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Abstract

Pharmaceutical applicants conduct (Q)SAR assessments on identified and theoretical impurities to 

predict their mutagenic potential. Two complementary models—one rule-based and one statistical-

based—are used, followed by expert review. (Q)SAR models are continuously updated to improve 

predictions, with new versions typically released on a yearly basis. Numerous releases of (Q)SAR 

models will occur during the typical 6–7 years of drug development until new drug registration. 

Therefore, it is important to understand the impact of model updates on impurity mutagenicity 

predictions over time. Compounds representative of pharmaceutical impurities were analyzed with 

three rule- and three statistical-based models covering a 4–8 year period, with the individual time 

frame being dependent on when the individual models were initially made available. The largest 

changes in the combined outcome of two complementary models were from positive or equivocal 

to negative and from negative to equivocal. Importantly, the cumulative change of negative to 

positive predictions was small in all models (<5%) and was further reduced when complementary 

models were combined in a consensus fashion. We conclude that model updates of the type 
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evaluated in this manuscript would not necessarily require re-running a (Q)SAR prediction unless 

there is a specific need. However, original (Q)SAR predictions should be evaluated when 

finalizing the commercial route of synthesis for marketing authorization.
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1. Introduction

Impurities in pharmaceuticals are unavoidable. The synthesis of a chemical drug substance 

involves starting materials, intermediates, reagents, by-products, etc. that have the potential 

to be present in the drug product as impurities. In addition, drug substances and drug 

products can also degrade, which could further result in the presence of unintended 

chemicals. The ICH Q3A (R2) (ICH, 2006a), and ICH Q3B (R2) (ICH, 2006b) guidelines 

were developed in order to minimize exposure to impurities and ensure patient safety. ICH 

M7 (R1) (ICH, 2017) was published in order to control for a potentially toxic subset of 

impurities, i.e., DNA reactive, mutagenic impurities. The guideline describes the process for 

identification, categorization, qualification, and control of impurities to limit carcinogenic 

risk. It is important to identify mutagenic impurities as they are controlled to lower limits 

than non-mutagenic compounds. The limit for a mutagenic impurity without adequate 

corresponding in vivo carcinogenicity data is based on the threshold of toxicological concern 

(TTC). The TTC derived for mutagenic compounds was determined by analyzing the 

carcinogenic potency of known carcinogens and deriving the exposure that has a theoretical 

excess cancer risk of 1 in 100,000 over background (Kroes et al., 2004; Muller et al., 2006). 

The resulting TTC based on this analysis is 1.5 μg/day for chronic (administration for >10 

years) exposure.

(Quantitative) Structure Activity Relationship ((Q)SAR) predictions are an important part of 

hazard characterization in the context of ICH M7 (R1) application. (Q)SAR models make 

predictions of biological activity based on chemical structure and, consequently, only a 

chemical structure instead of any physical material for experimental testing is needed for a 

known or potential impurity to generate a prediction of its mutagenicity. Specifically, models 

used for ICH M7 purposes predict the outcome of the bacterial reverse mutation assay (i.e., 

Ames assay (Ames et al., 1973a; Ames et al., 1973b; Gee et al., 1994)), which is the 

recommended experimental assay to identify DNA reactive compounds. (Q) SAR models 

were used in this context even prior to the adoption of ICH M7 (Dobo et al., 2006). Due to 

the large number of impurities needing evaluation during the development of a new drug, 

(Q)SAR models offer an attractive alternative to empirical testing for each impurity, which 

itself may require the time-consuming process of synthesis and purification of the impurity 

to conduct the assay. (Q)SAR models can provide the high-throughput capacity needed to 

generate predictions for hundreds of impurities in a fraction of the time, with predictions 

achieving the high sensitivity and negative predictivity needed to protect patient safety. If an 

impurity is predicted as mutagenic, one can then choose to demonstrate control of the 

Hasselgren et al. Page 2

Regul Toxicol Pharmacol. Author manuscript; available in PMC 2020 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



impurity at or below the TTC or choose to do follow-up mutagenicity testing in the bacterial 

reverse mutation assay in accordance with OECD 471 and ICH S2 (R1) guidelines.

ICH M7 (R1) recommends that two complementary (Q)SAR models are used, one expert 

rule-based and the other a statistical-based model. Expert rule-based models generate 

predictions based on knowledge of structure-activity relationship patterns derived by experts, 

who extract structural alerts and mitigating features from datasets and the published 

literature and encode the patterns in the software (Barber et al., 2017). Statistical-based 

models are agnostic of external rules and are instead trained by an algorithm that extracts 

information from a training set without the inclusion of prior knowledge. Both types of 

(Q)SAR models (i.e., rule- or statistical-based) should meet the general validation principles 

set forth by the Organization for Economic Co-operation and Development (OECD) 

(OECD, 2007). Furthermore, the ICH M7 (R1) guideline states that in the absence of 

structural alerts from two complementary methodologies, it can be concluded that an 

impurity is non-mutagenic. If warranted, expert knowledge can be used to overrule any 

prediction, positive, negative or equivocal. Expert knowledge has been described in other 

publications and requires a description with supporting information as to why the prediction 

is overruled (Barber et al., 2015; Powley, 2015; Amberg et al., 2016). Expert review has 

been shown to be an important process to enhance the reliability of (Q)SAR predictions 

(Dobo et al., 2012; Sutter et al., 2013).

The process of identifying impurities and assessing their mutagenic potential is the 

responsibility of the pharmaceutical applicant and is typically done in-house for larger 

organizations, and by consultants for smaller organizations. The determination of which 

impurities should undergo (Q)SAR varies between different organizations. The workflow in 

an industry setting may be as simple as the process chemist(s) deciding and assembling the 

list, or more of a cross-functional collaboration, involving a joint review by an internal group 

of experts to determine which structures are relevant to assess.

Actual and potential impurities as well as degradation products, as defined by ICH M7 (R1), 

require (Q)SAR assessment, if there are no mutagenicity data available. Some organizations 

may however choose to review the entire synthetic scheme. The process of impurity 

assessment is not static; during the course of development, the understanding of the 

synthetic route and, thus, associated impurities, continues to evolve. The synthetic route may 

be changed for various reasons such as scalability, minimizing environmental waste, process 

safety, economic reasons, etc. The formulation of the drug product also continues to evolve 

to maximize stability and systemic absorption of the drug substance. All of these changes 

can result in new impurities that need to be computationally evaluated. (Q)SAR models are 

also not static over time. Data and knowledge used to build the models evolve and grow 

continuously, requiring software developers to update their statistical models or add/modify 

rules in their rule-based systems or any associated reference sets. Additionally, feedback 

from software users on model strengths and weaknesses, identified through their routine use, 

is sent back to model developers to focus their efforts on targeted upgrades for future 

versions. This includes changes to the structure-activity relationships encoded in the models 

along with internal data made available to the model developers. Modifications to a (Q)SAR 

model are delivered to pharmaceutical applicants as version updates and this is commonly 
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done on an annual basis. Changes to the models are described in the technical release notes, 

which are provided to pharmaceutical applicants for their awareness. However, the subtle 

effects that upgrades can have on specific model predictions are not always known. Whilst 

changes to (Q)SAR models are necessary to capture new information or new data, despite 

being ultimately beneficial, they can be difficult for pharmaceutical applicants to manage. 

