulear dendritic
fields of LC-motor vs. LC-non-motor circuit projection neurons.
We postulate that relative to non-motor LC projection cells, LC-
motor network projection neurons have dendritic fields with
unique patterns of distribution within the peri-coerulear space.

Because of the clarity with which retrogradely labeled LC
cells expressing EGFP are visualized, we have started to use
TrAC to examine the dendritic fields of LC-motor circuit
projection neurons. As shown in Figure 5 the dendritic arbors
of cells that project to VL thalamus are concentrated in three
zones of the peri-coerulear space; dorsal medial, ventral medial,
and lateral. By contrast cells projecting to medial cerebellar
nucleus are restricted to dorsal medial and ventral medial peri-
coerulear zones (data not shown). The distribution of dendrites
arising from LC cells with known efferent targets is an open
question that must be answered to further pursue the idea
that the input-output relationships of LC are not random but
rather maintain a selective organization with respect to the
function of LC-NE terminal fields. In the case at hand, the focus
should be on LC projections to motor centers in the brain.
The distribution of dendrites arising from LC-motor projection
neurons can be matched against the input fields from prefrontal
cortical, limbic, and autonomic structures that are afferent to
sub-regions of the peri-coerulear space (Van Bockstaele et al.,
1996a, 1998, 1999a,b, 2001; Reyes et al., 2011). The location and
size of LC neuron dendritic fields determines the region from
which afferent inputs can be sampled and therefore identifies
potential source(s) of afferent regulation of LC activity. For
example, because the projections from prefrontal cortex and
central amygdala terminate discretely in medial vs. dorsal lateral
zones of the peri-coerulear space, respectively (Arnsten and
Goldman-Rakic, 1984; Van Bockstaele et al., 1999b), it should
be possible to differentiate the dendritic fields and potential
synaptic receptive zones of LC-motor circuit projection neurons
in terms of these two areas. Based upon our preliminary
observations, we predict a restricted distribution of the dendritic
arbors of LC-motor circuit projection neurons within the peri-
coerulear space. Alternatively, LC-motor projection neuron
dendritic fields may overlap completely with known afferent

input fields and therefore not exhibit any specificity with respect
to these inputs. Additional questions can be considered. Is
there a differential distribution of dendritic arbors arising from
LC cells that project to different motor targets? Are there
differences in the distribution of dendritic fields arising from
motor vs. sensory (dorsal lateral geniculate or visual cortex)
circuit projection neurons.

Do locus coeruleus-motor circuit
projection neurons exhibit unique
electrophysiological properties relative
to locus coeruleus cells that project to
non-motor circuits?

Identification of retrogradely labeled LC neurons in ex vivo
brain slices provides a means for performing whole cell
patch clamp recordings of the neurons that project to motor
circuits. This approach can be used to determine intrinsic
membrane properties, spontaneous discharge, and synaptic
response properties of subsets of LC projection cells. Published
studies from our laboratory indicate that LC-medial prefrontal
cortex projecting neurons have higher rates of basal discharge
(Figure 7A), shallower afterhyperpolarization (Figure 7B), and
higher amplitude of AMPA-mediated sEPSCs (Figures 7C,D)
relative to LC-primary motor cortex projection neurons
(Chandler et al., 2014a). Such an arrangement may have
considerable behavioral significance insofar as LC-prefrontal
cortex projection neurons appear to have lower thresholds of
activation and higher basal discharge rates than LC-primary
motor cortex projection cells, thus prompting greater NE release
and more robust noradrenergic modulatory actions in decision-
making circuits relative to movement generating circuits.
At basal levels of LC output, this dynamic would facilitate
focused and flexible attention, decision-making and execution
of behaviors guided by the prefrontal cortex. Furthermore,
because noradrenergic modulation follows an inverted-U dose-
response function (Berridge and Waterhouse, 2003; Aston-Jones
and Cohen, 2005a,b; Devilbiss et al., 2006; Moxon et al., 2007),
we would expect increasing LC output to achieve optimal NE
modulatory effects in motor cortex while modulatory actions
in prefrontal cortex are waning. This asynchronous mode
of operation would facilitate transitions between exploitation
of successful behavioral strategies and pursuit of alternatives
to meet new behavioral contingencies, as suggested by the
theoretical constructs proposed by Aston-Jones and Cohen
(Aston-Jones and Cohen, 2005a,b).