Drug development is a slow process and 6–7 years can transpire from the time of an 

investigational new drug (IND) application to the first marketing application (FDA, 2019). 

Updating the (Q)SAR predictions on a yearly basis before the market application is 

generally impractical for many pharmaceutical applicants, given the number of impurities 

that need to be evaluated for each program in development. The ICH M7 guidance does not 

provide any recommendations regarding the management of software updates in the context 

of contemporizing (Q)SAR predictions. Consequently, applicants have developed different 

practices. Some may update (Q)SAR predictions every time a new software version is 

released, others may not reevaluate between IND and first marketing application, and still 

others may conduct periodic updates at specific points in their development process, such as 

when manufacturing new batches, for example. In the recently released ICH M7 (R2) Q&A 

document (ICH, 2020), the lack of guidance has been addressed and it is stated that re-

running (Q) SAR predictions during development is not necessary, although it is 

recommended in preparation for marketing. This guidance was however not available at the 

time this study was initiated.

The main objectives of this study were to understand the magnitude and significance of 

changes to (Q)SAR predictions over time, and based on that understanding, recommend a 

best practice for updating (Q)SAR predictions during drug development. For this purpose, 

we assembled a random dataset that was then assessed in tools from three different 

commercial software vendors (Lhasa Limited (Lhasa, 2020), Leadscope Inc. (Leadscope, 

2020) and MultiCASE Inc. (MultiCASE, 2020)), covering models released over a time 

period of 4–8 years. The analysis presented here was based on thousands of compounds 

covering a chemical space modeled to represent pharmaceutical impurities, since this was 

considered most representative of the practical situation at hand. Furthermore, the 

compounds selected for analysis had no experimental bacterial reverse mutation results 

available as the objective of the investigation was only to assess changes in (Q)SAR 

predictions over time, rather than assess the accuracy of predictions over time. The results of 

this analysis form a good basis for providing scientific recommendations for pharmaceutical 

applicants on when it may be appropriate to update the original predictions using more 

contemporary software versions.

2. Data and methods

2.1. Creating a public dataset relevant to ICH M7 chemical space for evaluating changes 
to in silico predictions

A test set was created to represent the chemical space and compound class distribution 

commonly encountered for drug impurities evaluated in an ICH M7 use case. Compounds 

were extracted from the PubChem database (NIH-NLM, 2019) by matching them to 

structurally similar compounds in the Lhasa Vitic Intermediates database. The Vitic 
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Intermediates database project is a data sharing initiative organized by Lhasa Limited in 

which proprietary mutagenicity data for drug intermediates, impurities and synthetic 

reagents are shared within a consortium of pharmaceutical companies for the benefit of all 

members (Elder et al., 2015; Vitic, 2020). The 2017.1.0 Vitic Intermediates database 

contains 1341 proprietary impurity structures and the chemical space “populated” by the 

Vitic Intermediate dataset is probably the most relevant available for this evaluation. 

However, it should be noted as a caveat that this set represents a subset of chemicals that 

companies have chosen to share and does not necessarily cover the entire chemical space of 

drug development. Since the data themselves cannot be used directly, matching them to 

structurally similar compounds in the public domain provided a suitable alternative.

Initially, a random sample of two million compounds was obtained from PubChem. 

Structures were then standardized by carrying out validation (checking for integrity of the 

chemical structure), normalization (ensuring that the structures are represented in a 

consistent manner) and contextualization (removing structural information which is not 

relevant in the current context, such as stereochemistry). Mixtures and compounds 

containing metals other than group I and II were removed from the dataset as part of this 

process. Structural similarity analysis was carried out between the PubChem compounds and 

standardized structures present in the Vitic Intermediates database in order to identify 

structures most representative of the chemical space contained in the proprietary database. 

The approach used the fragment-based fingerprinting method described by Hanser et al. 

(2014) to create fragment-based bit sets for each compound which were then compared 

using the Tanimoto similarity measure (Rogers and Tanimoto, 1960; Willett et al., 1998). A 

cut-off of 0.5 was used to select compounds from the PubChem dataset that were deemed 

sufficiently similar to those present in the Vitic Intermediate dataset. This produced an initial 

dataset of 3567 compounds. This dataset was further refined by removing any structures that 

were present in the training set of one or more (Q)SAR models used in this investigation, or 

in databases where experimental bacterial reverse mutation data were available. This 

resulted in a final dataset of 3367 compounds from PubChem (available in supplementary 

information), representing an area of chemical space presumably most relevant to drug 

intermediates, impurities and synthetic reagents and thereby relevant to the ICH M7 use-case 

(Fig. 1).

To analyze the chemical space and distribution of chemicals covered by the PubChem 

sampled dataset and compare it to the chemical space covered by the Vitic Intermediates 

dataset, a similarity graph was generated using the same fragment-based fingerprinting 

method as earlier. The similarity graph was visualized using a force directed layout (Fig. 2). 

This analysis showed that the data points in both datasets are generally clustered around 

specific areas of chemical space in the diagram center. However, a significant minority of 

these points have few or no connections to other points in the datasets and are represented by 

small clusters or ‘singletons’ on the outside of the circle. The PubChem chemicals 

(represented by the blue dots in Fig. 2) generally cover the chemical space represented by 

the Vitic Intermediates dataset, as illustrated by their data points being associated with one 

or more Vitic Intermediates data points. The Vitic Intermediates dataset does contain some 

unique chemical space, when compared to that of PubChem. Since pharmaceutical 

compounds are, by design, in non-patented chemical space, there may be unique chemical 
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features not found in publicly available data. Further analysis reveals that some Vitic 

Intermediate compounds have unique substitution patterns, even when their functional 

groups are represented in the PubChem dataset. The employed similarity metric may not see 

these compounds as being similar overall. However, since the (Q)SAR methods use 

fragment-based descriptors, this will not necessarily have implications in the coverage of the 

models. This is discussed further in the results section pertaining to out-of-domain results.