Because LC projection targets are variously engaged in
cognition, affect, sensation, and movement we postulate that
the physiological properties of the LC neurons modulating
each of these modalities are distinct. The demonstration that
different classes of LC neurons projecting to defined targets
have unique electrophysiological properties would provide
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FIGURE 7

Locus coeruleus cells projecting to mPFC are physiologically
distinct from those projecting to M1. (A) Representative traces of
spontaneous action potentials indicate that cells projecting to
mPFC (n = 19) fire three-fold faster than those projecting to M1
(n = 19, *p < 0.05). (B) The magnitude of afterhyperpolarization
(AHP), as determined by the difference in voltage between
action potential threshold and the lowest point of the AHP
(dashed lines and arrows), was significantly lower in mPFC
projection cells than those terminating in M1 (*p < 0.05).
(C) Representative traces of AMPA mediated spontaneous
excitatory post synaptic current (sEPSC) and the graph in panel
(D) indicate that the amplitude of sEPSCs was significantly
greater in mPFC vs. M1 projection cells (*p < 0.05).

strong support for the emerging hypothesis that the LC-NE
system can differentially and asynchronously modulate activity
across different modality-specific terminal fields. Note, this
result has already been demonstrated for the VTA-dopamine
system (Lammel et al., 2008). We believe that LC-motor
circuit projection cells will display similar firing patterns and
discharge frequencies in response to current injection, and
likewise exhibit similar synaptic responses. These properties
would differ from those expressed by cells projecting to non-
motor regions of the brain; e.g., sensory targets of LC such
as the dorsal lateral geniculate nucleus. Different basal firing
rates and excitability of LC projection neurons would translate
to differential NE release and NE action in LC terminal fields.
For example, a lower threshold influence of LC output on
cognitive and/or sensory processes and a higher threshold
influence on motor functions might lead to LC-NE modulation
of sensory signal processing and decision-making operations
before LC-NE regulation of networks responsible for goal-
directed movement – i.e., “sensing and planning before doing.”
This outcome would provide evidence for segregation of
function within the LC-NE transmitter system and as such
would establish the foundation for an entirely new theoretical
construct for explaining the role of LC in brain function and
behavior.

Does selective activation of locus
coeruleus-motor network projection
neurons improve performance in tests
of coordination, balance, and forelimb
dexterity?

Locus coeruleus activation, local administration of NE,
or pharmacologic elevation of NE levels in the brain
enhances sensory signal processing at cellular, circuit and
network levels and improves performance in sensory guided
behaviors(Waterhouse and Navarra, 2019). The LC-NE system
has been shown to exert similar influences on cognitive
circuitries and executive functions (Bouret and Sara, 2004; Sara
and Bouret, 2012; Bari et al., 2020; Carlson et al., 2021). By
contrast similar studies have not probed the impact of the LC-
NE system on motor circuit operations and motor behavior.
Early work showed that noradrenergic pharmacotherapy,
adrenal transplantation, and direct infusion of NE into motor
regions of the CNS have some value in promoting functional
recovery after stroke and traumatic brain injury (Feeney et al.,
1982, 1993) but the moment-to-moment regulation of motor
network function and movement control by the LC-NE system
has not been studied in normal animals. A strategy to address
this question is to assess transgenic mouse performance in
well-established rodent motor tasks; before, during and after
chemogenetic or optogenetic activation (or inactivation) of LC
cells with known projections to primary motor cortex. This
approach would increase (or decrease) release of NE in not only
primary motor cortex but also the motor related terminal fields
that receive axon collateral distributions from these cells.