Examples of the typical relationships between the specific compounds present in the Vitic 

Intermediate dataset and the similar compounds present in PubChem are shown in Fig. 3. 

Each Vitic Intermediates compound was usually associated with several PubChem chemicals 

(Example A) but in some cases, one Vitic Intermediates compound was associated with only 

one PubChem compounds (Example B). There were also rare instances where the same 

PubChem compound was associated with multiple Vitic Intermediates compounds.

In order to investigate the ‘toxicophore space’ covered by both datasets, the chemicals were 

matched using the mutagenicity alerts present in the expert rule-based prediction system 

Derek Nexus. The frequencies of the different activated alerts for each dataset are shown in 

Fig. 4. Both datasets predominantly activated a small number (n = 6) of the same alerts in 

the knowledgebase, with the remainder (44 total alerts by the Vitic Intermediates compounds 

and 45 alerts by the PubChem compounds) of activated alerts falling into a mixed category 

of ‘other’. The two datasets also both activated the same alerts in the same relative 

proportions, indicating that the two datasets occupy a similar ‘toxicophore space’. There is a 

total of 133 alerts for bacterial mutagenicity in the Derek Nexus version 6.0.1 knowledge 

base and each dataset activated less than half of these alerts. These results are expected, as 

some alerting features are rarely encountered in drug impurities due to their limited use in 

drug synthesis. Additionally, some alerts may be very specific in their definition and only 

represented by a very small set of chemicals. Others may be based on a large number of 

chemicals and have a much broader scope. The toxicophores represented in our datasets 

reflect this, predominantly activating alerts more general in nature and less specific in their 

structural definitions (Fig. 4). It is clear from this analysis that the ‘toxicophore space’ 

covered by these datasets (and by extrapolation, those alerts important for the ICH M7 use 

case) does not necessarily reflect the total knowledge of toxicophores in bacterial mutation 

prediction systems, but rather a specific section of this knowledge. In that respect, this may 

be considered a limitation of this analysis, but since our focus is primarily on pharmaceutical 

impurities, it was not viewed as a concern for this particular study. In a separate comparison, 

alkylating agents (25.9%), aromatic amines/amides/N-hydroxylamines (20.8%), aromatic 

nitro derivatives (14.6%), acid chloride derivatives (5.8%), and alkyl aldehydes (4.7%) were 

the top five alerting features found in synthetic routes (Galloway et al., 2013). Therefore, 

while the toxicophore space was restricted, it was representative of the alerting features 

typically found as pharmaceutical impurities.

2.2. Computational models

The final PubChem test set was evaluated using current and historical versions of both 

statistical and rule-based models from Leadscope (LS), MultiCASE (MC) and Lhasa (LH). 

Details of the models used, as well as brief descriptions of major model revisions, are listed 

Hasselgren et al. Page 6

Regul Toxicol Pharmacol. Author manuscript; available in PMC 2020 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in the sections below and Tables 1–3. In general, changes to all models and alerts are 

reflective of the growing body of Ames test study data, changes in criteria for concluding 

that an Ames test result is positive (Williams et al., 2019) or negative (Landry et al., 2019), 

as well as better knowledge of the structure-activity relationships resulting in bacterial 

mutation for new classes of chemistry.

2.2.1. LS models—The Leadscope Genetox Expert Alerts system has been updated 

yearly since its introduction in 2014 to include knowledge shared from corporate 

pharmaceutical applicants over the previous year through the Leadscope knowledge-sharing 

program. This program allows examination of proprietary corporate information under 

confidentiality restrictions through the use of Leadscope structure-activity fingerprints, 

designed to elucidate SARs for specific compound classes and thereby improve alert 

accuracy. This methodology was first introduced in the Genetox Expert Alerts version 3 

(2016) and has been described in Ahlberg et al. (2016). Since 2014, the predictivity of 

several classes of compounds has been improved using this technique, and the results 

published for aromatic amines (Ahlberg et al., 2016) and aromatic N-oxides (Amberg et al., 

2019b). Additional alerts updated during this 2014–2018 investigation period include: 

carboxylic and sulfonic acid halides, methyl halides, alkyl methyl halides, aromatic and 

aliphatic nitro groups, tri-substituted halogens, peroxides, quinolines, nitrones, alkyl esters, 

halo-amines, aromatic amides, hydrazines, polycyclic aromatics, fluorenes, and aryl boronic 

acids. The majority of these functionalities are present in the dataset used for this analysis 

and each year’s improvement to the alert set has potentially resulted in changes to the 

predictions for these classes of compounds.

Improvements in performance of the Leadscope Salmonella mutagenicity statistical model 

during the course of this investigation were primarily due to a substantial increase in the size 

of the training set (Landry et al., 2019) and incorporation of larger, more relevant chemical 

features (Stavitskaya, 2013). A new composite bacterial mutation statistical model was 

created in 2018 from a training set of 9189 compounds extracted from the Leadscope 

genetox database using an overall bacterial mutation prediction output The larger number of 

observations allowed construction of larger, more discriminating chemical structural features 

(i.e. more highly weighted features in the statistical model). Additionally, these features 

were made more chemically relevant through a software update ensuring inclusion of 

complete organic chemistry functional groups in a feature resulting in better sensitivity 

(Landry et al., 2019). This resulted in negative-to-positive and negative-to-equivocal 

prediction changes over the time period of this investigation. With the larger training set, the 

new model provides fewer out-of-domain results and thus changes calls from out-of-domain 

to valid predictions. The effect of these changes is seen most dramatically in Table 5A but 

less so in Fig. 5B.

3.2.2. MC models—Since the date of the first official release, CASE Ultra (CU) 

underwent several major algorithm updates that involved the new methodologies of building 

and handling statistical and rule-based models. The algorithm to build models was updated 

with an emphasis on more efficient machine learning and increase predictivity for new test 
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chemicals. The critical 2014 update involved introducing the rule-based model and a built-in 

consolidation feature, facilitating ICH M7 expert review.

The statistical models were updated during that period as well. The model introduced in 

2012 with the training set of 3535 records was rebuilt in 2014 and the bacterial mutagenicity 

status of each learning set chemical was reevaluated, and several hundred new chemicals 

were added (Kruhlak, 2013). Another major update was done in 2018, resulting in a new 

composite bacterial mutagenicity model that was constructed using a training set of 13,514 

chemicals with the bacterial mutagenicity data on either G-C or A-T type of mutations 

(Landry et al., 2019). The additional chemicals introduced new classes of chemicals and 

improved representation of chemical classes present in the initial versions of the models. 

This resulted in the identification of new alerts and modulators and overall better coverage 

of chemical space.