To enable control of the output of LC cells that selectively
project to primary motor cortex, mice would be manipulated
to express designer receptors exclusively activated by designer
drugs (DREADDS) in LC-primary motor cortex projection cells.
This would allow for activation or suppression of these cells
by the chemogenetic actuator deschloroclozapine, while mice
are performing motor skill tests. Activation or suppression of
visual cortex-projecting LC cells during motor skill tests would
serve as controls. Using a similar strategy animals could be
tested in motor tasks before and during optogenetic activation
of targeted LC cells. Many tests of motor function can be
employed to examine the impact of LC output on motor
behavior. For example, the accelerating rotorod test assesses
motor coordination by measuring latency to fall from an
accelerating rotating drum (Brooks and Dunnett, 2009). The
balance beam test assesses the animal’s ability to maintain
balance while traversing an increasingly narrow plank (Brooks
and Dunnett, 2009; Luong et al., 2011). The staircase test
measures skilled reaching using a baited descending staircase
on either side of a center beam (Brooks and Dunnett, 2009).
The number of food pellets retrieved measures bilateral skilled
reaching. Sex as a variable can also be added to each of these
motor behavioral protocols.
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These types of experiments could determine if performance
of motor tasks can be improved or diminished, respectively, by
selective activation or inactivation of LC-primary motor cortex
projection cells. Because of ceiling effects in performance of any
or all tasks, suppression of LC output via inhibitory DREADD
and decreased task performance might be a better indicator of
LC influence on motor behavior. We would not expect changes
in motor performance in littermate controls not expressing
DREADDS or animals where DREADDS are expressed in LC-
cells projecting to visual cortex. The tasks described above, i.e.,
rotorod, balance beam, and staircase test; are used routinely
in mice to evaluate motor coordination, balance, and manual
dexterity, respectively (Brooks and Dunnett, 2009; Luong et al.,
2011). In particular, these tasks have been used to assess the
degree of motor dysfunction and recovery in mouse models of
head trauma (Feeney et al., 1982; Gulinello et al., 2008), stroke
(Bouet et al., 2007), and neurodegenerative disease (Carter et al.,
1999; Gulinello et al., 2008; Southwell et al., 2009).

Implications for disease, injury, or
age-related motor dysfunction

The experimental strategies described here have the
potential to address major unanswered questions about the
structure of the LC-NE transmitter system and its potential
role in CNS control of balance, posture, and voluntary and
reflexive movements in health and disease. The working
hypothesis is that output from a sub-domain of LC is capable
of coordinately and simultaneously regulating operations across
a distributed network of motor circuits with the end-result of
facilitating motor responses according to behavioral demands
placed on the organism. For example, in healthy animals, as
output from LC waxes and wanes across the waking cycle,
we might expect moment-to-moment fluctuations in reaction
time, motor coordination, and speed and accuracy of goal-
directed movements. Such effects could occur independently
or in conjunction with LC-mediated modulation of sensory
signal processing and cognitive function depending on the
modular or global mode of LC activation. Motor learning
might also be affected by changes in LC output. Chemo- and
optogenetic approaches have already been used to probe the
effects of LC output on sensory signal processing, sensory guided
behaviors, and executive functions (Kane et al., 2017; Cope
et al., 2019; Glennon et al., 2019; Carlson et al., 2021); and one
recent study has used both global and local activation of NE
release to rescue a motor learning deficit in a mouse model of
autism (Yin et al., 2021). However, a criticism of this published
work is the use of either global or local activation/inactivation
(electrical, opto- or chemogenetic) of LC or LC fibers to prompt
widespread, indiscriminate or narrowly focused release of NE
in LC-NE terminal fields. While these studies have been useful
for demonstrating the potential brain-wide or local actions of
LC activation in waking animals, they do not provide the means

to isolate LC-NE actions on ensembles of circuits in modality-
specific networks such as those that exist in the motor system.
The use of TrAC to label the collateral axon networks of LC-
motor circuit projection cells will provide the roadmap and
rationale for this more targeted approach. While initial studies
can be conducted in normal animals to assess the role of LC
output in routine motor tasks, future work can evaluate the
benefits of activating motor circuit projections of the LC-NE
system as a means of restoring balance, range, rhythm, and rate
of movement in aged animals and restoring motor function in
animal models of disease (Carter et al., 1999; Von Coelln et al.,
2004; Liu et al., 2013), neurodevelopmental disorders (Piochon
et al., 2014; Del Pino et al., 2018; Yin et al., 2021), stroke (Bouet
et al., 2007), and TBI (Feeney et al., 1993; Osier and Dixon,
2016).
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