GT_EXPERT is a rule-based model of bacterial mutagenicity. The original rule-based model 

was introduced in 2014 with 125 alerts; later it was updated with new alerts, bringing the 

total number to 174 alerts. Currently, it consists of 198 structural alerts, of which 60 

represent general mechanisms and the remainder accompanies them as refining factors. 

These expert alerts were collected from published reviews and scientific studies (Ashby and 

Tennant, 1988; Bailey et al., 2005; Kazius et al., 2005; Benigni and Bossa, 2008) and were 

refined and benchmarked by in-house experts on a reference set of 13,514 chemicals with 

known bacterial mutagenicity outcomes (Sedykh et al., 2015). The increase of the 

benchmarking set from the original 8556 chemicals to 11, 461 chemicals and to the current 

13,514 chemicals not only supported the addition of new alerts but expanded the chemical 

space covered by the rule-based system. The most significant additional alerts are sulfonic 

acid halides, acyl halides, sultones, and cyclic sulfates, oxetane, thietane, and azetidine 

derivatives and aryl hydroxamates. All alerts were also verified using proprietary chemicals 

(that are not included in the 13,514 chemicals) to ensure performance on pharmaceutical 

chemicals.

3.2.3. LH models—Derek Nexus is now a relatively mature expert system for the 

prediction of Ames mutagenicity; however, the knowledge base of this system has continued 

to develop over the years as new data have become available (both public and private) and 

new methods explored. A significant change in how Derek Nexus treats compounds which 

do not activate an alert was made in version 4.0.6 of the program when the concept of 

negative predictions was introduced (Williams et al., 2016). The approach uses the Dataset 

Lhasa Ames test reference set in order to determine the confidence with which a negative 

prediction could be made and if there were any features in the molecule which should be 

further investigated as there may still be a cause for concern (misclassified features) or were 

not represented in the Dataset Lhasa Ames test reference set (unclassified). Since the 

compounds containing unclassified features have been designated as ‘out-of-domain’ (OOD) 

for the benefit of the current work, this is the reason for the relatively large increase in 

negative to OOD for this system between the versions indicated in Fig. 5D (red bar). The 

changes from negative to positive predictions by Derek Nexus are a consequence of the fact 

that the knowledge base for bacterial mutagenicity expanded from 88 alerts in version 2.0.2 

of the software to 133 alerts in version 6.0.1. Of particular note is the fact that a new alert for 
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boronic acids was introduced in Derek Nexus version 3.0.1, following the publication of 

data outlining the mutagenicity of this compound class (O’Donovan et al., 2011). The 

introduction of this alert is one of the major reasons for the changes from negative to 

positive predictions for the different versions of this system shown in Fig. 5A (blue bar). 

Another reason for a significant number of the changes from a negative to positive 

prediction was the development of new structural alerts during this time based on Lhasa 

member donated data. These data are often proprietary and cannot be published directly, 

however, knowledge can still be gained from it and encoded in an expert rule-based system 

as it becomes available.

Due to Sarah Nexus being relatively new software, changes to both the method used to build 

the model and the training set data were made between the early versions of the software as 

the strengths and limitations of the approach became apparent. The chemical fragmentation 

method employed in Sarah Nexus was updated between versions 1.2 and 2.0 of the program 

so that information relating to the chemical environment of different atoms could be retained 

in the fragments formed from each structure. This change enabled the production of 

fragments, and therefore hypotheses and predictions, which were more specific than the 

fragments employed in the previous version. The change led, not only to making existing 

hypotheses more specific but also the discovery of new, more specific, positive hypotheses. 

A number of the changes in predictions from positive to negative between these versions, 

highlighted in Fig. 5B, were the result of the changes to produce these more specific 

fragments. Changes to training data used to build the model in Sarah Nexus have been made 

as new data becomes available and more existing data are captured in the sources used to 

train the model. Lhasa’s Vitic database (Vitic, 2020) is continuously being updated with 

Ames mutagenicity data extracted from both the public literature and studies donated by 

Lhasa member organizations. The Sarah Nexus training set inherits new data from this 

database as well as new data donated directly by members for the improvement of the 

predictive system. As a result, the Sarah Nexus training set increased from 8201 compounds 

in version 1.2 to 9882 in version 3.0.0.

2.3. Applying computational models

To enable a direct comparison of predictions across software models, the prediction 

terminology was harmonized; that is, software vendor-specific prediction terminology was 

mapped to a common terminology (Table 4). Derek Nexus negative predictions with 

misclassified features were treated as negative for this study. A misclassified feature is a 

feature in a query molecule which is shared with a non-alerting mutagen in the Lhasa Ames 

test reference dataset and is not present in any negative compounds in this dataset. In 

contrast, Derek Nexus negative predictions with unclassified features were treated as out-of-

domain (OOD). An unclassified feature is a feature in a query molecule which is not present 

in any of the structures in the Lhasa Ames test reference dataset (Lhasa, 2020). It is 

recognized that vendors may recommend a different interpretation of certain output terms, 

for example Lhasa do not intend “Negative with unclassified features” in Derek Nexus to be 

interpreted as an OOD result. The OOD term indicates that the compound is not sufficiently 

(structurally) covered by the model to give a reliable prediction. For the sake of this analysis, 

a practical approach was taken to harmonize the term in accordance with how many 
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applicants manage the predicted output in practice, and hence such predictions were binned 

as OODs to match the other software output.

* Structural alerts in Derek Nexus have different levels of confidence associated with them 

and these take the form of reasoning levels (Judson et al., 2012). An alert with a reasoning 

level of equivocal indicates that a toxicophore has been identified by the alert writer but 

there may be reasons why results in the Ames test for the class may not be consistent, or 

evidence is limited.

2.4. Test set evaluation

The final PubChem test set of 3367 chemical structures was evaluated in all current and 

historical software model versions listed above from each of the three software vendors. For 

each model and version, the results were tabulated according to the mapped terminology (i.e. 

the number of positive, negative, equivocal and out-of-domain results were tabulated). The 

percentage of predictions that changed for the chemicals over time was then evaluated by 

comparing the initial prediction generated by a software model (e.g. MultiCASE statistical 

model version A7B) to the most current prediction generated by the contemporary model 

(e.g. MultiCASE statistical model version GT1-BMUT). Results were then summarized 

such that the percentage of predictions that changed to a particular result type could be 

understood (e.g. what percentage of chemicals with predictions that were initially negative, 

equivocal or out-of-domain generated a positive prediction with the most contemporary 

version of the software). Results were summarized in this manner for each individual 

software model included in this investigation. In addition, the percentage of predictions that 

changed over time was further evaluated taking into consideration consensus predictions. In 

the context of this investigation, consensus prediction is a prediction that takes into 

consideration the output of two complementary (Q)SAR models (a statistical model and an 

expert rule-based model). Consensus predictions were defined as follows:

• A positive prediction in at least one of two models = positive

• An equivocal prediction in at least one model and negative or OOD result in the 

second model = equivocal

• Negative predictions in both models = Negative

• A negative prediction in one model and OOD result in the second model = OOD

• OOD predictions in both models = OOD

The change in consensus predictions was evaluated by considering the outputs of two 

complementary systems from a single vendor (intra-vendor consensus predictions) as well as 

all possible combinations of two complementary systems from two vendors (inter-vendor 

consensus predictions).

3. Results

Table 5 A–C shows the distribution of compounds predicted in each result category (i.e. 

positive, negative, equivocal, OOD) for each vendor and model version. The associated 

changes shown as percentages, are tabulated in the supplementary information. It is noted 
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that both LS and MC rule-based models tended to predict fewer compounds as positive as 

refinement of alerts progressed, decreasing from 1031 compounds in 2014 to 715 in 2018 

for LS and similarly, 1014 (2014) to 875 (2018) for MC. In contrast, LH’s rule-based system 

stayed constant at around 940–960 over the years 2012–2018. The decrease in positive 

predictions from the LS and MC rule-based systems is accompanied by an increased number 

of negative predictions, from 2216 to 2314 for LS and from 2134 to 2279 for MC, as well as 

an increased number of equivocal predictions. This is most markedly true for LS, where the 

number of equivocal predictions increased from 41 in 2014 to 283 in 2018. For the LH rule-

based system, the distribution of negative predictions changed in 2014 when the new 

categories “Negative with unclassified features” and “Negative with misclassified features” 

were introduced, and some of the existing negative predictions then fell into one of those 

new categories.

The statistical model results fluctuated for LS with no specific trend observed. The MC 

model results showed an increase in negative predictions, 1888 (2012) to 2071 (2018) which 

was accompanied by a slight decrease in positive predictions and again, a more marked 

increase in equivocal predictions. The statistical model from LH exhibited the opposite trend 

with an increase in positive predictions from 593 (2014) to 696 (2018), as well as an 

increase in negative predictions, 2058 (2014) to 2103 (2018). This was the only model 

where the number of equivocal predictions decreased over time. It is noteworthy that all 

models, rule-based and statistical, showed a decrease in number of OOD results over time 

and that the proportion of OOD results in the set is very small. This highlights that the 

coverage of the models is high and is improving over time. It is reasonable to assume that 

this is likely primarily due to an increase in size and diversity of the available training sets.

As the ICH M7 guideline specifies the use of one rule-based and one statistical model, we 

investigated how many compounds would have a changed consensus call over time, 

mimicking practical application of the software. The percentage of change in individual 

model predictions and consensus predictions for each vendor for models released during the 

time period 2014 to 2018 are shown in Fig. 5A–D. This time interval was selected based 

upon when the ICH M7 guideline was introduced and the impurity evaluation process 

became formalized. The introduction of the ICH M7 guideline triggered the development of 

additional models by software vendors to enable their customers to use both model types 

from a single vendor, if desired. Prior to this, LS and MC were the primary providers of 

statistical models and LH the provider of a rule-based model for bacterial mutagenicity 

predictions.

Of high importance are the cumulative changes in predictions over time from negative or 

OOD to positive (Fig. 5A). In a scenario where impurity assessments are not reevaluated 

with every software update, it is of importance to know how likely it is that true positive 

predictions would be overlooked if not reevaluated, as these could pose a previously 

unknown safety risk to patients. For individual models, the percentage of compounds with 

predictions which changed from negative to positive ranged from 0.5% to 4.8% of the 

compounds. The percentage of predictions which changed from equivocal to positive was 

0.1%–4.7% and the smallest change was observed for OOD results which changed to 

positive, 0.1%–0.9%. For the intra-vendor consensus models, the upper boundary was 
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slightly lower with negative to positive prediction changes ranging 1.4%–2.5%, equivocal to 

positive prediction changes ranging 1.8%–2.1% and OOD to positive prediction changes 

ranging 0.1%–0.9%. Changes to equivocal are also of importance if the compounds were 

previously predicted to be negative or OOD (Fig. 5C). The percentage change from negative 

to equivocal ranged from 0.03 to 7.3% and for OOD to equivocal, the change was 0.03–

0.7%. Conversely, the change from positive to equivocal ranged from 1 to 8.2%.

In comparison, the percentage of compounds where individual model predictions changed 

from positive to negative (Fig. 5B) ranged from 1.7% to 9.7% and equivocal to negative 

predictions spanned 0.1%–7.8%. The percentage of compounds where individual predictions 

changed from OOD to negative (0.6%–4%), was higher compared to percentage of 

compounds changing from OOD to positive predictions, indicating that an increase in 

chemical space coverage by models over time tended to include predominately additional 

negative experimental data. Lastly, changes leading to OOD results (Fig. 5D) were very 

small and ranged from 0 to 3%, with the 3% associated with changes from negative to OOD 

by the expert rule-based system from Lhasa. This slightly higher change is the result of an 

introduction of a new classification category, indicating some features are now flagged as 

unclassified by the model and which the authors have interpreted as OOD even is this is not 

a term used by the vendor.

As pharmaceutical applicants use combinations of models from different vendors, depending 

on organizational preferences, we analyzed whether these different combinations would 

result in more or less variation. Fig. 6A–D shows all the classification results from all the 

inter- and intra-vendor combinations and the results from each pair of models is shown. As 

illustrated in the figure, there is no significant difference in variation, depending on which 

combination is used. Intra-vendor variation was very similar to inter-vendor variation with 

the average prediction change from negative to positive being 2%, equivocal to positive 

change being 1.8% and the OOD being 0.6% (all illustrated in Fig. 6A). The average 

changes to negative predictions (Fig. 6B) were slightly higher with positive to negative being 

3.8%, equivocal to negative 3.7% and OOD to negative 0.8%. The variation between 

different consensus combinations for positive and equivocal to negative changes (Fig. 6B) 

were slightly higher than for the consensus outputs changes to positive. Consensus changes 

from positive to equivocal (Fig. 6C) were interesting with a more pronounced variation that 

was dependent on the model combination; ranging from 0.6% to 4.8% (with the largest 

change being for the LS rule-based and LS statistical combination). Negative to equivocal 

prediction changes were on average 4% and from OOD to equivocal were 0.4% (both 

illustrated in Fig. 6C). The smallest changes in consensus predictions, not surprisingly, were 

associated with changes to OOD (Fig. 6D) and these ranged from 0.2% to 0.5%.

Taking all possible software combination prediction outputs into account, Fig. 7 shows the 

percentage of compounds with unchanged consensus predictions for models released 

between the time period of 2014–2018. The combinations of models with least change 

associated are the LS or MC statistical model combined with LH rule-based model, followed 

by MC statistical plus MC rule-based, where all three combinations give over 80% 

unchanged predictions. Most of the other combinations have over 70% unchanged 

predictions with the exception of LS rule-based and LH statistical. These are younger 
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systems, both introduced in 2014, that underwent significant refinement between 2014 and 

2018. An important finding of this analysis is that the number of unchanged predictions, 

when complementary models are used in accordance with ICH M7, is very high.

4. Discussion

The use of two complementary (Q)SAR models for assessing mutagenic potential of 

pharmaceutical synthesis impurities is recommended in the ICH M7 guidance. The guidance 

document also states that models should follow the OECD principles on model validation 

(OECD, 2007). There are, however, no details on model application, such as how to interpret 

the model output, leading to a number of “best practice” publications discussing case studies 

and providing guidance on how to perform expert review (Powley, 2015; Amberg et al., 

2016, 2019a; Williams et al., 2016). Similarly, the ICH M7 guidance does not address how 

to manage software updates or if in silico impurity assessments require updates throughout 

the course of drug development. Consequently, industry practice varies considerably in this 

respect. As stated earlier, the aim of this study was not to look at model predictivity or 

overall accuracy in terms of how well the predicted output correlates with experimental 

results. The goal was to understand the variability in prediction outputs over time, resulting 

from software updates, and to provide recommendations on how to manage this situation 

more consistently. As with any analysis of prediction outputs, the results depend partially on 

the dataset selected for analysis and may not be generally applicable in the global chemical 

space context. We therefore selected a set of compounds that are as representative as 

possible of the chemical space covered by pharmaceutical impurities, as this is the use case 

we were interested in evaluating.

4.1. Results from the study

This study considered individual model changes resulting from yearly updates over a time 

period of 4–8 years, depending on how long each model has been commercially available. In 

addition, the impact of four years of model updates was examined when models were used 

in a consensus fashion, consistent ICH M7 guideline recommendations. As outlined in the 

Results section, the largest changes in consensus predictions are associated with changes 

from positive or equivocal to negative predictions and from negative to equivocal. Changes 

from positive to equivocal are in a similar range, but only for some model combinations. 

From a patient safety point of view, it is reassuring to see that the majority of newer 

predictions tend to de-risk, rather than identify new risks as models are updated over time. In 

the same context, changes resulting in equivocal predictions are subject to expert review, 

which ensures that true positives are identified. It is also interesting to note that the use of 

two complementary models reduces the variation over time, suggesting that it is not 

necessary to reevaluate chemicals every time a software update is released. As expected, 

very few consensus predictions change into OOD results. A prediction that changes to OOD 

indicates that chemicals have been removed from the training set. This would only happen if 

the Ames data associated with those chemicals were considered unreliable. Instead, as 

would be expected when models mature and their included training sets grow and 

experimental results become more reliable, the number of OOD predictions decreases for all 

prediction categories, single model or consensus.
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4.2. Reasons for changes in predictions

There are a number of reasons why a prediction may change between different versions of 

the same software. The majority of these relate to changes which are designed to lead to an 

improvement in predictivity of the model and may be a consequence of an improvement in 

the method used to make the prediction, the encoding of new knowledge or a better curation 

or reinterpretation of training set data. Examples of each are outlined below.

4.2.1. Updates to modeling methodology—Improving the descriptors and/or 

algorithms used to make a prediction may lead to more sensitive or specific predictions and 

therefore making changes to these variables is an active area of research for many software 

developers. Such improvements may lead to prediction changes between software versions.

The majority of statistical models used in the prediction of bacterial mutagenicity employ 

descriptors representing fragments of the chemical structures in the training set and associate 

these sub-structures with either activity or inactivity in the Ames test (Ames et al., 1973a, 

1973b; Gee et al., 1994). The method by which these fragments are derived and the 

structural information they encode may be altered in order to improve predictions. In 

addition, other descriptors relating to physicochemical properties may be employed (for 

example molecular weight, ClogP) in order to make the predictions more specific and these 

may be changed between software versions due to changes in algorithms or training sets 

used to calculate those descriptors. An example of how an update to the descriptors used in 

making a prediction may lead to a change in predictions is exemplified in modifications 

made between Lhasa Limited’s statistical model Sarah Nexus version 1.2 (V.B 2014) and 

version 2.0.1 (V.C 2016) (Table 3.1). The chemical fragmentation method employed in the 

program was updated between these versions so that more information relating to the 

chemical environment of different atoms could be retained in the fragments formed from 

each structure. This change enabled the production of more specific fragments, and therefore 

influenced the predictions in the new model version.

Making an overall prediction from the selected descriptors also involves employing an 

algorithm to combine the descriptor knowledge in order to reach a conclusion. As an 

example, since the date of the first official release in 2012, CASE Ultra has undergone 

several major algorithm updates which involved new methodologies for building and 

refining statistical models (Table 2). The changes affected the discovery and validation of 

the positive alerts and deactivating features as well as the calculations of the final probability 

of being positive. The algorithmic changes may also result in changes to predictions over 

time.

4.2.2. New data leading to new knowledge—New data relating to toxicity endpoints 

(in this case bacterial mutagenicity data) are continuously being generated and, 

consequentially, the knowledge that can be derived from these data will also change over 

time.

In expert rule-based predictive systems, new data and knowledge are usually encoded by 

creating new structure-activity relationships for compound classes, either by generating new 

alerts or by refining existing alerts as new, reliable positive data are obtained. Negative data 
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may also lead to the refinement of existing structure-activity relationships and more specific 

structural alerts. Similar changes to predictions will be observed in statistical systems upon 

the addition of new data to their training sets. New structure-activity relationships may be 

derived or the weight of evidence may change for an existing structural feature so that it no 

longer leads to a positive prediction. Alternatively, the new data may change the similar 

nearest neighbors to a query compound and therefore the local weight of evidence may 

change, altering the confidence in a prediction. The introduction of new data may also lead 

to an increase in the chemical space covered by a model, resulting in a reduction of 

structures which are outside its applicability domain. In some cases, more confident 

predictions and a reduction in equivocal results are a consequence of conflicting data being 

resolved, potentially through experimental data of higher quality becoming available.

An example of new data leading to the generation of a new toxicophore and improving the 

applicability domain of a model are the studies relating to the bacterial mutagenicity of aryl 

boronic acids (O’Donovan et al., 2011; Hansen et al., 2015). This work reported a new 

chemical class of bacterial mutagens which had not previously been known or predicted. 

Addition of the data, and knowledge associated with it to the in silico predictive systems, led 

to the generation of a new structural alert for prediction of bacterial mutagenicity. The 

addition of new data for a relatively under-represented chemical class also meant that more 

chemicals containing this structural feature were brought into the applicability domain of the 

models.

4.2.3. New interpretation of existing training set data—In addition to new data, 

existing training set data used to build (Q) SAR models are also continuously being 

reevaluated and curated. In some cases, earlier model versions contained negative training 

set chemicals that were only tested in a single Salmonella strain. As model training sets 

evolved in quality and supporting documentation (often through manual review of studies) 

some software developers implemented acceptance criteria for training set negatives to be 

tested in a minimum of two strains (typically TA98 and 100) to minimize the chance that if 

an additional strain were tested, a positive response would be observed. It is also relevant to 

ensure that if a compound contains an alert, it has been tested in a strain that is likely to be 

responsive to that particular structural feature. Other approaches to increasing confidence in 

limited strain non-mutagenic training set chemicals include only accepting data from a 

reputable source such as the NTP, or another government agency. While it would be ideal to 

have all negatives fully tested in all five strains before inclusion in a training set, the reality 

is that such comprehensive datasets are not available and excluding negatives with limited 

strain data would lead to substantially lower chemical coverage by the models. In the 

majority of instances, the reevaluation process results in confirmation of the already existing 

overall conclusion (i.e. positive or negative). In cases where new conflicting data are 

introduced, the weight of evidence usually results in the overall conclusion being considered 

equivocal or unknown. In these cases, the compound is removed from the training set of the 

model (as are all compounds with overall equivocal calls).

One reason why experimental results may be reevaluated in a model’s training set is when 

an inadequacy in the particular Ames test protocol employed is revealed that prevents a 

conclusive assessment of the hazard posed by a compound or chemical class. An example of 
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this is the re-evaluation of the Ames test results of acid halides. It was recently suggested 

that interaction of acid halides with the test vehicle can potentially confound the evaluation 

of their mutagenic potential by the Ames test (Amberg et al., 2015). When tested using 

dimethyl sulfoxide (DMSO) as the vehicle, the compounds can react to produce a reactive 

halodimethylsulfide species, which may lead to positive results being observed in the Ames 

test. A non-reactive solvent, such as acetonitrile, is therefore suggested to most accurately 

measure the bacterial mutagenicity of this compound class, and for most of the acid halides 

studied in this work, testing in this solvent resulted in a negative response (Amberg et al., 

2015).

4.2.4. Factors impacting the effects of software updates—The impact of changes 

in software versions may not necessarily result in a change in the final classification of an 

impurity. As discussed earlier, variation in an individual model output may not modify a 

consensus prediction. For example, a statistical model update resulting in a prediction 

change from negative to positive may not influence the consensus call, if the rule-based 

model had already predicted the chemical to be positive. The use of two complementary 

models introduces a higher sensitivity and ensures that fewer true positives are incorrectly 

classified. Another important aspect is the use of expert review. Although expert review is 

stated as “if warranted” in the ICH M7 guideline, it is a common and highly recommended 

practice to perform expert review to maintain high sensitivity and high negative predictivity, 

while reducing false positives. Expert review may involve reviewing supporting training set 

examples, mitigating features, experimental data quality, prediction probabilities of being 

positive and other factors. Inconclusive predictions, equivocal predictions and OOD results 

are especially important to review. In these situations, it is common to err on the side of 

caution and if no clear negative conclusion can be made, and the impurity is often controlled 

to TTC levels or tested in an Ames test. It may also be prudent to use an additional (Q)SAR 

model to see if more information is available before resorting to testing.

As mentioned in the introduction, the process of reviewing impurities of the synthetic routes 

during drug development, is an evolving process. It is common to test some impurities or 

starting materials early on, especially if the chemical space is novel. The results can often be 

used as part of an expert review of other impurities and results in substantial knowledge 

being known about the synthesis products and impurities, by the time of regulatory filing. 

This internal knowledge also means that changes in predictions will have less practical effect 

on impurity classifications.

4.3. FDA/CDER experience

(Q)SAR models developed for use under ICH M7 are generally updated every one to three 

years. Updating allows new information to be added to the training sets, errors to be 

corrected, and improvements to be made to the prediction algorithms and knowledge used to 

build the models. It is preferred by FDA regulators that pharmaceutical developers re-run 

(Q)SAR predictions prior to a regulatory filing to ensure that the most current information is 

provided for review. Despite this, many instances occur where submitted predictions are no 

longer based upon the most current version of the software by the time they are reviewed, in 

part due to the timing of new software releases or the need for multiple review cycles.
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While it is preferred that applicants use the most current model version, predictions based on 

older versions are acceptable on a case-by-case basis, particularly within a two-year 

timeframe. FDA/CDER uses an internal guide for reviewers of 2 years as the “shelf-life” of 

a (Q)SAR prediction based on experience using the models internally for impurity 

assessments. This is intended to minimize the burden on pharmaceutical applicants and to 

reflect FDA/CDER’s experience that generally, when expert knowledge is applied, the 

predictions do not change substantially within such a timeframe. Also, multiple versions of 

the same software may be used by applicants for different impurities within a regulatory 

submission. Since some models are updated on an annual basis, it is recognized that re-

running and evaluating a large number of impurities just to add one more impurity 

prediction at a later time is impractical and unlikely to affect the overall conclusions, 

especially if expert knowledge is applied to the predictions. Predictions submitted by an 

applicant are not routinely re-run by FDA/CDER. Furthermore, once a prediction is 

accepted, an applicant is not expected to update the prediction later in the development 

program unless a specific cause for concern is identified.

Substantially older predictions, such as those generated prior to ICH M7’s finalization in 

2014, are generally unacceptable. When requested by reviewers, FDA/CDER’s 

computational toxicology group generates predictions with the newest software version to 

confirm the conclusions based on current knowledge. Additionally, FDA/CDER applies 

expert knowledge to all internally generated (Q)SAR predictions to serve as a buffer to 

changes from individual models and increase the likelihood of a high confidence clear 

positive or negative prediction. For example, in a case where one model generates a negative 

prediction and the other an equivocal prediction, expert knowledge may be used to confirm 

that the equivocal result is based on a weak structural alert that is derived from chemicals 

containing that alert in a different chemical environment than the impurity. Expert 

knowledge would, in this case, downgrade the equivocal prediction to negative and assign 

the impurity to Class 5. When the same chemical is predicted at a later date with the next 

version of the model, the results may be that both models now give negative predictions, 

directly supporting a Class 5 assignment. The overall conclusion (Class 5) has not changed 

but the individual predictions have.

To ensure consistency and efficiency in the review of drug applications, FDA/CDER has also 

implemented the practice of chemical registration to track impurity structures and in-house 

(Q)SAR assessments across multiple applications. FDA/CDER’s computational toxicology 

group has established a structure-searchable database where impurity structures are stored 

along with the results of an internally generated ICH M7 (Q)SAR assessment report 

containing both prediction results and expert review-based conclusions. When an in-house 

(Q)SAR assessment is needed for a new impurity, the reviewer can first search the database 

of previously evaluated structures and retrieve the previously-generated (Q)SAR report, if 

available. If the report was generated within the last two years, the conclusions can be used 

directly from the report without the need for a repeat request, thereby reducing duplication 

of effort for the same structure and ensuring consistency of conclusions across multiple 

reviews.
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5. Conclusion

In conclusion, there was a small degree of variability for (Q)SAR Ames statistical and expert 

rule-based model predictions. The variation is reflective of the updates to the data in the 

system, new knowledge, and new application of algorithms and is further reduced by the 

practice of applying two complementary models in a consensus fashion. Most of the 

variation resulted in positive or equivocal predictions changing to equivocal or negative, 

respectively, with very few examples (on average 2%) of negative predictions changing to 

positive predictions.

As a result of this analysis, we conclude that it is unnecessary to re-run a (Q)SAR prediction 

every time there is a version update unless there are specific reasons to do so, e.g., such as 

those presented below, which can be determined on a case-by-case basis. These version 

updates are fairly frequent (often yearly) and updating the predictions can be challenging to 

manage with no apparent overall value to patient risk. However, we recommend when 

finalizing the commercial synthetic manufacturing route to consider re-evaluating the 

impurity assessments, which is in line with the recent ICH M7 (R2) Q&A document (ICH, 

2020). This could mean performing (Q)SAR on all actual and potential impurities in the 

current route or evaluating assessments of individual compounds only. Reviewing software 

release notes usually provides detailed information on what alerts/chemical classes are 

affected in an updated model, and this information could be used to highlight which 

compounds to reassess. It is an organizational choice of which approach is most suitable. 

Often, considerable knowledge about the synthetic route has also been gained over the 

development process through experimental Ames testing and it is reasonable to assume that 

with a diligent process over the course of development, very few surprises would happen at 

time of commercialization. This knowledge, together with a final review, using 

contemporary software models, will ensure patient safety and that the best scientific 

approach is applied.
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Fig. 1. 
An illustration of the workflow used to generate a dataset of 3367 compounds from 

PubChem representing an area of chemical space and compound distribution relevant to the 

ICH M7 workflow.
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Fig. 2. 
A similarity graph displayed with a force directed layout representing the chemical space 

represented by the Vitic Intermediates dataset (data points in green) when compared to the 

PubChem ICH M7 dataset (data points in blue).

Hasselgren et al. Page 23

Regul Toxicol Pharmacol. Author manuscript; available in PMC 2020 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Similarity of some selected examples from the Vitic Intermediates dataset with the structures 

extracted from the PubChem database.
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Fig. 4. 
Pie charts illustrating the distribution of mutagenicity alerts activated in Derek Nexus 

version 6.0.1 by the Vitic Intermediates and PubChem datasets.
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Fig. 5. 
A–D Cumulative changes for each prediction category from 2014 to 2018. The numbers 

represent the average change.
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Fig. 6. 
A-D Consensus changes for each prediction category.
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Fig. 7. 
Percentage of chemicals with unchanged predictions of models released between 2014 and 

2018. (Blue bars represent inter-vendor combinations and green bars represent intra-vendor 

combinations, Stat = Statistical model, Alert = Rule based model). Average calculated as the 

mean.
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Table 1

Leadscope models.

Year Leadscope version Statistical-based QSAR Rule-based SAR Type of update

2010 LSE 2.7 Salmonella v2 (3579 compounds) N/a statistical model features updated

2013 LSE 3.1 Salmonella v3 (3979 compounds) N/a statistical model training set and 
features updated

2014 LSE 3.2 Salmonella v3 (3979 compounds) Genetox Alerts v1 (162 rules) first alerts release

2015 LSE 3.3 Salmonella v3 (3979 compounds) Genetox Alerts v2 (215 rules) alerts updated

2016 LSE 3.4 Salmonella v3 (3979 compounds) Genetox Alerts v3 (213 rules) alerts updated

2017 LSE 3.5 Salmonella v3 (3979 compounds) Genetox Alerts v4 (224 rules) alerts updated

2018 LSE 3.6 Bacterial Mutation v1 (9189 
compounds)

Genetox Alerts v5 (226 rules) alerts updated, statistical model 
training set and features updated
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Table 2

MultiCASE models.

Year CASE Ultra 
version

Statistical-based QSAR Rule-based SAR Type of update

2012 1450 A7B (3535 records) N/a First official release

2013 1460 A7B (3535 records) N/a Minor update

2014 1520 GT1_A7B (3979 records) GT_EXPERT (125 rules, 8556 records) Major algorithm update, new 
models

2015 1603 GT1_A7B (3979 records) GT_EXPERT (125 rules, 8556 records) Major algorithm update

2017 1623 GT1_A7B (3979 records) GT_EXPERT (174 rules, 11461 records) Minor update

2018 1704 GT1_BMUT (13514 records) GT_EXPERT (198 alerts, 13514 records) Major algorithm and models update
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Table 3

Lhasa models.

Year Nexus 
version

Statistical-based 
QSAR

Rule-based 
SAR

Type of update

2012 1.5 n/a 2.0.2 Updates to Derek Nexus knowledge base.

2013 1.5 n/a 3.0.1 Updates to Derek Nexus knowledge base, including introduction of alert for 
aryl boronic acids.

2014 1.7.6 1.1.2 4.0.6 Sarah Nexus new software. Updates to Derek Nexus knowledge base. 
Introduction of negative predictions in Derek Nexus.

2014 2.0 1.2 4.1 Updates to Derek Nexus knowledge base. Changes to Sarah Nexus software 
interface.

2016 2.1.1 2.0.1 5.0.2 Update to Sarah Nexus fragmentation algorithm. Updates to Sarah Nexus 
training set. Updates to Derek Nexus knowledge base.

2018 2.2.1 3.0.0 6.0.1 Updates to Sarah Nexus training set. Updates to Derek Nexus knowledge base.
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